metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of methyl N-ferro­cenyl­carbamate

aDepartment of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, Florida 33199, USA, and bDepartment of Chemistry and Biochemistry, Albright College, 1621 North 13th Street, Reading, PA 19604, USA
*Correspondence e-mail: arodr927@fiu.edu

Edited by T. J. Prior, University of Hull, England (Received 26 November 2014; accepted 2 January 2015; online 17 January 2015)

The asymmetric unit of the title compound, [Fe(C5H5)(C7H8NO2)], contains two independent mol­ecules consisting of a ferrocenyl moiety and a nitro­gen-bound methyl carbamate. These units are almost perpendicular to each other, making dihedral angles of 87.74 (9) and 87.32 (8)°. In each independent mol­ecule, the cyclo­penta­dienyl rings deviate slightly from an eclipsed conformation and lie virtually parallel [dihedral angles = 1.42 (15) and 0.49 (13)°]. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds into chains along the a-axis direction.

1. Related literature

For the synthesis and fragmentation mechanism of the title compound, see: Van Berkel et al. (1998[Van Berkel, G. J., Quirke, J. M. E., Tigani, R. A., Dilley, A. S. & Covey, T. R. (1998). Anal. Chem. 70, 1544-1554.]); Quirke et al. (2001[Quirke, J. M. E. & Van Berkel, G. J. (2001). J. Mass Spectrom. 36, 179-187.]). For related ferrocenyl derivatives, see: Barišić et al. (2011[Barišić, L., Roščić, M., Kovačević, M., Semenčić, M. M. C., Horvat, Š. & Rapić, V. (2011). Carbohydr. Res. 346, 678-684.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Fe(C5H5)(C7H8NO2)]

  • Mr = 259.08

  • Triclinic, [P \overline 1]

  • a = 10.1224 (5) Å

  • b = 10.7849 (5) Å

  • c = 11.0445 (5) Å

  • α = 76.156 (13)°

  • β = 73.960 (13)°

  • γ = 89.059 (14)°

  • V = 1123.52 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.33 mm−1

  • T = 296 K

  • 0.38 × 0.20 × 0.15 mm

2.2. Data collection

  • Bruker D8 Quest diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.75, Tmax = 0.83

  • 24698 measured reflections

  • 5586 independent reflections

  • 4560 reflections with I > 2σ(I)

  • Rint = 0.022

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.071

  • S = 0.99

  • 5586 reflections

  • 299 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.82 (2) 2.18 (2) 2.971 (2) 162.5 (19)
N2—H2⋯O1 0.80 (2) 2.18 (2) 2.9605 (19) 166 (2)
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT-2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Related literature top

For the synthesis and fragmentation mechanism of the title compound, see: Van Berkel et al. (1998); Quirke et al. (2001). For related ferrocenyl derivatives, see: Barišić et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT-2014 (Sheldrick, 2015); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atoms drawn as ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound showing intermolecular H-bonding interactions.
Methyl N-ferrocenylcarbamate top
Crystal data top
[Fe(C5H5)(C7H8NO2)]Z = 4
Mr = 259.08F(000) = 536
Triclinic, P1Dx = 1.532 Mg m3
a = 10.1224 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.7849 (5) ÅCell parameters from 120 reflections
c = 11.0445 (5) Åθ = 2.9–22.8°
α = 76.156 (13)°µ = 1.33 mm1
β = 73.960 (13)°T = 296 K
γ = 89.059 (14)°Needle, lusterous yellow
V = 1123.52 (9) Å30.38 × 0.20 × 0.15 mm
Data collection top
Bruker D8 Quest
diffractometer
5586 independent reflections
Radiation source: fine-focus tube4560 reflections with I > 2σ(I)
Detector resolution: 10.4167 pixels mm-1Rint = 0.022
ω scansθmax = 28.3°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 1313
Tmin = 0.75, Tmax = 0.83k = 1414
24698 measured reflectionsl = 1414
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0293P)2 + 0.5563P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
5586 reflectionsΔρmax = 0.33 e Å3
299 parametersΔρmin = 0.26 e Å3
Crystal data top
[Fe(C5H5)(C7H8NO2)]γ = 89.059 (14)°
Mr = 259.08V = 1123.52 (9) Å3
Triclinic, P1Z = 4
a = 10.1224 (5) ÅMo Kα radiation
b = 10.7849 (5) ŵ = 1.33 mm1
c = 11.0445 (5) ÅT = 296 K
α = 76.156 (13)°0.38 × 0.20 × 0.15 mm
β = 73.960 (13)°
Data collection top
Bruker D8 Quest
diffractometer
5586 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
4560 reflections with I > 2σ(I)
Tmin = 0.75, Tmax = 0.83Rint = 0.022
24698 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.33 e Å3
5586 reflectionsΔρmin = 0.26 e Å3
299 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.75463 (2)0.60308 (2)0.31717 (2)0.03709 (7)
Fe20.25564 (2)0.00924 (2)0.31751 (2)0.03430 (7)
C10.82395 (18)0.42097 (17)0.34739 (17)0.0389 (4)
C20.6871 (2)0.42219 (18)0.42686 (18)0.0453 (4)
H2A0.60640.37340.42640.054*
C30.6888 (2)0.5061 (2)0.50739 (19)0.0546 (5)
H30.60910.52570.57260.065*
C40.8241 (2)0.5576 (2)0.4772 (2)0.0560 (5)
H40.85480.61860.51810.067*
C50.9086 (2)0.5057 (2)0.3776 (2)0.0485 (5)
H51.00770.52430.33760.058*
C60.6410 (3)0.6599 (2)0.1906 (3)0.0737 (8)
H60.57170.60710.17610.088*
C70.6172 (3)0.7354 (3)0.2817 (3)0.0780 (8)
H70.52830.74470.34190.094*
C80.7425 (3)0.7959 (2)0.2696 (3)0.0750 (8)
H80.75740.85490.32020.090*
C90.8412 (3)0.7591 (2)0.1727 (2)0.0691 (7)
H90.93900.78680.14390.083*
C100.7808 (3)0.6751 (2)0.1237 (2)0.0684 (7)
H100.82760.63460.05410.082*
C130.32117 (17)0.15345 (17)0.35388 (16)0.0372 (4)
C140.18305 (18)0.11686 (18)0.42921 (17)0.0425 (4)
H140.10280.16850.42720.051*
C150.1830 (2)0.0073 (2)0.50823 (18)0.0505 (5)
H150.10210.05720.57060.061*
C160.3191 (2)0.0481 (2)0.48139 (18)0.0502 (5)
H160.34900.13060.52220.060*
C170.40510 (19)0.05143 (18)0.38491 (18)0.0438 (4)
H170.50470.05000.34720.053*
C180.2790 (3)0.0257 (2)0.12343 (19)0.0569 (5)
H180.31870.10450.05830.068*
C190.1395 (2)0.0010 (3)0.1929 (2)0.0633 (7)
H190.06440.05610.18490.076*
C200.1266 (2)0.1246 (3)0.2754 (2)0.0645 (6)
H200.04100.16870.33520.077*
C210.2574 (3)0.1733 (2)0.2569 (2)0.0614 (6)
H210.27960.25750.30170.074*
C220.3509 (2)0.0813 (2)0.1635 (2)0.0572 (5)
H220.45020.09000.13160.069*
C110.79773 (17)0.27959 (16)0.21235 (16)0.0371 (4)
C120.8079 (3)0.1308 (2)0.0852 (2)0.0628 (6)
H12A0.77410.18160.01710.094*
H12B0.73220.08440.15360.094*
H12C0.87070.07160.05120.094*
C230.29892 (18)0.35980 (17)0.21196 (17)0.0384 (4)
C240.3153 (3)0.5670 (2)0.0756 (2)0.0686 (6)
H24A0.38010.63900.03570.103*
H24B0.23880.58970.13860.103*
H24C0.28310.54240.01030.103*
N10.87534 (16)0.34529 (15)0.25925 (16)0.0418 (3)
N20.37378 (16)0.27173 (15)0.26751 (16)0.0414 (3)
O10.67396 (13)0.27931 (14)0.23547 (14)0.0507 (3)
O20.87800 (14)0.21268 (14)0.13527 (14)0.0526 (3)
O30.17679 (13)0.35027 (14)0.22624 (15)0.0551 (4)
O40.38073 (14)0.46244 (13)0.13837 (14)0.0556 (4)
H20.455 (2)0.284 (2)0.248 (2)0.049 (6)*
H10.959 (2)0.3413 (19)0.2356 (19)0.044 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.03477 (14)0.03807 (14)0.04083 (14)0.00500 (10)0.01523 (11)0.00900 (10)
Fe20.03208 (13)0.04001 (14)0.03383 (13)0.00118 (10)0.01287 (10)0.01047 (10)
C10.0358 (9)0.0422 (9)0.0416 (9)0.0111 (7)0.0151 (7)0.0113 (7)
C20.0422 (10)0.0412 (10)0.0439 (10)0.0078 (8)0.0052 (8)0.0026 (8)
C30.0632 (13)0.0574 (12)0.0382 (10)0.0231 (10)0.0092 (9)0.0096 (9)
C40.0704 (14)0.0631 (13)0.0521 (12)0.0266 (11)0.0359 (11)0.0270 (10)
C50.0429 (10)0.0597 (12)0.0564 (12)0.0164 (9)0.0290 (9)0.0234 (10)
C60.0788 (17)0.0598 (14)0.0917 (19)0.0075 (12)0.0635 (16)0.0112 (13)
C70.0659 (16)0.0719 (17)0.0765 (17)0.0334 (13)0.0146 (13)0.0105 (14)
C80.122 (2)0.0374 (11)0.0737 (17)0.0061 (13)0.0441 (17)0.0096 (11)
C90.0667 (15)0.0652 (15)0.0657 (15)0.0199 (12)0.0221 (12)0.0082 (12)
C100.096 (2)0.0683 (15)0.0440 (12)0.0130 (13)0.0288 (12)0.0086 (11)
C130.0331 (8)0.0445 (9)0.0362 (9)0.0047 (7)0.0128 (7)0.0103 (7)
C140.0364 (9)0.0516 (11)0.0406 (9)0.0068 (8)0.0043 (7)0.0205 (8)
C150.0548 (12)0.0611 (12)0.0327 (9)0.0195 (10)0.0064 (8)0.0114 (8)
C160.0630 (13)0.0494 (11)0.0414 (10)0.0100 (9)0.0291 (9)0.0004 (8)
C170.0376 (9)0.0510 (11)0.0462 (10)0.0033 (8)0.0229 (8)0.0050 (8)
C180.0816 (16)0.0578 (13)0.0376 (10)0.0065 (11)0.0251 (10)0.0140 (9)
C190.0644 (14)0.0859 (17)0.0729 (15)0.0335 (12)0.0479 (12)0.0507 (14)
C200.0566 (13)0.0851 (17)0.0631 (14)0.0173 (12)0.0159 (11)0.0393 (13)
C210.0897 (17)0.0461 (11)0.0613 (13)0.0114 (11)0.0329 (13)0.0242 (10)
C220.0531 (12)0.0751 (15)0.0506 (12)0.0185 (11)0.0139 (10)0.0304 (11)
C110.0352 (9)0.0367 (9)0.0373 (9)0.0032 (7)0.0123 (7)0.0029 (7)
C120.0772 (16)0.0549 (13)0.0674 (14)0.0007 (11)0.0290 (12)0.0256 (11)
C230.0358 (9)0.0428 (9)0.0402 (9)0.0051 (7)0.0126 (7)0.0148 (7)
C240.0804 (17)0.0506 (13)0.0726 (15)0.0156 (12)0.0287 (13)0.0035 (11)
N10.0265 (7)0.0508 (9)0.0540 (9)0.0074 (6)0.0129 (7)0.0226 (7)
N20.0256 (7)0.0432 (8)0.0529 (9)0.0026 (6)0.0125 (7)0.0048 (7)
O10.0323 (7)0.0616 (9)0.0608 (8)0.0011 (6)0.0182 (6)0.0139 (7)
O20.0460 (8)0.0602 (9)0.0608 (9)0.0062 (6)0.0160 (7)0.0313 (7)
O30.0335 (7)0.0634 (9)0.0714 (10)0.0089 (6)0.0211 (7)0.0153 (7)
O40.0485 (8)0.0472 (8)0.0623 (9)0.0024 (6)0.0161 (7)0.0039 (7)
Geometric parameters (Å, º) top
Fe1—C72.023 (2)C9—H90.9800
Fe1—C62.027 (2)C10—H100.9800
Fe1—C42.0296 (19)C13—N21.407 (2)
Fe1—C82.030 (2)C13—C171.414 (3)
Fe1—C92.034 (2)C13—C141.422 (2)
Fe1—C102.035 (2)C14—C151.413 (3)
Fe1—C32.037 (2)C14—H140.9800
Fe1—C52.0410 (18)C15—C161.413 (3)
Fe1—C22.0484 (19)C15—H150.9800
Fe1—C12.0571 (17)C16—C171.420 (3)
Fe2—C192.0292 (19)C16—H160.9800
Fe2—C182.0319 (19)C17—H170.9800
Fe2—C222.032 (2)C18—C221.401 (3)
Fe2—C162.0336 (18)C18—C191.405 (3)
Fe2—C202.034 (2)C18—H180.9800
Fe2—C212.034 (2)C19—C201.409 (4)
Fe2—C152.0352 (18)C19—H190.9800
Fe2—C172.0394 (17)C20—C211.396 (3)
Fe2—C142.0447 (18)C20—H200.9800
Fe2—C132.0500 (17)C21—C221.395 (3)
C1—N11.404 (2)C21—H210.9800
C1—C51.418 (3)C22—H220.9800
C1—C21.422 (2)C11—O11.207 (2)
C2—C31.416 (3)C11—O21.341 (2)
C2—H2A0.9800C11—N11.344 (2)
C3—C41.407 (3)C12—O21.435 (2)
C3—H30.9800C12—H12A0.9600
C4—C51.420 (3)C12—H12B0.9600
C4—H40.9800C12—H12C0.9600
C5—H50.9800C23—O31.205 (2)
C6—C101.395 (4)C23—O41.341 (2)
C6—C71.409 (4)C23—N21.344 (2)
C6—H60.9800C24—O41.430 (3)
C7—C81.393 (4)C24—H24A0.9600
C7—H70.9800C24—H24B0.9600
C8—C91.379 (4)C24—H24C0.9600
C8—H80.9800N1—H10.82 (2)
C9—C101.386 (3)N2—H20.80 (2)
C7—Fe1—C640.72 (12)C4—C5—H5126.2
C7—Fe1—C4126.60 (11)Fe1—C5—H5126.2
C6—Fe1—C4165.02 (12)C10—C6—C7107.6 (2)
C7—Fe1—C840.21 (12)C10—C6—Fe170.21 (13)
C6—Fe1—C867.83 (11)C7—C6—Fe169.50 (13)
C4—Fe1—C8107.38 (10)C10—C6—H6126.2
C7—Fe1—C967.02 (11)C7—C6—H6126.2
C6—Fe1—C967.10 (10)Fe1—C6—H6126.2
C4—Fe1—C9118.98 (10)C8—C7—C6107.7 (2)
C8—Fe1—C939.67 (11)C8—C7—Fe170.14 (14)
C7—Fe1—C1067.77 (11)C6—C7—Fe169.79 (13)
C6—Fe1—C1040.17 (11)C8—C7—H7126.1
C4—Fe1—C10152.75 (11)C6—C7—H7126.1
C8—Fe1—C1067.40 (11)Fe1—C7—H7126.1
C9—Fe1—C1039.84 (10)C9—C8—C7107.8 (2)
C7—Fe1—C3108.40 (10)C9—C8—Fe170.32 (14)
C6—Fe1—C3128.18 (11)C7—C8—Fe169.64 (13)
C4—Fe1—C340.48 (9)C9—C8—H8126.1
C8—Fe1—C3119.16 (10)C7—C8—H8126.1
C9—Fe1—C3152.71 (10)Fe1—C8—H8126.1
C10—Fe1—C3165.88 (11)C8—C9—C10109.3 (2)
C7—Fe1—C5163.91 (12)C8—C9—Fe170.01 (14)
C6—Fe1—C5153.42 (11)C10—C9—Fe170.12 (13)
C4—Fe1—C540.82 (8)C8—C9—H9125.4
C8—Fe1—C5126.38 (11)C10—C9—H9125.4
C9—Fe1—C5108.18 (10)Fe1—C9—H9125.4
C10—Fe1—C5119.19 (10)C9—C10—C6107.6 (2)
C3—Fe1—C568.34 (9)C9—C10—Fe170.04 (13)
C7—Fe1—C2120.04 (10)C6—C10—Fe169.62 (13)
C6—Fe1—C2109.18 (9)C9—C10—H10126.2
C4—Fe1—C268.36 (9)C6—C10—H10126.2
C8—Fe1—C2153.54 (11)Fe1—C10—H10126.2
C9—Fe1—C2165.55 (10)N2—C13—C17123.13 (16)
C10—Fe1—C2128.38 (10)N2—C13—C14128.28 (17)
C3—Fe1—C240.57 (8)C17—C13—C14108.49 (16)
C5—Fe1—C268.48 (8)N2—C13—Fe2129.73 (12)
C7—Fe1—C1154.45 (11)C17—C13—Fe269.37 (10)
C6—Fe1—C1120.32 (10)C14—C13—Fe269.48 (10)
C4—Fe1—C168.13 (8)C15—C14—C13107.36 (17)
C8—Fe1—C1164.23 (11)C15—C14—Fe269.38 (11)
C9—Fe1—C1128.00 (10)C13—C14—Fe269.89 (10)
C10—Fe1—C1109.21 (9)C15—C14—H14126.3
C3—Fe1—C167.97 (8)C13—C14—H14126.3
C5—Fe1—C140.48 (7)Fe2—C14—H14126.3
C2—Fe1—C140.54 (7)C16—C15—C14108.53 (17)
C19—Fe2—C1840.49 (10)C16—C15—Fe269.62 (11)
C19—Fe2—C2267.75 (9)C14—C15—Fe270.10 (10)
C18—Fe2—C2240.34 (9)C16—C15—H15125.7
C19—Fe2—C16162.31 (10)C14—C15—H15125.7
C18—Fe2—C16155.74 (9)Fe2—C15—H15125.7
C22—Fe2—C16121.11 (9)C15—C16—C17108.03 (18)
C19—Fe2—C2040.57 (10)C15—C16—Fe269.75 (11)
C18—Fe2—C2068.05 (10)C17—C16—Fe269.82 (10)
C22—Fe2—C2067.53 (9)C15—C16—H16126.0
C16—Fe2—C20125.34 (10)C17—C16—H16126.0
C19—Fe2—C2167.83 (9)Fe2—C16—H16126.0
C18—Fe2—C2167.84 (9)C13—C17—C16107.58 (17)
C22—Fe2—C2140.11 (10)C13—C17—Fe270.18 (9)
C16—Fe2—C21108.15 (9)C16—C17—Fe269.38 (10)
C20—Fe2—C2140.13 (10)C13—C17—H17126.2
C19—Fe2—C15125.56 (9)C16—C17—H17126.2
C18—Fe2—C15162.01 (9)Fe2—C17—H17126.2
C22—Fe2—C15156.46 (9)C22—C18—C19107.5 (2)
C16—Fe2—C1540.63 (9)C22—C18—Fe269.84 (12)
C20—Fe2—C15108.67 (9)C19—C18—Fe269.65 (12)
C21—Fe2—C15121.89 (9)C22—C18—H18126.2
C19—Fe2—C17155.73 (10)C19—C18—H18126.2
C18—Fe2—C17120.36 (9)Fe2—C18—H18126.2
C22—Fe2—C17107.46 (9)C18—C19—C20107.9 (2)
C16—Fe2—C1740.80 (7)C18—C19—Fe269.86 (11)
C20—Fe2—C17161.74 (10)C20—C19—Fe269.90 (12)
C21—Fe2—C17124.84 (9)C18—C19—H19126.1
C15—Fe2—C1768.45 (8)C20—C19—H19126.1
C19—Fe2—C14108.02 (8)Fe2—C19—H19126.1
C18—Fe2—C14124.87 (9)C21—C20—C19107.9 (2)
C22—Fe2—C14161.60 (9)C21—C20—Fe269.95 (12)
C16—Fe2—C1468.44 (9)C19—C20—Fe269.53 (12)
C20—Fe2—C14121.77 (9)C21—C20—H20126.1
C21—Fe2—C14156.75 (9)C19—C20—H20126.1
C15—Fe2—C1440.53 (8)Fe2—C20—H20126.1
C17—Fe2—C1468.59 (8)C22—C21—C20108.2 (2)
C19—Fe2—C13121.31 (9)C22—C21—Fe269.85 (12)
C18—Fe2—C13107.63 (8)C20—C21—Fe269.92 (12)
C22—Fe2—C13124.88 (9)C22—C21—H21125.9
C16—Fe2—C1368.09 (7)C20—C21—H21125.9
C20—Fe2—C13156.81 (9)Fe2—C21—H21125.9
C21—Fe2—C13161.39 (9)C21—C22—C18108.5 (2)
C15—Fe2—C1367.98 (7)C21—C22—Fe270.04 (12)
C17—Fe2—C1340.46 (7)C18—C22—Fe269.82 (12)
C14—Fe2—C1340.63 (7)C21—C22—H22125.7
N1—C1—C5123.16 (16)C18—C22—H22125.7
N1—C1—C2128.49 (17)Fe2—C22—H22125.7
C5—C1—C2108.21 (17)O1—C11—O2124.19 (17)
N1—C1—Fe1130.32 (13)O1—C11—N1125.81 (17)
C5—C1—Fe169.15 (10)O2—C11—N1109.99 (15)
C2—C1—Fe169.40 (10)O2—C12—H12A109.5
C3—C2—C1107.45 (18)O2—C12—H12B109.5
C3—C2—Fe169.28 (11)H12A—C12—H12B109.5
C1—C2—Fe170.06 (10)O2—C12—H12C109.5
C3—C2—H2A126.3H12A—C12—H12C109.5
C1—C2—H2A126.3H12B—C12—H12C109.5
Fe1—C2—H2A126.3O3—C23—O4124.43 (17)
C4—C3—C2108.49 (18)O3—C23—N2125.99 (17)
C4—C3—Fe169.48 (12)O4—C23—N2109.58 (15)
C2—C3—Fe170.15 (11)O4—C24—H24A109.5
C4—C3—H3125.8O4—C24—H24B109.5
C2—C3—H3125.8H24A—C24—H24B109.5
Fe1—C3—H3125.8O4—C24—H24C109.5
C3—C4—C5108.27 (18)H24A—C24—H24C109.5
C3—C4—Fe170.04 (11)H24B—C24—H24C109.5
C5—C4—Fe170.02 (11)C11—N1—C1124.97 (15)
C3—C4—H4125.9C11—N1—H1118.5 (14)
C5—C4—H4125.9C1—N1—H1116.5 (14)
Fe1—C4—H4125.9C23—N2—C13125.23 (15)
C1—C5—C4107.56 (18)C23—N2—H2118.8 (15)
C1—C5—Fe170.37 (10)C13—N2—H2115.9 (15)
C4—C5—Fe169.16 (11)C11—O2—C12116.10 (16)
C1—C5—H5126.2C23—O4—C24116.42 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.82 (2)2.18 (2)2.971 (2)162.5 (19)
N2—H2···O10.80 (2)2.18 (2)2.9605 (19)166 (2)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.82 (2)2.18 (2)2.971 (2)162.5 (19)
N2—H2···O10.80 (2)2.18 (2)2.9605 (19)166 (2)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors are grateful to R. G. Raptis for access to the X-ray diffractometer. AOD thanks the National Science Foundation – Research Experience for Undergraduates (NSF–REU, Award No. 1156886) for financial support.

References

First citationBarišić, L., Roščić, M., Kovačević, M., Semenčić, M. M. C., Horvat, Š. & Rapić, V. (2011). Carbohydr. Res. 346, 678–684.  Google Scholar
First citationBruker (2013). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationQuirke, J. M. E. & Van Berkel, G. J. (2001). J. Mass Spectrom. 36, 179–187.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVan Berkel, G. J., Quirke, J. M. E., Tigani, R. A., Dilley, A. S. & Covey, T. R. (1998). Anal. Chem. 70, 1544–1554.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds