metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tetra­aqua­bis­­(thio­cyanato-κN)nickel(II)–2,5-di­methyl­pyrazine (1/4)

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Strasse 2, 24118 Kiel, Germany, and bDepartment of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA
*Correspondence e-mail: ssuckert@ac.uni-kiel.de

Edited by S. Parkin, University of Kentucky, USA (Received 3 December 2014; accepted 9 December 2014; online 3 January 2015)

In the crystal structure of the title compound, [Ni(NCS)2(H2O)4]·4C6H8N2, the NiII cations are coordinated by four water ligands and two trans-coordinated terminally N-bonded thio­cyanate anions in a slightly distorted octa­hedral geometry. The asymmetric unit consists of a Ni2+ cation located on a centre of inversion, two water mol­ecules and one thio­cyanate ligand, as well as two uncoordinated 2,5-di­methyl­pyrazine ligands in general positions. In the crystal, discrete complex mol­ecules are linked into a three-dimensional network by O—H⋯N hydrogen bonding between the water H atoms and the 2,5-di­methyl­pyrazine N atoms.

1. Related literature

For background information on the design and preparation of coordination polymers, see Näther et al. (2013[Näther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696-2714.]). For a different structure with thio­cyanates and 2,5-di­methyl­pyrazine, see: Otieno et al. (2003[Otieno, T., Blanton, J. R., Lanham, K. J. & Parkin, S. (2003). J. Chem. Crystallogr. 33, 335-339.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Ni(NCS)2(H2O)4]·4C6H8N2

  • Mr = 679.51

  • Orthorhombic, P b c a

  • a = 13.0731 (6) Å

  • b = 14.7989 (8) Å

  • c = 17.3092 (11) Å

  • V = 3348.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 170 K

  • 0.12 × 0.10 × 0.08 mm

2.2. Data collection

  • Stoe IPDS-1 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.912, Tmax = 0.938

  • 21266 measured reflections

  • 4041 independent reflections

  • 3146 reflections with I > 2σ(I)

  • Rint = 0.035

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.100

  • S = 1.02

  • 4041 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯N12 0.84 1.99 2.8284 (18) 174
O1—H2O1⋯N11i 0.84 2.06 2.8963 (18) 173
O2—H1O2⋯N2ii 0.84 2.00 2.8286 (19) 169
O2—H2O2⋯N1iii 0.84 2.03 2.8665 (19) 176
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Synthesis and crystallization top

NiSO4.6 H2O and 2,5-di­methyl­pyrazine were purchased from Merck and Ba(NCS)2.3 H2O was purchased from Alfa Aesar. Ni(NCS)2 was synthesized by stirring 17.5 g (56.91 mmol) Ba(NCS)2.3 H2O and 15.00 g (57.03 mmol) NiSO4.6 H2O in 500 ml H2O at RT for two hours. The white residue of BaSO4 was filtered of and the solvent removed with a rotary evaporator. The homogeneity of the product was investigated by X-ray powder diffraction and elemental analysis. The title compound was prepared by the reaction of (0.15 mmol) 27.8 mg Ni(NCS)2 and (0.9 mmol) 97.5 µl 2,5-di­methyl­pyrazine at RT. After a few days blue block shaped crystals of the title compound were obtained.

Refinement top

The C—H H atoms were positioned with idealized geometry (methyl H atoms allowed to rotate but not to tip) and were refined using a riding model with C—H = 0.95 Å for aromatic and C—H = 0.98 Å for methyl. Water hydrogen atoms were found in difference-electron density maps and fixed (SHELXL command AFIX 3). Uiso(H) values were set to either 1.2Ueq or 1.5Ueq (-CH3, H2O) of the attached parent atom.

Related literature top

For background information on the design and preparation of coordination polymers, see Näther et al. (2013). For a different structure with thiocyanates and 2,5-dimethylpyrazine, see: Otieno et al. (2003).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Part of the crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level. Symmetry code: i = x+1,-y+1,-z+1.
[Figure 2] Fig. 2. Crystal structure of the title compound with view along the crystallographic a axis. Hydrogen bonding is shown as dashed lines and for clarity only the O-H H atoms are shown.
Tetraaquabis(thiocyanato-κN)nickel(II)–2,5-dimethylpyrazine (1/4) top
Crystal data top
[Ni(NCS)2(H2O)4]·4C6H8N2F(000) = 1432
Mr = 679.51Dx = 1.348 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 21266 reflections
a = 13.0731 (6) Åθ = 2.8–28.1°
b = 14.7989 (8) ŵ = 0.75 mm1
c = 17.3092 (11) ÅT = 170 K
V = 3348.8 (3) Å3Block, blue
Z = 40.12 × 0.10 × 0.08 mm
Data collection top
Stoe IPDS-1
diffractometer
4041 independent reflections
Radiation source: fine-focus sealed tube3146 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ scansθmax = 28.1°, θmin = 2.8°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
h = 1715
Tmin = 0.912, Tmax = 0.938k = 1919
21266 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0627P)2 + 0.7837P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4041 reflectionsΔρmax = 0.35 e Å3
201 parametersΔρmin = 0.40 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0068 (8)
Crystal data top
[Ni(NCS)2(H2O)4]·4C6H8N2V = 3348.8 (3) Å3
Mr = 679.51Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 13.0731 (6) ŵ = 0.75 mm1
b = 14.7989 (8) ÅT = 170 K
c = 17.3092 (11) Å0.12 × 0.10 × 0.08 mm
Data collection top
Stoe IPDS-1
diffractometer
4041 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
3146 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.938Rint = 0.035
21266 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.02Δρmax = 0.35 e Å3
4041 reflectionsΔρmin = 0.40 e Å3
201 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.50000.50000.01215 (11)
N210.34876 (11)0.53353 (10)0.50818 (8)0.0178 (3)
C210.26112 (13)0.54542 (11)0.50572 (8)0.0161 (3)
S210.13689 (3)0.56120 (4)0.50416 (3)0.02775 (13)
O10.51049 (8)0.58972 (8)0.40668 (6)0.0160 (2)
H1O10.45610.58820.38090.024*
H2O10.55890.58540.37500.024*
O20.54012 (9)0.60597 (8)0.57432 (6)0.0162 (2)
H1O20.60150.62000.56630.024*
H2O20.50250.65070.56500.024*
N10.09222 (12)0.25396 (10)0.53656 (9)0.0231 (3)
N20.26379 (12)0.32843 (10)0.46598 (9)0.0223 (3)
C10.18340 (14)0.25266 (11)0.57207 (10)0.0211 (3)
C20.26824 (14)0.28976 (12)0.53578 (11)0.0227 (4)
H20.33230.28760.56160.027*
C30.17233 (14)0.33146 (11)0.43120 (10)0.0210 (3)
C40.08758 (14)0.29358 (12)0.46734 (11)0.0235 (4)
H40.02340.29600.44160.028*
C50.18951 (17)0.20962 (14)0.65016 (11)0.0321 (4)
H5A0.16340.25170.68920.048*
H5B0.26090.19470.66180.048*
H5C0.14830.15430.65060.048*
C60.16595 (17)0.37609 (14)0.35372 (11)0.0328 (4)
H6A0.16240.44180.36050.049*
H6B0.10450.35510.32670.049*
H6C0.22670.36060.32330.049*
N110.16959 (11)0.58969 (10)0.20976 (8)0.0228 (3)
N120.33677 (12)0.58344 (10)0.30944 (8)0.0211 (3)
C110.16897 (13)0.63643 (11)0.27609 (10)0.0208 (3)
C120.25374 (14)0.63271 (12)0.32501 (9)0.0203 (3)
H120.25230.66680.37150.024*
C130.33614 (14)0.53519 (12)0.24377 (10)0.0207 (3)
C140.25231 (14)0.53952 (13)0.19461 (10)0.0225 (4)
H140.25380.50530.14820.027*
C150.07737 (16)0.69264 (15)0.29538 (13)0.0374 (5)
H15A0.03050.69350.25120.056*
H15B0.09920.75450.30720.056*
H15C0.04240.66680.34030.056*
C160.42685 (16)0.47645 (15)0.22664 (13)0.0332 (4)
H16A0.48750.51440.21940.050*
H16B0.41400.44170.17950.050*
H16C0.43830.43490.26990.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.00735 (16)0.01786 (16)0.01122 (15)0.00033 (10)0.00024 (9)0.00008 (10)
N210.0123 (7)0.0226 (7)0.0185 (7)0.0012 (5)0.0013 (5)0.0007 (5)
C210.0155 (8)0.0178 (8)0.0150 (7)0.0015 (6)0.0008 (6)0.0004 (6)
S210.0102 (2)0.0405 (3)0.0326 (3)0.00601 (18)0.00014 (16)0.00175 (19)
O10.0108 (5)0.0242 (6)0.0131 (5)0.0002 (4)0.0000 (4)0.0033 (4)
O20.0121 (5)0.0196 (5)0.0170 (5)0.0007 (4)0.0014 (4)0.0024 (4)
N10.0170 (7)0.0221 (7)0.0300 (8)0.0023 (6)0.0024 (6)0.0015 (6)
N20.0178 (7)0.0197 (7)0.0293 (7)0.0027 (6)0.0026 (6)0.0032 (6)
C10.0228 (8)0.0178 (7)0.0228 (8)0.0007 (7)0.0004 (6)0.0046 (6)
C20.0167 (8)0.0225 (8)0.0291 (9)0.0016 (7)0.0039 (7)0.0045 (7)
C30.0196 (8)0.0171 (7)0.0262 (8)0.0017 (7)0.0014 (7)0.0031 (6)
C40.0149 (8)0.0251 (8)0.0306 (9)0.0005 (7)0.0018 (7)0.0001 (7)
C50.0392 (12)0.0327 (10)0.0245 (9)0.0022 (9)0.0025 (8)0.0009 (7)
C60.0359 (11)0.0327 (10)0.0298 (10)0.0014 (9)0.0009 (8)0.0057 (8)
N110.0184 (7)0.0299 (8)0.0201 (7)0.0006 (6)0.0050 (6)0.0042 (6)
N120.0207 (7)0.0256 (7)0.0170 (6)0.0020 (6)0.0046 (5)0.0009 (5)
C110.0189 (8)0.0226 (8)0.0209 (8)0.0012 (7)0.0006 (6)0.0015 (6)
C120.0226 (8)0.0234 (8)0.0151 (7)0.0032 (7)0.0009 (6)0.0023 (6)
C130.0184 (8)0.0241 (8)0.0198 (8)0.0004 (7)0.0023 (6)0.0006 (6)
C140.0211 (9)0.0290 (9)0.0173 (7)0.0001 (7)0.0033 (7)0.0060 (6)
C150.0285 (11)0.0413 (12)0.0426 (12)0.0099 (9)0.0016 (9)0.0125 (9)
C160.0228 (10)0.0382 (10)0.0386 (11)0.0087 (9)0.0051 (8)0.0071 (9)
Geometric parameters (Å, º) top
Ni1—N212.0434 (15)C5—H5A0.9800
Ni1—N21i2.0434 (15)C5—H5B0.9800
Ni1—O22.0951 (11)C5—H5C0.9800
Ni1—O2i2.0951 (11)C6—H6A0.9800
Ni1—O12.0954 (11)C6—H6B0.9800
Ni1—O1i2.0954 (11)C6—H6C0.9800
N21—C211.160 (2)N11—C141.338 (2)
C21—S211.6411 (18)N11—C111.340 (2)
O1—H1O10.8399N12—C121.335 (2)
O1—H2O10.8400N12—C131.342 (2)
O2—H1O20.8399C11—C121.396 (2)
O2—H2O20.8400C11—C151.496 (3)
N1—C41.335 (3)C12—H120.9500
N1—C11.341 (2)C13—C141.389 (2)
N2—C21.338 (2)C13—C161.500 (3)
N2—C31.339 (2)C14—H140.9500
C1—C21.388 (2)C15—H15A0.9800
C1—C51.496 (3)C15—H15B0.9800
C2—H20.9500C15—H15C0.9800
C3—C41.390 (2)C16—H16A0.9800
C3—C61.497 (3)C16—H16B0.9800
C4—H40.9500C16—H16C0.9800
N21—Ni1—N21i180.0C1—C5—H5B109.5
N21—Ni1—O291.03 (5)H5A—C5—H5B109.5
N21i—Ni1—O288.97 (5)C1—C5—H5C109.5
N21—Ni1—O2i88.97 (5)H5A—C5—H5C109.5
N21i—Ni1—O2i91.03 (5)H5B—C5—H5C109.5
O2—Ni1—O2i180.00 (4)C3—C6—H6A109.5
N21—Ni1—O187.87 (5)C3—C6—H6B109.5
N21i—Ni1—O192.13 (5)H6A—C6—H6B109.5
O2—Ni1—O189.01 (5)C3—C6—H6C109.5
O2i—Ni1—O190.99 (5)H6A—C6—H6C109.5
N21—Ni1—O1i92.13 (5)H6B—C6—H6C109.5
N21i—Ni1—O1i87.87 (5)C14—N11—C11117.34 (15)
O2—Ni1—O1i90.99 (5)C12—N12—C13117.16 (15)
O2i—Ni1—O1i89.01 (5)N11—C11—C12119.63 (16)
O1—Ni1—O1i180.00 (5)N11—C11—C15118.88 (16)
C21—N21—Ni1171.90 (14)C12—C11—C15121.48 (16)
N21—C21—S21178.72 (15)N12—C12—C11123.00 (15)
Ni1—O1—H1O1109.7N12—C12—H12118.5
Ni1—O1—H2O1120.4C11—C12—H12118.5
H1O1—O1—H2O1106.7N12—C13—C14119.93 (16)
Ni1—O2—H1O2108.8N12—C13—C16118.09 (16)
Ni1—O2—H2O2108.9C14—C13—C16121.97 (16)
H1O2—O2—H2O2109.5N11—C14—C13122.91 (16)
C4—N1—C1117.25 (15)N11—C14—H14118.5
C2—N2—C3117.32 (15)C13—C14—H14118.5
N1—C1—C2119.81 (16)C11—C15—H15A109.5
N1—C1—C5117.87 (17)C11—C15—H15B109.5
C2—C1—C5122.31 (17)H15A—C15—H15B109.5
N2—C2—C1122.89 (16)C11—C15—H15C109.5
N2—C2—H2118.6H15A—C15—H15C109.5
C1—C2—H2118.6H15B—C15—H15C109.5
N2—C3—C4119.71 (17)C13—C16—H16A109.5
N2—C3—C6117.85 (17)C13—C16—H16B109.5
C4—C3—C6122.44 (17)H16A—C16—H16B109.5
N1—C4—C3122.99 (17)C13—C16—H16C109.5
N1—C4—H4118.5H16A—C16—H16C109.5
C3—C4—H4118.5H16B—C16—H16C109.5
C1—C5—H5A109.5
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N120.841.992.8284 (18)174
O1—H2O1···N11ii0.842.062.8963 (18)173
O2—H1O2···N2i0.842.002.8286 (19)169
O2—H2O2···N1iii0.842.032.8665 (19)176
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y, z+1/2; (iii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N120.841.992.8284 (18)173.7
O1—H2O1···N11i0.842.062.8963 (18)172.5
O2—H1O2···N2ii0.842.002.8286 (19)169.0
O2—H2O2···N1iii0.842.032.8665 (19)176.3
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1/2, y+1/2, z.
 

Acknowledgements

We gratefully acknowledge financial support by the DFG (project No. NA 720/5-1) and the State of Schleswig–Holstein. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationNäther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696–2714.  Google Scholar
First citationOtieno, T., Blanton, J. R., Lanham, K. J. & Parkin, S. (2003). J. Chem. Crystallogr. 33, 335–339.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds