research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 223-225

Crystal structure of 4-tert-butyl-2-{2-[N-(3,3-di­methyl-2-oxobut­yl)-N-iso­propyl­carbamo­yl]phen­yl}-1-iso­propyl-1H-imidazol-3-ium perchlorate

aTaras Shevchenko National University of Kyiv, Department of Chemistry, 64/13 Volodymyrska str., Kyiv 01601, Ukraine, and bSSI Institute for Single Crystals NAS of Ukraine, 60 Lenin ave., Kharkiv 61001, Ukraine
*Correspondence e-mail: roman@xray.isc.kharkov.com

Edited by A. J. Lough, University of Toronto, Canada (Received 15 January 2015; accepted 22 January 2015; online 28 January 2015)

In the title salt, C26H40N3O2+·ClO4, the positive charge of the organic cation is delocalized between the two N atoms of the imidazole ring. The C N bond distances are 1.338 (2) and 1.327 (3) Å. The substituents on the benzene ring are rotated almost orthogonal with respect to this ring due to the presence of the bulky isopropyl substituents. The dihedral angle between the benzene and imidazole rings is 75.15 (12)°. Three of the O atoms of the anion are disordered over two sets of sites due to rotation around one of the O—Cl bonds. The ratio of the refined occupancies is 0.591 (14):0.409 (14). In the crystal, the cation and perchlorate anion are bound by an N—H⋯O hydrogen bond. In addition, the cation–anion pairs are linked into layers parallel to (001) by multiple weak C—H⋯O hydrogen bonds.

1. Chemical context

α-Amino­ketones are known for their fungicidal activity (Gold de Sigman, 1983[Gold de Sigman, S. (1983). (Romikin) ES 512,316 (19. 05. 1982) [CA 99, 88229j].]) and 2-acyl­amino­ketones are the starting compounds in the oxazole synthetic method by the Robinson–Gabriel synthesis by dehydration of 2-acyl­amino­ketones (Robinson, 1909[Robinson, R. (1909). J. Chem. Soc. Trans. 95, 2167-2174.]; Gabriel, 1910[Gabriel, S. (1910). Berichte, 43, 1283-1287.]; Wasserman & Vinick, 1973[Wasserman, H. H. & Vinick, F. J. (1973). J. Org. Chem. 38, 2407-2408.]) that has been used during studies dealing with pharmaceut­ically important mol­ecules that incorporate an oxazole deriv­ative (Godfrey et al., 2003[Godfrey, A. G., Brooks, D. A., Hay, L. A., Peters, M., McCarthy, J. R. & Mitchell, D. (2003). J. Org. Chem. 68, 2623-2632.]; Nicolaou et al., 2004[Nicolaou, K. C., Hao, J., Reddy, M. V., Rao, P. B., Rassias, G., Snyder, S. A., Huang, X., Chen, D. Y.-K., Brenzovich, W. E., Giuseppone, N., Giannakakou, P. & O'Brate, A. (2004). J. Am. Chem. Soc. 126, 12897-12906.]; Hoffman et al., 2010[Hoffman, T. J., Kolleth, A., Rigby, J. H., Arseniyadis, S. & Cossy, J. (2010). Org. Lett. 12, 3348-3351.]).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the cation is shown in Fig. 1[link]. The positive charge is delocalized between the two nitro­gen atoms of the imidazole ring according to almost equivalent lengths of the C7—N1 and C7—N2 bonds [1.338 (2) Å and 1.327 (3) Å, respectively] and also of the C8—N1 and C9—N2 bonds [1.379 (3) Å and 1.374 (3) Å, respectively]. The presence of two bulky substituents in the ortho positions of the benzene ring results in disruption of the conjugation between the aromatic ring, imidazole ring and amide [N3/C17/O1] fragment due to their almost orthogonal orientation [the corresponding torsion angles are N1—C7—C1—C6 = −81.5 (3)° and C5—C6—C17—N3 = 81.1 (3)°]. The plane of the carbonyl group (C22/O2/C23/C21) is oriented almost orthogonal to the plane of the amide fragment (C21/N3/C18/C17/O1/C6), the angle between their mean planes being 77.87 (11)°. A similar type of α-acyl­amino­ketone fragment has been observed for other N-substituted α-acyl­amino­ketones (Bartnik et al., 1998[Bartnik, R., Faure, R. & Gebicki, K. (1998). J. Chem. Crystallogr. 28, 119-123.]; Tinant et al., 2006[Tinant, B., Laurent, M. & Marchand-Brynaert, J. (2006). Z. Kristallogr. New Cryst. Struct. 221, 68-70.]; Chai et al., 2011[Chai, D. I., Hoffmeister, L. & Lautens, M. (2011). Org. Lett. 13, 106-109.]; Hashmi et al., 2011[Hashmi, A. S. K., Molinari, L., Rominger, F. & Oeser, T. (2011). Eur. J. Org. Chem. 2011, 2256-2264.]; Su et al., 2011[Su, S., Rodriguez, R. A. & Baran, P. S. (2011). J. Am. Chem. Soc. 133, 13922-13925.]).

[Figure 1]
Figure 1
View of the title compound showing the atom-numbering scheme and 30% probability displacement ellipsoids. For clarity, the ClO4 anion and H atoms are not shown.

The organic cation and perchlorate anion are linked by an N—H⋯O hydrogen bond (Table 1[link]). The oxygen atoms of the anion are disordered over two sets of sites due to rotation around the O3—Cl bond. The refined occupancy of the major disordered component is 0.591 (14).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3 0.86 1.94 2.752 (4) 157
C2—H2A⋯O1i 0.93 2.44 3.319 (3) 158
C5—H5⋯O5Aii 0.93 2.55 3.328 (11) 141
C8—H8⋯O4Aiii 0.93 2.36 3.285 (8) 173
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x+1, y, z.

3. Supra­molecular features

Several moderate to weak C—H⋯O inter­molecular hydrogen bonds are observed in the crystal structure (Table 1[link]), which link mol­ecules into layers parallel to (001) (Fig. 2[link]). It should also be noted that the crystal structure contains no residual solvent-accessible voids. However, discernible layers along (101) are observed. The low density [1.18 g mm−1] of the crystal could be associated with formation of these layers.

[Figure 2]
Figure 2
Part of the crystal structure, viewed along the b axis, showing layers parallel to (001) formed by weak C—H⋯O hydrogen bonds (turquoise dotted lines) and also separated layers of organic cations parallel to (101). The minor disorder component of the anion is shown as red spheres.

4. Synthesis and crystallization

The title compound was synthesized according to the literature procedure (Hordiyenko et al., 2009[Hordiyenko, O. V., Rudenko, I. V., Biitseva, A. V., Turov, A. V., Arrault, A., Brosse, N., Fabre, O., Jamart-Grégoire, B., Zubatyuk, R. I. & Shishkin, O. V. (2009). Tetrahedron, 65, 6218-6225.]). To a stirred solution of 1-(N-iso­propyl­amino)-3,3-di­methyl­butan-2-one (10 mmol) in dry CHCl3 (10 mL), a solution of 1,1,3-tri­chloro-1H-iso­indole (2.5 mmol) in dry CHCl3 (10 mL) was added dropwise at room temperature under an argon atmosphere. The reaction mixture was stirred for 8 h, the solvent was evaporated and the residue was dried under reduced pressure (0.01 mm). Then it was treated with 100 ml of distilled water. The aqueous solution was brought to reflux with charcoal, filtered and treated with an excess of lithium perchlorate to precipitate the crude product that was then crystallized from methanol/water (3:1) to yield as colorless crystals. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in ethanol.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were placed in calculated positions (N—H = 0.86 Å, C—H = 0.93–0.98 Å) and refined in a riding-model approximation with Uiso = nUeq of the carrier atom (n = 1.5 for methyl groups, n = 1.2 for the remaining H atoms). Methyl groups were refined as rotating groups. The relative occupation of the two positions of the disordered ClO4 anion was refined as a free variable. All Cl—O and O⋯O distances within the anion were restrained to be the same within 0.02 Å.

Table 2
Experimental details

Crystal data
Chemical formula C26H40N3O2+·ClO4
Mr 526.06
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 10.0605 (3), 12.7027 (4), 23.1455 (6)
β (°) 94.107 (3)
V3) 2950.29 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.17
Crystal size (mm) 0.57 × 0.32 × 0.09
 
Data collection
Diffractometer Agilent Xcalibur Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.951, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 27330, 6037, 4458
Rint 0.029
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.179, 1.04
No. of reflections 6037
No. of parameters 363
No. of restraints 87
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.33
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXD (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Chemical context top

α-Amino­ketones are known for their fungicidal activity (Gold de Sigman, 1983) and 2-acyl­amino­ketones are the starting compounds in the oxazole synthetic method by the Robinson–Gabriel synthesis by dehydration of 2-acyl­amino­ketones (Robinson, 1909; Gabriel, 1910; Wasserman & Vinick, 1973) that has been used during studies dealing with pharmaceutically important molecules that incorporate an oxazole derivatives (Godfrey et al., 2003; Nicolaou et al., 2004; Hoffman et al., 2010).

Structural commentary top

The molecular structure of the cation is shown in Fig. 1. The positive charge is delocalized between the two nitro­gen atoms of the imidazole ring according to almost equivalent lengths of the C7—N1 and C7—N2 bonds [1.338 (2) Å and 1.327 (3) Å, respectively] and also of the C8—N1 and C9—N2 bonds [1.379 (3) Å and 1.374 (3) Å, respectively]. The presence of two bulky substituents in the ortho positions of the benzene ring results in disruption of the conjugation between the aromatic ring, imidazole ring and amide [N3/C17/O1] fragment due to their almost orthogonal orientation [the corresponding torsion angles are N1—C7—C1—C6 = -81.5 (3)° and C5—C6—C17—N3 = 81.1 (3)°]. The plane of the carbonyl group (C22/O2/C23/C21) is oriented almost orthogonal to the plane of the amide fragment (C21/N3/C18/C17/O1/C6), the angle between the mean planes being 77.87 (11)°]. A similar type of α-acyl­amino­ketone fragment has been observed for other N-substituted α-acyl­amino­ketones (Bartnik et al., 1998; Tinant et al., 2006; Chai et al., 2011; Hashmi et al., 2011; Su et al., 2011).

The organic cation and perchlorate anion are linked by an N—H···O hydrogen bond (Table 1). The oxygen atoms of the anion are disordered over two sets of sited due to rotation around the O3—Cl bond. The refined occupancy of the major disordered component is 0.591 (14).

Supra­molecular features top

Several moderate to weak C—H···O inter­molecular hydrogen bonds are observed in the crystal structure (Table 1), which link molecules into layers parallel to (001) (Fig 2). It should also be noted that the crystal structure contains no residual solvent-accessible voids. However, discernible layers along (101) are observed. The low density [1.18 g mm-1] of the crystal could be associated with formation of these layers.

Synthesis and crystallization top

The title compound was synthesized according to the literature procedure (Hordiyenko et al., 2009). To a stirred solution of 1-(N-iso­propyl­amino)-3,3-di­methyl­butan-2-one (10 mmol) in dry CHCl3 (10 mL), a solution of 1,1,3-tri­chloro-1H-iso­indole (2.5 mmol) in dry CHCl3 (10 mL) was added dropwise at room temperature under an argon atmosphere. The reaction mixture was stirred for 8 h, the solvent was evaporated and the residue was dried under reduced pressure (0.01 mm). Then it was treated with 100 ml of distilled water. The aqueous solution was brought to reflux with charcoal, filtered and treated with excess of lithium perchlorate to precipitate the crude product that was crystallized from methanol/water (3:1) to yield as colorless crystals. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in ethanol.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms were placed in calculated positions (N—H = 0.86 Å, C—H = 0.93–0.98 Å) and refined in a riding-model approximation with Uiso = nUeq of the carrier atom (n = 1.5 for methyl groups, n = 1.2 for the remaining H atoms). Methyl groups were refined as rotating groups. The relative occupation of the two positions of the disordered ClO4 anion was refined as a free variable. All Cl—O and O···O distances within the anion were restrained to be the same with 0.02 Å.

Related literature top

For related literature, see: Chai et al. (2011); Gabriel (1910); Godfrey et al. (2003); Gold (1983); Hashmi et al. (2011); Hoffman et al. (2010); Hordiyenko et al. (2009); Nicolaou et al. (2004); Robinson (1909); Su et al. (2011); Tinant et al. (2006); Wasserman & Vinick (1973).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXD (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atom-numbering scheme and 30% probability displacement ellipsoids. For clarity, the ClO4- anion and H atoms are not shown.
[Figure 2] Fig. 2. Part of the crystal structure, viewed along the b axis, showing layers parallel to (001) formed by weak C—H···O hydrogen bonds (turquoise dotted lines) and also separated layers of organic cations parallel to (101). The minor disorder component of the anion is shown as red spheres.
4-tert-Butyl-2-{2-[N-(3,3-dimethyl-2-oxobutyl)-N-isopropylcarbamoyl]phenyl}-1-isopropyl-1H-imidazol-3-ium perchlorate top
Crystal data top
C26H40N3O2+·ClO4F(000) = 1128
Mr = 526.06Dx = 1.184 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.0605 (3) ÅCell parameters from 6208 reflections
b = 12.7027 (4) Åθ = 3.2–26.2°
c = 23.1455 (6) ŵ = 0.17 mm1
β = 94.107 (3)°T = 293 K
V = 2950.29 (14) Å3Block, colorless
Z = 40.57 × 0.32 × 0.09 mm
Data collection top
Agilent Xcalibur Sapphire3
diffractometer
6037 independent reflections
Radiation source: Enhance (Mo) X-ray Source4458 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 16.1827 pixels mm-1θmax = 26.4°, θmin = 3.1°
ω and π scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1515
Tmin = 0.951, Tmax = 1.000l = 2828
27330 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.179 w = 1/[σ2(Fo2) + (0.0837P)2 + 1.4781P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
6037 reflectionsΔρmax = 0.37 e Å3
363 parametersΔρmin = 0.33 e Å3
87 restraints
Crystal data top
C26H40N3O2+·ClO4V = 2950.29 (14) Å3
Mr = 526.06Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.0605 (3) ŵ = 0.17 mm1
b = 12.7027 (4) ÅT = 293 K
c = 23.1455 (6) Å0.57 × 0.32 × 0.09 mm
β = 94.107 (3)°
Data collection top
Agilent Xcalibur Sapphire3
diffractometer
6037 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
4458 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 1.000Rint = 0.029
27330 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06087 restraints
wR(F2) = 0.179H-atom parameters constrained
S = 1.04Δρmax = 0.37 e Å3
6037 reflectionsΔρmin = 0.33 e Å3
363 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.72746 (17)0.14319 (15)0.71062 (9)0.0685 (5)
O20.7339 (3)0.25979 (17)0.58916 (9)0.0915 (7)
N20.67413 (16)0.47485 (14)0.66538 (8)0.0421 (4)
H20.59350.49620.65830.051*
N10.84449 (16)0.39425 (14)0.70494 (7)0.0416 (4)
C70.71299 (19)0.40741 (15)0.70699 (9)0.0383 (4)
C80.8863 (2)0.45571 (18)0.66063 (9)0.0450 (5)
H80.97350.46140.65010.054*
C10.62173 (19)0.36474 (16)0.74861 (9)0.0398 (4)
C60.5700 (2)0.26255 (16)0.74384 (9)0.0420 (5)
C90.7801 (2)0.50599 (18)0.63519 (9)0.0442 (5)
N30.54488 (19)0.17087 (15)0.65053 (8)0.0496 (5)
C170.6201 (2)0.18761 (16)0.70018 (10)0.0463 (5)
C100.9309 (2)0.32719 (18)0.74425 (10)0.0488 (5)
H100.87390.27990.76500.059*
C20.5770 (2)0.43279 (19)0.79004 (11)0.0537 (6)
H2A0.61060.50090.79310.064*
C50.4771 (2)0.23065 (19)0.78176 (10)0.0538 (6)
H50.44370.16240.77950.065*
C40.4338 (3)0.2986 (2)0.82254 (11)0.0609 (7)
H40.37100.27630.84750.073*
C210.6048 (3)0.10861 (19)0.60668 (11)0.0570 (6)
H21A0.53510.08160.57950.068*
H21B0.65090.04900.62500.068*
C130.7626 (2)0.5776 (2)0.58316 (11)0.0566 (6)
C30.4831 (3)0.3996 (2)0.82658 (11)0.0625 (7)
H30.45290.44560.85400.075*
C220.7029 (3)0.1726 (2)0.57379 (11)0.0625 (7)
C180.4094 (3)0.2141 (2)0.63707 (11)0.0592 (6)
H180.39520.26950.66540.071*
C111.0206 (3)0.2608 (3)0.70900 (14)0.0773 (8)
H11A0.96820.22740.67790.116*
H11B1.06370.20800.73340.116*
H11C1.08670.30490.69340.116*
C121.0089 (3)0.3951 (3)0.78810 (14)0.0817 (9)
H12A1.06510.44220.76850.123*
H12B1.06300.35120.81410.123*
H12C0.94840.43510.80970.123*
C140.6630 (4)0.5257 (3)0.53881 (14)0.0929 (11)
H14A0.69560.45770.52860.139*
H14B0.65240.56890.50480.139*
H14C0.57860.51810.55520.139*
C200.3049 (3)0.1288 (3)0.64423 (14)0.0758 (8)
H20A0.32030.07110.61880.114*
H20B0.21770.15730.63480.114*
H20C0.31110.10450.68360.114*
C160.7086 (4)0.6841 (3)0.60196 (16)0.0877 (10)
H16A0.62570.67360.61930.132*
H16B0.69460.72910.56880.132*
H16C0.77170.71620.62960.132*
C230.7609 (3)0.1226 (3)0.52116 (13)0.0782 (9)
C250.7743 (5)0.0024 (3)0.52725 (19)0.1192 (15)
H25A0.83270.01390.56070.179*
H25B0.81040.02590.49330.179*
H25C0.68820.02780.53160.179*
C150.8972 (3)0.5924 (3)0.55791 (15)0.0943 (11)
H15A0.95900.62320.58660.141*
H15B0.88700.63790.52480.141*
H15C0.93040.52530.54640.141*
C190.3955 (4)0.2640 (3)0.57734 (13)0.0843 (9)
H19A0.46490.31510.57410.127*
H19B0.31030.29800.57180.127*
H19C0.40240.21060.54840.127*
C260.6614 (5)0.1441 (4)0.46941 (16)0.1277 (16)
H26A0.57690.11310.47640.192*
H26B0.69390.11390.43510.192*
H26C0.65080.21870.46430.192*
C240.8914 (5)0.1763 (5)0.5105 (3)0.177 (3)
H24A0.87600.25010.50390.265*
H24B0.92770.14580.47710.265*
H24C0.95320.16710.54360.265*
Cl10.29860 (6)0.54707 (6)0.65153 (4)0.0755 (3)
O30.4025 (3)0.4841 (3)0.64132 (19)0.1626 (16)
O4A0.1909 (7)0.4970 (13)0.6233 (5)0.233 (7)0.591 (14)
O5A0.2680 (11)0.5578 (8)0.7063 (3)0.177 (5)0.591 (14)
O6A0.3130 (16)0.6413 (6)0.6273 (7)0.276 (10)0.591 (14)
O6B0.3652 (14)0.6383 (9)0.6691 (8)0.235 (10)0.409 (14)
O4B0.2175 (13)0.5692 (15)0.6066 (6)0.216 (10)0.409 (14)
O5B0.2331 (17)0.5113 (17)0.6954 (8)0.316 (17)0.409 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0517 (10)0.0604 (11)0.0927 (13)0.0105 (8)0.0006 (9)0.0208 (10)
O20.1285 (19)0.0672 (13)0.0840 (14)0.0322 (13)0.0444 (13)0.0187 (11)
N20.0307 (8)0.0455 (10)0.0506 (10)0.0019 (7)0.0051 (7)0.0055 (8)
N10.0334 (8)0.0437 (9)0.0480 (10)0.0036 (7)0.0054 (7)0.0018 (8)
C70.0356 (10)0.0363 (10)0.0435 (10)0.0001 (8)0.0072 (8)0.0008 (8)
C80.0339 (10)0.0532 (12)0.0489 (12)0.0025 (9)0.0100 (8)0.0042 (10)
C10.0357 (10)0.0408 (11)0.0437 (11)0.0003 (8)0.0075 (8)0.0001 (9)
C60.0419 (11)0.0407 (11)0.0437 (11)0.0004 (8)0.0062 (8)0.0012 (9)
C90.0364 (10)0.0496 (12)0.0471 (11)0.0044 (9)0.0064 (8)0.0047 (9)
N30.0583 (11)0.0440 (10)0.0474 (10)0.0052 (8)0.0108 (8)0.0045 (8)
C170.0500 (12)0.0341 (10)0.0562 (13)0.0023 (9)0.0129 (10)0.0007 (9)
C100.0425 (11)0.0502 (13)0.0532 (12)0.0078 (9)0.0003 (9)0.0068 (10)
C20.0567 (14)0.0449 (12)0.0614 (14)0.0075 (10)0.0185 (11)0.0092 (10)
C50.0567 (14)0.0501 (13)0.0561 (13)0.0130 (10)0.0151 (11)0.0002 (10)
C40.0593 (14)0.0713 (17)0.0550 (14)0.0132 (12)0.0241 (11)0.0034 (12)
C210.0699 (16)0.0465 (13)0.0565 (14)0.0007 (11)0.0176 (12)0.0113 (11)
C130.0482 (13)0.0664 (15)0.0549 (13)0.0077 (11)0.0015 (10)0.0206 (12)
C30.0661 (16)0.0669 (16)0.0578 (14)0.0076 (13)0.0273 (12)0.0159 (12)
C220.0750 (17)0.0586 (16)0.0553 (14)0.0039 (13)0.0150 (12)0.0095 (12)
C180.0714 (16)0.0542 (14)0.0512 (13)0.0172 (12)0.0007 (11)0.0072 (11)
C110.0663 (17)0.0764 (19)0.090 (2)0.0317 (15)0.0076 (15)0.0001 (16)
C120.085 (2)0.079 (2)0.0765 (19)0.0132 (17)0.0260 (16)0.0101 (16)
C140.104 (3)0.107 (3)0.0633 (18)0.032 (2)0.0244 (17)0.0306 (18)
C200.0575 (16)0.087 (2)0.083 (2)0.0093 (14)0.0054 (14)0.0102 (16)
C160.093 (2)0.071 (2)0.099 (2)0.0079 (17)0.0018 (18)0.0326 (18)
C230.084 (2)0.088 (2)0.0668 (17)0.0032 (16)0.0307 (15)0.0167 (15)
C250.150 (4)0.109 (3)0.103 (3)0.036 (3)0.042 (3)0.029 (2)
C150.0691 (19)0.134 (3)0.082 (2)0.0079 (19)0.0244 (16)0.048 (2)
C190.115 (3)0.076 (2)0.0605 (17)0.0214 (18)0.0077 (16)0.0058 (15)
C260.169 (4)0.150 (4)0.064 (2)0.021 (3)0.011 (2)0.016 (2)
C240.136 (4)0.234 (7)0.174 (5)0.073 (4)0.105 (4)0.088 (5)
Cl10.0441 (4)0.0817 (5)0.1017 (6)0.0188 (3)0.0118 (3)0.0090 (4)
O30.0613 (15)0.151 (3)0.274 (5)0.0386 (17)0.002 (2)0.070 (3)
O4A0.054 (3)0.45 (2)0.195 (10)0.068 (7)0.005 (4)0.011 (11)
O5A0.236 (12)0.177 (8)0.126 (6)0.064 (8)0.076 (6)0.025 (5)
O6A0.38 (2)0.108 (6)0.37 (2)0.114 (9)0.229 (15)0.112 (9)
O6B0.272 (16)0.184 (13)0.248 (18)0.150 (12)0.012 (13)0.095 (12)
O4B0.089 (9)0.35 (3)0.194 (12)0.039 (11)0.079 (9)0.058 (14)
O5B0.179 (14)0.45 (3)0.33 (3)0.035 (18)0.145 (18)0.20 (3)
Geometric parameters (Å, º) top
O1—C171.227 (3)C11—H11B0.9600
O2—C221.197 (3)C11—H11C0.9600
N2—H20.8600C12—H12A0.9600
N2—C71.327 (3)C12—H12B0.9600
N2—C91.374 (3)C12—H12C0.9600
N1—C71.338 (2)C14—H14A0.9600
N1—C81.379 (3)C14—H14B0.9600
N1—C101.482 (3)C14—H14C0.9600
C7—C11.480 (3)C20—H20A0.9600
C8—H80.9300C20—H20B0.9600
C8—C91.344 (3)C20—H20C0.9600
C1—C61.400 (3)C16—H16A0.9600
C1—C21.389 (3)C16—H16B0.9600
C6—C171.501 (3)C16—H16C0.9600
C6—C51.388 (3)C23—C251.537 (5)
C9—C131.510 (3)C23—C261.530 (5)
N3—C171.347 (3)C23—C241.516 (5)
N3—C211.451 (3)C25—H25A0.9600
N3—C181.482 (3)C25—H25B0.9600
C10—H100.9800C25—H25C0.9600
C10—C111.515 (4)C15—H15A0.9600
C10—C121.508 (4)C15—H15B0.9600
C2—H2A0.9300C15—H15C0.9600
C2—C31.379 (3)C19—H19A0.9600
C5—H50.9300C19—H19B0.9600
C5—C41.373 (3)C19—H19C0.9600
C4—H40.9300C26—H26A0.9600
C4—C31.376 (4)C26—H26B0.9600
C21—H21A0.9700C26—H26C0.9600
C21—H21B0.9700C24—H24A0.9600
C21—C221.524 (4)C24—H24B0.9600
C13—C141.532 (4)C24—H24C0.9600
C13—C161.532 (4)Cl1—O31.350 (3)
C13—C151.524 (4)Cl1—O4A1.380 (7)
C3—H30.9300Cl1—O5A1.333 (6)
C22—C231.526 (4)Cl1—O6A1.334 (6)
C18—H180.9800Cl1—O6B1.385 (7)
C18—C201.527 (4)Cl1—O4B1.306 (8)
C18—C191.518 (4)Cl1—O5B1.329 (9)
C11—H11A0.9600
C7—N2—H2124.6C10—C12—H12A109.5
C7—N2—C9110.85 (17)C10—C12—H12B109.5
C9—N2—H2124.6C10—C12—H12C109.5
C7—N1—C8108.12 (17)H12A—C12—H12B109.5
C7—N1—C10126.04 (18)H12A—C12—H12C109.5
C8—N1—C10125.83 (17)H12B—C12—H12C109.5
N2—C7—N1107.20 (17)C13—C14—H14A109.5
N2—C7—C1122.99 (17)C13—C14—H14B109.5
N1—C7—C1129.68 (18)C13—C14—H14C109.5
N1—C8—H8125.7H14A—C14—H14B109.5
C9—C8—N1108.64 (18)H14A—C14—H14C109.5
C9—C8—H8125.7H14B—C14—H14C109.5
C6—C1—C7122.16 (18)C18—C20—H20A109.5
C2—C1—C7117.89 (19)C18—C20—H20B109.5
C2—C1—C6119.65 (19)C18—C20—H20C109.5
C1—C6—C17120.04 (18)H20A—C20—H20B109.5
C5—C6—C1119.0 (2)H20A—C20—H20C109.5
C5—C6—C17120.9 (2)H20B—C20—H20C109.5
N2—C9—C13121.92 (19)C13—C16—H16A109.5
C8—C9—N2105.19 (18)C13—C16—H16B109.5
C8—C9—C13132.8 (2)C13—C16—H16C109.5
C17—N3—C21116.5 (2)H16A—C16—H16B109.5
C17—N3—C18124.95 (18)H16A—C16—H16C109.5
C21—N3—C18118.49 (19)H16B—C16—H16C109.5
O1—C17—C6119.5 (2)C22—C23—C25112.1 (3)
O1—C17—N3121.9 (2)C22—C23—C26106.6 (3)
N3—C17—C6118.65 (19)C26—C23—C25107.3 (3)
N1—C10—H10108.4C24—C23—C22109.1 (3)
N1—C10—C11109.6 (2)C24—C23—C25113.0 (4)
N1—C10—C12109.8 (2)C24—C23—C26108.5 (4)
C11—C10—H10108.4C23—C25—H25A109.5
C12—C10—H10108.4C23—C25—H25B109.5
C12—C10—C11112.3 (2)C23—C25—H25C109.5
C1—C2—H2A119.9H25A—C25—H25B109.5
C3—C2—C1120.2 (2)H25A—C25—H25C109.5
C3—C2—H2A119.9H25B—C25—H25C109.5
C6—C5—H5119.6C13—C15—H15A109.5
C4—C5—C6120.8 (2)C13—C15—H15B109.5
C4—C5—H5119.6C13—C15—H15C109.5
C5—C4—H4119.9H15A—C15—H15B109.5
C5—C4—C3120.2 (2)H15A—C15—H15C109.5
C3—C4—H4119.9H15B—C15—H15C109.5
N3—C21—H21A109.2C18—C19—H19A109.5
N3—C21—H21B109.2C18—C19—H19B109.5
N3—C21—C22112.0 (2)C18—C19—H19C109.5
H21A—C21—H21B107.9H19A—C19—H19B109.5
C22—C21—H21A109.2H19A—C19—H19C109.5
C22—C21—H21B109.2H19B—C19—H19C109.5
C9—C13—C14108.0 (2)C23—C26—H26A109.5
C9—C13—C16109.2 (2)C23—C26—H26B109.5
C9—C13—C15108.9 (2)C23—C26—H26C109.5
C14—C13—C16110.0 (3)H26A—C26—H26B109.5
C15—C13—C14110.6 (3)H26A—C26—H26C109.5
C15—C13—C16110.1 (3)H26B—C26—H26C109.5
C2—C3—H3119.9C23—C24—H24A109.5
C4—C3—C2120.2 (2)C23—C24—H24B109.5
C4—C3—H3119.9C23—C24—H24C109.5
O2—C22—C21120.6 (2)H24A—C24—H24B109.5
O2—C22—C23121.1 (3)H24A—C24—H24C109.5
C21—C22—C23118.3 (2)H24B—C24—H24C109.5
N3—C18—H18107.6O3—Cl1—O4A103.6 (6)
N3—C18—C20110.1 (2)O3—Cl1—O6B100.5 (6)
N3—C18—C19111.7 (2)O5A—Cl1—O3117.5 (5)
C20—C18—H18107.6O5A—Cl1—O4A105.7 (6)
C19—C18—H18107.6O5A—Cl1—O6A110.3 (6)
C19—C18—C20112.1 (2)O6A—Cl1—O3110.4 (5)
C10—C11—H11A109.5O6A—Cl1—O4A108.7 (7)
C10—C11—H11B109.5O4B—Cl1—O3115.8 (7)
C10—C11—H11C109.5O4B—Cl1—O6B108.4 (8)
H11A—C11—H11B109.5O4B—Cl1—O5B111.5 (8)
H11A—C11—H11C109.5O5B—Cl1—O3111.3 (8)
H11B—C11—H11C109.5O5B—Cl1—O6B108.6 (9)
O2—C22—C23—C25148.6 (4)C1—C2—C3—C40.5 (4)
O2—C22—C23—C2694.3 (4)C6—C1—C2—C30.5 (4)
O2—C22—C23—C2422.6 (5)C6—C5—C4—C30.4 (4)
N2—C7—C1—C6103.3 (2)C9—N2—C7—N10.5 (2)
N2—C7—C1—C270.4 (3)C9—N2—C7—C1176.64 (19)
N2—C9—C13—C1456.9 (3)N3—C21—C22—O28.0 (4)
N2—C9—C13—C1662.6 (3)N3—C21—C22—C23172.3 (2)
N2—C9—C13—C15177.1 (3)C17—C6—C5—C4178.5 (2)
N1—C7—C1—C681.5 (3)C17—N3—C21—C2278.2 (3)
N1—C7—C1—C2104.8 (3)C17—N3—C18—C20102.9 (3)
N1—C8—C9—N20.8 (2)C17—N3—C18—C19131.9 (2)
N1—C8—C9—C13175.9 (2)C10—N1—C7—N2178.70 (19)
C7—N2—C9—C80.8 (2)C10—N1—C7—C12.9 (3)
C7—N2—C9—C13176.3 (2)C10—N1—C8—C9179.2 (2)
C7—N1—C8—C90.5 (2)C2—C1—C6—C17178.5 (2)
C7—N1—C10—C11133.0 (2)C2—C1—C6—C51.5 (3)
C7—N1—C10—C12103.2 (3)C5—C6—C17—O198.6 (3)
C7—C1—C6—C177.9 (3)C5—C6—C17—N381.1 (3)
C7—C1—C6—C5175.1 (2)C5—C4—C3—C20.6 (4)
C7—C1—C2—C3174.4 (2)C21—N3—C17—O17.9 (3)
C8—N1—C7—N20.0 (2)C21—N3—C17—C6172.35 (19)
C8—N1—C7—C1175.8 (2)C21—N3—C18—C2079.4 (3)
C8—N1—C10—C1148.5 (3)C21—N3—C18—C1945.8 (3)
C8—N1—C10—C1275.3 (3)C21—C22—C23—C2531.2 (4)
C8—C9—C13—C14119.3 (3)C21—C22—C23—C2685.9 (4)
C8—C9—C13—C16121.2 (3)C21—C22—C23—C24157.1 (4)
C8—C9—C13—C150.9 (4)C18—N3—C17—O1174.4 (2)
C1—C6—C17—O178.3 (3)C18—N3—C17—C65.4 (3)
C1—C6—C17—N3101.9 (2)C18—N3—C21—C2299.7 (3)
C1—C6—C5—C41.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O30.861.942.752 (4)157
C2—H2A···O1i0.932.443.319 (3)158
C5—H5···O5Aii0.932.553.328 (11)141
C8—H8···O4Aiii0.932.363.285 (8)173
C10—H10···O10.982.553.167 (3)121
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1/2, y1/2, z+3/2; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O30.86001.94002.752 (4)157.00
C2—H2A···O1i0.93002.44003.319 (3)158.00
C5—H5···O5Aii0.93002.55003.328 (11)141.00
C8—H8···O4Aiii0.93002.36003.285 (8)173.00
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1/2, y1/2, z+3/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC26H40N3O2+·ClO4
Mr526.06
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.0605 (3), 12.7027 (4), 23.1455 (6)
β (°) 94.107 (3)
V3)2950.29 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.57 × 0.32 × 0.09
Data collection
DiffractometerAgilent Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2014)
Tmin, Tmax0.951, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
27330, 6037, 4458
Rint0.029
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.179, 1.04
No. of reflections6037
No. of parameters363
No. of restraints87
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.33

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXD (Sheldrick, 2008), SHELXL97 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009).

 

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBartnik, R., Faure, R. & Gebicki, K. (1998). J. Chem. Crystallogr. 28, 119–123.  Google Scholar
First citationChai, D. I., Hoffmeister, L. & Lautens, M. (2011). Org. Lett. 13, 106–109.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGabriel, S. (1910). Berichte, 43, 1283–1287.  Google Scholar
First citationGodfrey, A. G., Brooks, D. A., Hay, L. A., Peters, M., McCarthy, J. R. & Mitchell, D. (2003). J. Org. Chem. 68, 2623–2632.  Google Scholar
First citationGold de Sigman, S. (1983). (Romikin) ES 512,316 (19. 05. 1982) [CA 99, 88229j].  Google Scholar
First citationHashmi, A. S. K., Molinari, L., Rominger, F. & Oeser, T. (2011). Eur. J. Org. Chem. 2011, 2256–2264.  Google Scholar
First citationHoffman, T. J., Kolleth, A., Rigby, J. H., Arseniyadis, S. & Cossy, J. (2010). Org. Lett. 12, 3348–3351.  Google Scholar
First citationHordiyenko, O. V., Rudenko, I. V., Biitseva, A. V., Turov, A. V., Arrault, A., Brosse, N., Fabre, O., Jamart-Grégoire, B., Zubatyuk, R. I. & Shishkin, O. V. (2009). Tetrahedron, 65, 6218–6225.  Google Scholar
First citationNicolaou, K. C., Hao, J., Reddy, M. V., Rao, P. B., Rassias, G., Snyder, S. A., Huang, X., Chen, D. Y.-K., Brenzovich, W. E., Giuseppone, N., Giannakakou, P. & O'Brate, A. (2004). J. Am. Chem. Soc. 126, 12897–12906.  Google Scholar
First citationRobinson, R. (1909). J. Chem. Soc. Trans. 95, 2167–2174.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSu, S., Rodriguez, R. A. & Baran, P. S. (2011). J. Am. Chem. Soc. 133, 13922–13925.  Google Scholar
First citationTinant, B., Laurent, M. & Marchand-Brynaert, J. (2006). Z. Kristallogr. New Cryst. Struct. 221, 68–70.  Google Scholar
First citationWasserman, H. H. & Vinick, F. J. (1973). J. Org. Chem. 38, 2407–2408.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 223-225
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds