research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 226-230

Crystal structures of fac-tri­chlorido­tris­­(tri­methyl­phosphane-κP)rhodium(III) monohydrate and fac-tri­chlorido­tris­­(tri­methyl­phosphane-κP)rhodium(III) methanol hemisolvate: rhodium structures that are isotypic with their iridium analogs

aDepartment of Chemistry 0212, Virginia Tech, Blacksburg, VA 24061, USA
*Correspondence e-mail: jmerola@vt.edu

Edited by S. Parkin, University of Kentucky, USA (Received 18 December 2014; accepted 22 January 2015; online 31 January 2015)

The crystal structures of two solvates of fac-tri­chlorido­tris­(tri­methyl­phosphane-κP)rhodium(III) are reported, i.e. one with water in the crystal lattice, fac-[RhCl3(Me3P)3]·H2O, and one with methanol in the crystal lattice, fac-[RhCl3(Me3P)3]·0.5CH3OH. These rhodium compounds exhibit distorted octahedral coordination spheres at the metal and are isotypic with the analogous iridium compounds previously reported by us [Merola et al. (2013[Merola, J. S., Franks, M. A. & Frazier, J. F. (2013). Polyhedron, 54, 67-73.]). Polyhedron, 54, 67–73]. Comparison is made between the rhodium and iridium compounds, highlighting their isostructural relationships.

1. Chemical context

Phosphane complexes of noble metals, especially those of rhodium and iridium, have proven to be important in catalysis as well as in studying fundamental reactions at metal surfaces. Chlorido compounds of rhodium and iridium with phosphane ligands provide important starting materials for other metal complexes of that family through replacement of the chlorine. For example, we have shown that (Me3P)3IrCl3 can be converted into (Me3P)3IrMe3 through reaction with methyl­magnesiumchloride. This tri­methyl­iridium compound can, in turn, be used to study organometallic reactions at the irid­ium(III) atom (Merola et al., 2013[Merola, J. S., Franks, M. A. & Frazier, J. F. (2013). Polyhedron, 54, 67-73.]). Thus, the fundamental study of crystal structures of phosphane–chlorido complexes of iridium and rhodium is important to help understand the structures, the bonding and the stereochemistry of this class of compounds. This paper adds to the body of knowledge of rhodium complexes that complement the already published structures of the analogous iridium compounds. It contributes to the information on crystal structures of L3MCl3 compounds, comparing the rhodium structures to the iridium structures as well as confirming the nature of solvate formation in both the iridium and rhodium structures.

[Scheme 1]

2. Structural commentary

The title complexes fac-tri­chlorido­tris­(tri­methyl­phosphane-κP)rhodium(III) monohydrate, RhP3Cl3water, and fac-tri­chlorido­tris­(tri­methyl­phosphane-κP)rhodium(III) methanol hemihydrate, RhP3Cl3MeOH, are isotypic with their iridium counterparts (CCDC 896072, 896073; Merola et al., 2013[Merola, J. S., Franks, M. A. & Frazier, J. F. (2013). Polyhedron, 54, 67-73.]). Isotypism in rhodium and iridium complexes is not unusual, largely owing to the lanthanide contraction resulting in very similar radii for both second- and third-row transition elements (Cordero et al., 2008[Cordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. & Alvarez, S. (2008). Dalton Trans. pp. 2832-2838.]).

Fig. 1[link] is a displacement ellipsoid rendering of compound RhP3Cl3water and Fig. 2[link] is a displacement ellipsoid rendering of compound RhP3Cl3MeOH. For compounds RhP3Cl3water and RhP3Cl3MeOH reported here, the comparison with their iridium analogs can be found in Tables 1[link] and 2[link] which list the corresponding unit-cell parameters for the rhodium and iridium water solvates (Table 1[link]) and the rhodium and iridium methanol solvate (Table 2[link]). The iridium compounds show a very slight lengthening of the unit-cell dimensions compared to rhodium but they are clearly isotypic overall. Table 3[link] lists the important bond lengths for RhP3Cl3water and IrP3Cl3water while Table 4[link] lists these for RhP3Cl3MeOH and IrP3Cl3MeOH. Bond-length comparisons show little significant difference between the rhodium and iridium analogs.

Table 1
Comparison of unit-cell dimensions (Å, °) for water solvate complexes RhP3Cl3water and IrP3Cl3water

Compound space group a b c β
RhP3Cl3water Cc 15.8650 (12) 9.0396 (3) 14.8223 (18) 120.820 (7)
IrP3Cl3water Cc 15.8830 (10) 9.0590 (10) 14.829 (2) 120.530 (8)

Table 2
Comparison of unit-cell dimensions (Å, °) for methanol solvate complexes RhP3Cl3MeOH and IrP3Cl3MeOH

Compound space group a b c β
RhP3Cl3MeOH P21/n 16.0993 (16) 15.5910 (9) 16.4152 (14) 115.084 (13)
IrP3Cl3MeOH P21/n 16.144 (3) 15.631 (4) 16.469 (4) 115.400 (17)

Table 3
Comparison of significant bond lengths (Å) for RhP3Cl3water and IrP3Cl3water

Compound M—P1 M—P2 M—P3 M—Cl1 M—Cl2 M—Cl3
RhP3Cl3water 2.279 (2) 2.295 (3) 2.292 (2) 2.450 (2) 2.444 (3) 2.436 (3)
IrP3Cl3water 2.2787 (18) 2.2880 (19) 2.2912 (17) 2.4320 (19) 2.4469 (18) 2.4451 (19)

Table 4
Comparison of significant bond lengths (Å) for RhP3Cl3MeOH and IrP3Cl3MeOH

Compound M—P1 M—P2 M—P3 M—Cl1 M—Cl2 M—Cl3
RhP3Cl3MeOH 2.2824 (12) 2.2950 (13) 2.2995 (12) 2.4246 (11) 2.4453 (12) 2.4364 (12)
  2.2860 (13) 2.2954 (12) 2.2923 (11) 2.4372 (12) 2.4476 (12) 2.4426 (12)
IrP3Cl3MeOH 2.2809 (16) 2.2847 (17) 2.2964 (15) 2.4245 (16) 2.4368 (17) 2.4394 (15)
  2.2932 (16) 2.2795 (17) 2.2869 (16) 2.4442 (16) 2.4316 (17) 2.4405 (17)
[Figure 1]
Figure 1
Displacement ellipsoid (50% probability level) rendering of the fac-tri­chlorido­tris­(tri­methyl­phosphane)rhodium–water compound, RhP3Cl3water.
[Figure 2]
Figure 2
Displacement ellipsoid (50% probability level) rendering of the fac-tri­chlorido­tris­(tri­methyl­phosphane)rhodium–0.5(methanol) compound, RhP3Cl3MeOH.

3. Supra­molecular features

It is not surprising that fac-tris­(tri­methyl­phosphane)tri­chloroidium(III) and -rhodium(III) complexes form lattice solvates since the shape of the individual mol­ecules leads to packing with voids in the lattice. Thus, every structure we have determined with the iridium compounds, as well as the ones reported here, contains a solvent. In the case of the water solvate, Fig. 3[link] shows the packing diagram for RhP3Cl3water looking down the c axis. One can see that the packing involves alternating layers of rhodium mol­ecules and water mol­ecules. The water mol­ecules show close, hydrogen-bonding inter­actions (Table 5[link]) between the water and the chlorines on one layer of the rhodium compound as well as close C—H⋯O inter­actions between the phosphane methyl groups and the water oxygen. One should not make much of the hydrogen positions on the water since, although they were originally found in difference maps, the O—H bond lengths and the H—O—H angle were restrained with DFIX and DANG commands (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]). Fig. 4[link] shows the packing diagram for RhP3Cl3MeOH, looking down the c axis, illustrating the O—H⋯Cl hydrogen bonding (Table 6[link]) and the location of the methanol mol­ecules in a channel in the crystal.

Table 5
Hydrogen-bond geometry (Å, °) for RhP3Cl3water[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯Cl3 0.97 2.57 3.481 157

Table 6
Hydrogen-bond geometry (Å, °) for RhP3Cl3MeOH[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cl6i 0.82 2.47 3.184 (5) 147
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Packing diagram of the fac-tri­chlorido­tris­(tri­methyl­phosphane)rhodium–water compound, RhP3Cl3water, viewed down the c axis, showing the alternating layers of complex and water mol­ecules. Hydrogen atoms except for water H atoms are omitted for clarity.
[Figure 4]
Figure 4
Packing diagram of the fac-tri­chlorido­tris­(tri­methyl­phosphane)rhodium–0.5(methanol) compound, RhP3Cl3MeOH, viewed down the c axis, showing the methanol-containing channel in the structure. H atoms, except for water H atoms, a omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) surprisingly shows very few structurally characterized tri­chlorido­tris­phosphaneiridium or rhodium compounds. In the case of iridium, beside the structures we recently published (CCDC 896072–896076; Merola et al., 2013[Merola, J. S., Franks, M. A. & Frazier, J. F. (2013). Polyhedron, 54, 67-73.]), there are only three other P3IrCl3 compounds in the database – the mer and fac isomers with P = phenyldi­methyl­phosphane (refcodes CTPIRA01, CTPIRC: Marsh, 1997[Marsh, R. E. (1997). Acta Cryst. B53, 317-322.]; Robertson & Tucker, 1981[Robertson, G. B. & Tucker, P. A. (1981). Acta Cryst. B37, 814-821.]) and one entry where P3 is cis,cis-1,3,5-tris­(di­phenyl­phosphino)cyclo­hexane (refcode LEXFAV; Mayer et al., 1994[Mayer, H. A., Otto, H., Kühbauch, H., Fawzi, R. & Steimann, M. (1994). J. Organomet. Chem. 472, 347-354.]). For rhodium, P3RhCl3 structur­ally characterized compounds are also rare with one mixed-ligand complex (two tri-n-butyl­phosphane ligands and one tri­methyl­phosphite ligand; refcode CBPMRH; Allen et al., 1970[Allen, F. H., Chang, G., Cheung, K. K., Lai, T. F., Lee, L. M. & Pidcock, A. (1970). J. Chem. Soc. D, pp. 1297-1298.]), a complex with 3 hy­droxy­methyl­phosphane ligands (CCDC 189926; Raghuraman et al., 2002[Raghuraman, K., Pillarsetty, N., Volkert, W. A., Barnes, C., Jurisson, S. & Katti, K. V. (2002). J. Am. Chem. Soc. 124, 7276-7277.]), a complex with the tripodal ligand, 1,1,1-tris­(di­methyl­phosphinometh­yl)ethane (refcode NAHXID; Suzuki et al., 1996[Suzuki, T., Isobe, K., Kashiwabara, K., Fujita, J. & Kaizaki, S. (1996). J. Chem. Soc. Dalton Trans. pp. 3779-3786.]), a complex with the tridentate ligand, 1,5,9-tris­(2-prop­yl)-1,5,9-triphospha­cyclo­dodecane (refcode NOLPIN; Edwards et al., 1997[Edwards, P. G., Fleming, J. S., Coles, S. J. & Hursthouse, M. B. (1997). J. Chem. Soc. Dalton Trans. pp. 3201-3206.]), a mer-tris-di­methyl­phenyl­phosphane compound (CCDC 247871; Parsons et al., 2004[Parsons, S., Payne, N. L., Yellowlees, L., Harris, S. & Wood, P. A. (2004). Private communication (CCDC 247871). CCDC, Cambridge, England.]) and a mer-tris-di­ethyl­phenyl­phosphane compound (refcode TCPERH; Skapski & Stephens, 1973[Skapski, A. C. & Stephens, F. A. (1973). J. Chem. Soc. Dalton Trans. pp. 1789-1793.]). Of those, the only directly comparable structures are the mer isomer complexes of rhodium and iridium with di­methyl­phenyl­phosphane ligands and those two are indeed isostructural with each other.

5. Synthesis and crystallization

The rhodium complexes described herein could not be characterized spectroscopically as pure materials, but were isolated as crystals from complex mixtures. In contrast to the iridium complex [IrCOD(PMe3)3]Cl (COD = cyclo­octa­diene) (Frazier & Merola, 1992[Frazier, J. F. & Merola, J. S. (1992). Polyhedron, 11, 2917-2927.]) which is the starting material for much of our iridium work, attempts to synthesize the analogous rhodium compound met with no success. Reaction between various RhI olefin complexes, including COD, especially in di­chloro­methane solvent, led to complex mixtures of Rh(PMe3)n compounds in all cases. That these compounds are compounds of Rh is clearly seen in the Rh–P chemical coupling in the complicated 31P NMR spectra. Attempts at extracting a pure compound from the complex mixture with various solvents including di­chloro­methane, water, methanol and acetone did not yield clean materials. Following extraction, the solutions were allowed to sit in the open air for several days and, in the case of water and methanol, a few crystals suitable for X-ray crystallography were formed and used for the data collection described in this communication.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7[link]. The hydrogens on the lattice water mol­ecule in RhP3Cl3water were initially assigned based on residual electron density but were then restrained with DFIX and DANG instructions in SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) during refinement.

Table 7
Experimental details

  RhP3Cl3water RhP3Cl3MeOH
Crystal data
Chemical formula [RhCl3(C3H9P)3]·H2O [RhCl3(C3H9P)3]·0.5CH4O
Mr 455.49 453.50
Crystal system, space group Monoclinic, Cc Monoclinic, P21/n
Temperature (K) 298 298
a, b, c (Å) 15.8650 (12), 9.0396 (3), 14.8223 (18) 16.0993 (16), 15.5910 (9), 16.4152 (14)
β (°) 120.820 (7) 115.084 (13)
V3) 1825.5 (3) 3731.7 (5)
Z 4 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.62 1.59
Crystal size (mm) 0.4 × 0.4 × 0.3 0.6 × 0.6 × 0.3
 
Data collection
Diffractometer Siemens P4 Siemens P4
Absorption correction ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])
Tmin, Tmax 0.762, 0.974 0.807, 0.915
No. of measured, independent and observed [I > 2σ(I)] reflections 2034, 1784, 1763 5957, 4858, 4171
Rint 0.021 0.034
θmax (°) 25.0 22.5
(sin θ/λ)max−1) 0.595 0.538
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.059, 1.08 0.029, 0.071, 1.08
No. of reflections 1784 4858
No. of parameters 170 328
No. of restraints 5 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.47, −0.60 1.03, −0.41
Absolute structure Classical Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) method preferred over Parsons because s.u. lower
Absolute structure parameter −0.06 (3)
Computer programs: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]), SHELXS87 and SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Chemical context top

Phosphane complexes of noble metals, especially those of rhodium and iridium, have proven to be important in catalysis as well as in studying fundamental reactions at metal surfaces. Chloro compounds of rhodium and iridium with phosphane ligands provide important starting materials for other metal complexes of that family through replacement of the chlorine. For example, we have shown that (Me3P)3IrCl3 can be converted into (Me3P)3IrMe3 through reaction with methyl­magnesiumchloride. This tri­methyl­iridium compound can, in turn, be used to study organometallic reactions at the iridium center (Merola et al., 2013). Thus, the fundamental study of crystal structures of phosphane–chloro complexes of iridium and rhodium is important to help understand the structures, the bonding and the stereochemistry of this class of compounds. This paper adds to the body of knowledge of rhodium complexes that complement the already published structures of the analogous iridium compounds. It contributes to the information on crystal structures of L3MCl3 compounds, comparing the rhodium structures to the iridium structures as well as confirming the nature of solvate formation in both the iridium and rhodium structures.

Structural commentary top

The title complexes fac-trichloridotris(tri­methyl­phosphane-κP)rhodium(III) monohydrate, RhP3Cl3water, and fac-trichloridotris(tri­methyl­phosphane-κP)rhodium(III) methanol hemihydrate, Rh3PCl3MeOH, are isomorphous with their iridium counterparts (CCDC 896072, 896073; Merola et al., 2013). Isomorphism in rhodium and iridium complexes is not unusual, largely owing to the lanthanide contraction resulting in very similar radii for both second- and third-row transition elements (Cordero et al., 2008).

Fig. 1 is a thermal displacement ellipsoid rendering of compound RhP3Cl3water and Fig. 2 is a thermal displacement ellipsoid rendering of compound RhP3Cl3MeOH. For compounds RhP3Cl3water and RhP3Cl3MeOH reported here, the comparison with their iridium analogs can be found in Tables 1 and 2 which list the corresponding unit-cell parameters for the rhodium and iridium water solvates (Table 1) and the rhodium and iridium methanol solvate (Table 2). The iridium compounds show a very slight lengthening of the unit-cell dimensions compared to rhodium but they are clearly isomorphous overall. Table 3 lists the important bond distances for RhP3Cl3water and IrP3Cl3water and while Table 4 lists these for RhP3Cl3MeOH and IrP3Cl3MeOH. Bond-distance comparisons show little significant difference between rhodium and iridium analogues.

Supra­molecular features top

It is not surprising that fac-tris­(tri­methyl­phosphane)trichloridium(III) and -rhodium(III) complexes form lattice solvates since the shape of the individual molecules leads to packing with voids in the lattice. Thus, every structure we have determined with the iridium compounds, as well as the ones reported here, contains a solvent. In the case of the water solvate, Fig. 3 shows the packing diagram for RhP3Cl3water looking down the c axis. One can see that the packing involves alternating layers of rhodium molecules and water molecules. The water molecules show close, hydrogen-bonding inter­actions (Table 5) between the water and the chlorines on one layer of the rhodium compound as well as close C—H···O inter­actions between the phosphane methyl groups and the water oxygen. One should not make much of the hydrogen positions on the water since, although they were originally found in difference maps, the O—H bond distances and the H—O—H angle were restrained with DFIX and DANG commands (Sheldrick, 2015). Fig. 4 shows the packing diagram for RhP3Cl3MeOH looking down the c axis illustrating the O—H···Cl hydrogen bonding (Table 6) and the location of the methanol molecules in a channel in the crystal.

Database survey top

A search of the Cambridge Structural Database (Groom & Allen, 2014) surprisingly shows very few structurally characterized trichloridotrisphosphaneiridium or rhodium compounds. In the case of iridium, beside the structures we recently published (CCDC 896072–896076; Merola et al., 2013), there are only three other P3IrCl3 compounds in the database – the mer and fac isomers with P = phenyldi­methyl­phosphane (refcodes CTPIRA01, CTPIRC: Marsh, 1997; Robertson & Tucker, 1981) and one entry where P3 is cis,cis-1,3,5-tris­(di­phenyl­phosphino)cyclo­hexane (refcode LEXFAV; Mayer et al., 1994). For rhodium, P3RhCl3 structurally characterized compounds are also rare with one mixed-ligand complex (two tri-n-butyl­phosphane ligands and one tri­methyl­phosphite ligand; refcode CBPMRH; Allen et al., 1970), a complex with 3 hy­droxy­methyl­phosphane ligands (CCDC 189926; Raghuraman et al., 2002), a complex with the tripodal ligand, 1,1,1-tris­(Di­methyl­phosphino­methyl)­ethane (refcode NAHXID; Suzuki et al., 1996), a complex with the tridentate ligand, 1,5,9-tris­(2-propyl)-1,5,9-triphospha­cyclo­dodecane (refcode NOLPIN; Edwards et al., 1997), a mer-tris-di­methyl­phenyl­phosphane compound (CCDC 247871; Parsons et al., 2004) and a mer-tris-di­ethyl­phenyl­phosphane compound (refcode TCPERH; Skapski & Stephens, 1973). Of those, the only directly comparable structures are the mer isomer complexes of rhodium and iridium with di­methyl­phenyl­phosphane ligands and those two are indeed isostructural with each other.

Synthesis and crystallization top

The rhodium complexes described herein could not be characterized spectroscopically as pure materials, but were isolated as crystals from complex mixtures. In contrast to the iridium complex [IrCOD(PMe3)3]Cl (COD = cyclo­octa­diene) (Frazier & Merola, 1992) which is the starting material for much of our iridium work, attempts to synthesize the analogous rhodium compound met with no success. Reaction between various RhI olefin complexes, including COD, especially in di­chloro­methane solvent, led to complex mixtures of Rh(PMe3)n compounds in all cases. That these compounds are compounds of Rh is clearly seen in the Rh—P chemical coupling in the complicated 31P NMR spectra. Attempts at extracting a pure compound from the complex mixture with various solvents including di­chloro­methane, water, methanol and acetone did not yield clean materials. Following extraction, the solutions were allowed to sit in the open air for several days and, in the case of water and methanol, a few crystals suitable for X-ray crystallography were formed and used for the data collection described in this communication.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 7. The hydrogens on the lattice water molecule in RhP3Cl3water were initially assigned based on residual electron density but were then restrained with DFIX and DANG instructions in SHELXL (Sheldrick, 2015) during refinement.

Related literature top

For related literature, see: Allen (2002); Allen et al. (1970); Cordero et al. (2008); Edwards et al. (1997); Frazier & Merola (1992); Marsh (1997); Mayer et al. (1994); Merola et al. (2013); Parsons et al. (2004); Raghuraman et al. (2002); Robertson & Tucker (1981); Skapski & Stephens (1973); Suzuki et al. (1996).

Computing details top

For both compounds, data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996). Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for RhP3Cl3water; SHELXS87 (Sheldrick, 2008) for RhP3Cl3MeOH. For both compounds, program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid (??% probability level) rendering of the fac-trichloridotris(trimethylphosphane)rhodium–water compound, RhP3Cl3water.
[Figure 2] Fig. 2. Displacement ellipsoid (??% probability level) rendering of the fac-trichloridotris(trimethylphosphane)rhodium–0.5(methanol) compound, RhP3Cl3MeOH.
[Figure 3] Fig. 3. Packing diagram of the fac-trichloridotris(trimethylphosphane)rhodium–water compound, RhP3Cl3water, viewed down the c axis, showing the alternating layers of complex and water molecules. Hydrogen atoms except for water H atoms are omitted for clarity.
[Figure 4] Fig. 4. Packing diagram of the fac-trichloridotris(trimethylphosphane)rhodium–0.5(methanol) compound, RhP3Cl3MeOH, viewed down the c axis, showing the methanol-containing channel in the structure. H atoms, except for water H atoms, a omitted for clarity.
(RhP3Cl3water) fac-Trichloridotris(trimethylphosphane-κP)rhodium monohydrate top
Crystal data top
[RhCl3(C3H9P)3]·H2OF(000) = 928
Mr = 455.49Dx = 1.657 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 15.8650 (12) ÅCell parameters from 35 reflections
b = 9.0396 (3) Åθ = 3–20°
c = 14.8223 (18) ŵ = 1.62 mm1
β = 120.820 (7)°T = 298 K
V = 1825.5 (3) Å3Prism, clear colourless
Z = 40.4 × 0.4 × 0.3 mm
Data collection top
Siemens P4
diffractometer
1763 reflections with I > 2σ(I)
Radiation source: Sealed X-ray tubeRint = 0.021
Graphite monochromatorθmax = 25.0°, θmin = 2.7°
Wyckoff scansh = 118
Absorption correction: ψ scan
(North et al., 1968)
k = 110
Tmin = 0.762, Tmax = 0.974l = 1715
2034 measured reflections3 standard reflections every 300 reflections
1784 independent reflections intensity decay: 0.0(2)
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0359P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.023(Δ/σ)max < 0.001
wR(F2) = 0.059Δρmax = 0.47 e Å3
S = 1.08Δρmin = 0.60 e Å3
1784 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
170 parametersExtinction coefficient: 0.0052 (3)
5 restraintsAbsolute structure: Classical Flack (1983) method preferred over Parsons because s.u. lower.
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (3)
Hydrogen site location: mixed
Crystal data top
[RhCl3(C3H9P)3]·H2OV = 1825.5 (3) Å3
Mr = 455.49Z = 4
Monoclinic, CcMo Kα radiation
a = 15.8650 (12) ŵ = 1.62 mm1
b = 9.0396 (3) ÅT = 298 K
c = 14.8223 (18) Å0.4 × 0.4 × 0.3 mm
β = 120.820 (7)°
Data collection top
Siemens P4
diffractometer
1763 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.021
Tmin = 0.762, Tmax = 0.9743 standard reflections every 300 reflections
2034 measured reflections intensity decay: 0.0(2)
1784 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.059Δρmax = 0.47 e Å3
S = 1.08Δρmin = 0.60 e Å3
1784 reflectionsAbsolute structure: Classical Flack (1983) method preferred over Parsons because s.u. lower.
170 parametersAbsolute structure parameter: 0.06 (3)
5 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh10.38961 (3)0.77430 (4)0.26210 (3)0.01905 (13)
Cl10.55310 (9)0.86978 (16)0.31510 (10)0.0352 (3)
Cl20.46887 (10)0.59591 (16)0.40575 (10)0.0377 (3)
Cl30.39164 (11)0.94682 (18)0.38953 (10)0.0416 (3)
P10.41363 (10)0.63338 (15)0.14978 (10)0.0255 (3)
P20.24900 (9)0.65676 (15)0.23097 (9)0.0246 (3)
P30.30855 (10)0.95935 (15)0.14271 (10)0.0283 (3)
C110.3120 (5)0.5348 (7)0.0413 (5)0.0426 (14)
H11A0.26440.60480.00620.064*
H11B0.28200.47030.06820.064*
H11C0.33620.47750.00480.064*
C120.4653 (6)0.7274 (7)0.0813 (6)0.0435 (16)
H12A0.52700.77100.13150.065*
H12B0.42100.80330.03720.065*
H12C0.47530.65760.03880.065*
C130.5027 (5)0.4886 (7)0.2167 (5)0.0454 (15)
H13A0.48040.42450.25180.068*
H13B0.56450.53180.26730.068*
H13C0.51070.43270.16650.068*
C210.2580 (5)0.4567 (7)0.2475 (5)0.0399 (14)
H21A0.30940.43280.31750.060*
H21B0.27250.41360.19780.060*
H21C0.19680.41820.23580.060*
C220.2117 (5)0.7170 (7)0.3217 (5)0.0380 (14)
H22A0.19040.81810.30730.057*
H22B0.26620.70880.39240.057*
H22C0.15880.65590.31370.057*
C230.1367 (4)0.6719 (8)0.1054 (4)0.0415 (14)
H23A0.14480.62430.05240.062*
H23B0.12120.77440.08780.062*
H23C0.08430.62500.10910.062*
C310.3893 (5)1.1078 (7)0.1529 (5)0.0521 (17)
H31A0.43931.06950.14110.078*
H31B0.41931.15090.22170.078*
H31C0.35221.18200.10110.078*
C320.2160 (5)1.0542 (7)0.1596 (6)0.0531 (17)
H32A0.24571.09110.23020.080*
H32B0.16450.98620.14660.080*
H32C0.18921.13520.11110.080*
C330.2405 (4)0.9229 (7)0.0029 (4)0.0403 (13)
H33A0.19900.83820.01100.060*
H33B0.28540.90380.02090.060*
H33C0.20081.00730.03350.060*
O10.5879 (6)1.1825 (10)0.4533 (7)0.102 (3)
H1A0.542 (2)1.263 (3)0.418 (7)0.123*
H1B0.546 (2)1.096 (2)0.435 (7)0.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.01842 (18)0.02103 (18)0.01697 (18)0.00103 (18)0.00854 (13)0.00138 (16)
Cl10.0244 (6)0.0419 (7)0.0363 (6)0.0104 (5)0.0135 (5)0.0040 (5)
Cl20.0330 (7)0.0425 (7)0.0269 (6)0.0004 (6)0.0076 (5)0.0103 (6)
Cl30.0456 (8)0.0473 (8)0.0356 (7)0.0046 (7)0.0235 (6)0.0184 (6)
P10.0274 (6)0.0260 (6)0.0259 (6)0.0006 (5)0.0158 (5)0.0042 (5)
P20.0209 (6)0.0295 (7)0.0235 (6)0.0014 (5)0.0115 (5)0.0028 (5)
P30.0306 (6)0.0232 (6)0.0305 (6)0.0020 (5)0.0153 (5)0.0045 (5)
C110.046 (3)0.045 (3)0.039 (3)0.015 (3)0.024 (3)0.024 (3)
C120.052 (4)0.048 (4)0.048 (4)0.001 (3)0.038 (4)0.003 (3)
C130.046 (3)0.039 (3)0.049 (4)0.018 (3)0.023 (3)0.002 (3)
C210.042 (3)0.031 (3)0.048 (3)0.008 (3)0.024 (3)0.002 (3)
C220.043 (4)0.042 (3)0.046 (3)0.001 (3)0.035 (3)0.002 (2)
C230.023 (3)0.057 (4)0.034 (3)0.008 (3)0.008 (2)0.011 (3)
C310.053 (4)0.037 (3)0.053 (4)0.012 (3)0.018 (3)0.007 (3)
C320.062 (4)0.045 (3)0.059 (4)0.027 (3)0.036 (4)0.010 (3)
C330.038 (3)0.043 (3)0.035 (3)0.000 (3)0.015 (2)0.007 (3)
O10.092 (5)0.123 (6)0.113 (6)0.030 (5)0.067 (5)0.048 (5)
Geometric parameters (Å, º) top
Rh1—Cl12.4499 (13)C13—H13B0.9600
Rh1—Cl22.4437 (13)C13—H13C0.9600
Rh1—Cl32.4369 (13)C21—H21A0.9600
Rh1—P12.2781 (13)C21—H21B0.9600
Rh1—P22.2942 (13)C21—H21C0.9600
Rh1—P32.2917 (13)C22—H22A0.9600
P1—C111.822 (6)C22—H22B0.9600
P1—C121.810 (6)C22—H22C0.9600
P1—C131.805 (6)C23—H23A0.9600
P2—C211.820 (6)C23—H23B0.9600
P2—C221.809 (6)C23—H23C0.9600
P2—C231.806 (6)C31—H31A0.9600
P3—C311.808 (6)C31—H31B0.9600
P3—C321.825 (6)C31—H31C0.9600
P3—C331.810 (6)C32—H32A0.9600
C11—H11A0.9600C32—H32B0.9600
C11—H11B0.9600C32—H32C0.9600
C11—H11C0.9600C33—H33A0.9600
C12—H12A0.9600C33—H33B0.9600
C12—H12B0.9600C33—H33C0.9600
C12—H12C0.9600O1—H1A0.9700 (11)
C13—H13A0.9600O1—H1B0.9700 (11)
Cl2—Rh1—Cl188.02 (5)P1—C13—H13A109.5
Cl3—Rh1—Cl186.25 (5)P1—C13—H13B109.5
Cl3—Rh1—Cl287.16 (5)P1—C13—H13C109.5
P1—Rh1—Cl183.42 (5)H13A—C13—H13B109.5
P1—Rh1—Cl293.65 (5)H13A—C13—H13C109.5
P1—Rh1—Cl3169.60 (5)H13B—C13—H13C109.5
P1—Rh1—P295.94 (5)P2—C21—H21A109.5
P1—Rh1—P394.68 (5)P2—C21—H21B109.5
P2—Rh1—Cl1171.22 (5)P2—C21—H21C109.5
P2—Rh1—Cl283.28 (5)H21A—C21—H21B109.5
P2—Rh1—Cl394.45 (5)H21A—C21—H21C109.5
P3—Rh1—Cl194.22 (5)H21B—C21—H21C109.5
P3—Rh1—Cl2171.57 (5)P2—C22—H22A109.5
P3—Rh1—Cl384.88 (5)P2—C22—H22B109.5
P3—Rh1—P294.57 (5)P2—C22—H22C109.5
C11—P1—Rh1121.0 (2)H22A—C22—H22B109.5
C12—P1—Rh1116.1 (2)H22A—C22—H22C109.5
C12—P1—C11100.6 (3)H22B—C22—H22C109.5
C13—P1—Rh1112.4 (2)P2—C23—H23A109.5
C13—P1—C11102.7 (3)P2—C23—H23B109.5
C13—P1—C12101.3 (3)P2—C23—H23C109.5
C21—P2—Rh1115.6 (2)H23A—C23—H23B109.5
C22—P2—Rh1111.5 (2)H23A—C23—H23C109.5
C22—P2—C21103.4 (3)H23B—C23—H23C109.5
C23—P2—Rh1121.1 (2)P3—C31—H31A109.5
C23—P2—C21100.5 (3)P3—C31—H31B109.5
C23—P2—C22102.6 (3)P3—C31—H31C109.5
C31—P3—Rh1112.6 (2)H31A—C31—H31B109.5
C31—P3—C32103.0 (4)H31A—C31—H31C109.5
C31—P3—C33102.3 (3)H31B—C31—H31C109.5
C32—P3—Rh1114.2 (2)P3—C32—H32A109.5
C33—P3—Rh1121.4 (2)P3—C32—H32B109.5
C33—P3—C32101.1 (3)P3—C32—H32C109.5
P1—C11—H11A109.5H32A—C32—H32B109.5
P1—C11—H11B109.5H32A—C32—H32C109.5
P1—C11—H11C109.5H32B—C32—H32C109.5
H11A—C11—H11B109.5P3—C33—H33A109.5
H11A—C11—H11C109.5P3—C33—H33B109.5
H11B—C11—H11C109.5P3—C33—H33C109.5
P1—C12—H12A109.5H33A—C33—H33B109.5
P1—C12—H12B109.5H33A—C33—H33C109.5
P1—C12—H12C109.5H33B—C33—H33C109.5
H12A—C12—H12B109.5H1A—O1—H1B104.12 (17)
H12A—C12—H12C109.5H1B—O1—H1A104.12 (17)
H12B—C12—H12C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···Cl30.972.573.481157
(RhP3Cl3MeOH) fac-Trichloridotris(trimethylphosphane-κP)rhodium methanol hemisolvate top
Crystal data top
[RhCl3(C3H9P)3]·0.5CH4OF(000) = 1848
Mr = 453.50Dx = 1.614 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 16.0993 (16) ÅCell parameters from 50 reflections
b = 15.5910 (9) Åθ = 3–20°
c = 16.4152 (14) ŵ = 1.59 mm1
β = 115.084 (13)°T = 298 K
V = 3731.7 (5) Å3Prism, clear light yellow
Z = 80.6 × 0.6 × 0.3 mm
Data collection top
Siemens P4
diffractometer
4171 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 22.5°, θmin = 1.9°
sea;ed X–ray tube scansh = 117
Absorption correction: ψ scan
(North et al., 1968)
k = 116
Tmin = 0.807, Tmax = 0.915l = 1716
5957 measured reflections3 standard reflections every 200 reflections
4858 independent reflections intensity decay: 0.0(2)
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0286P)2 + 4.1793P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.003
4858 reflectionsΔρmax = 1.03 e Å3
328 parametersΔρmin = 0.41 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00519 (17)
Crystal data top
[RhCl3(C3H9P)3]·0.5CH4OV = 3731.7 (5) Å3
Mr = 453.50Z = 8
Monoclinic, P21/nMo Kα radiation
a = 16.0993 (16) ŵ = 1.59 mm1
b = 15.5910 (9) ÅT = 298 K
c = 16.4152 (14) Å0.6 × 0.6 × 0.3 mm
β = 115.084 (13)°
Data collection top
Siemens P4
diffractometer
4171 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.034
Tmin = 0.807, Tmax = 0.915θmax = 22.5°
5957 measured reflections3 standard reflections every 200 reflections
4858 independent reflections intensity decay: 0.0(2)
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.08Δρmax = 1.03 e Å3
4858 reflectionsΔρmin = 0.41 e Å3
328 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh10.76635 (2)0.66132 (2)0.08786 (2)0.02237 (12)
Cl10.82866 (8)0.79954 (7)0.07477 (9)0.0435 (3)
Cl20.65651 (8)0.67764 (8)0.06932 (7)0.0445 (3)
Cl30.87487 (8)0.60045 (8)0.03606 (8)0.0449 (3)
P10.72796 (9)0.52126 (7)0.09374 (8)0.0361 (3)
P20.87465 (8)0.66934 (7)0.23406 (8)0.0308 (3)
P30.64873 (8)0.71971 (7)0.11404 (8)0.0314 (3)
C110.8230 (4)0.4462 (3)0.1382 (4)0.0583 (15)
H11A0.86050.45240.10610.087*
H11B0.79960.38870.13110.087*
H11C0.85900.45770.20090.087*
C120.6631 (5)0.4911 (4)0.1567 (5)0.076 (2)
H12A0.69490.51020.21780.114*
H12B0.65650.42980.15570.114*
H12C0.60350.51720.12990.114*
C130.6596 (4)0.4779 (3)0.0171 (4)0.0614 (16)
H13A0.60110.50600.04260.092*
H13B0.65090.41750.01250.092*
H13C0.69070.48720.05500.092*
C210.8719 (4)0.5969 (4)0.3203 (3)0.0588 (15)
H21A0.81320.60080.32220.088*
H21B0.91910.61270.37780.088*
H21C0.88180.53910.30630.088*
C220.9893 (3)0.6550 (4)0.2430 (4)0.0567 (15)
H22A0.99790.59620.23100.085*
H22B1.03290.66990.30270.085*
H22C0.99830.69140.20020.085*
C230.8810 (4)0.7718 (3)0.2882 (4)0.0536 (14)
H23A0.85820.81600.24340.080*
H23B0.94360.78390.32820.080*
H23C0.84450.76990.32170.080*
C310.5349 (3)0.6773 (4)0.0457 (4)0.0572 (15)
H31A0.52170.68300.01690.086*
H31B0.49020.70860.05800.086*
H31C0.53270.61780.05970.086*
C320.6344 (4)0.8316 (3)0.0863 (5)0.071 (2)
H32A0.68920.86210.12380.107*
H32B0.58350.85370.09580.107*
H32C0.62280.83910.02430.107*
C330.6502 (4)0.7160 (4)0.2248 (3)0.0554 (15)
H33A0.65420.65740.24420.083*
H33B0.59500.74130.22270.083*
H33C0.70230.74730.26640.083*
Rh20.29937 (2)0.83004 (2)0.11738 (2)0.02531 (12)
Cl40.44698 (8)0.89262 (9)0.14246 (9)0.0497 (3)
Cl50.29238 (9)0.77329 (8)0.02441 (8)0.0480 (3)
Cl60.38403 (10)0.69898 (8)0.18403 (9)0.0534 (4)
P40.15796 (9)0.76893 (8)0.07421 (9)0.0412 (3)
P50.31781 (8)0.86191 (7)0.26057 (7)0.0309 (3)
P60.24255 (8)0.96155 (7)0.05702 (7)0.0277 (3)
C410.0844 (4)0.7767 (4)0.0452 (4)0.0686 (17)
H41A0.07860.83570.06340.103*
H41B0.02500.75390.05710.103*
H41C0.11080.74450.07820.103*
C420.0818 (4)0.8051 (4)0.1233 (4)0.0610 (16)
H42A0.10850.79200.18640.092*
H42B0.02370.77660.09430.092*
H42C0.07290.86600.11520.092*
C430.1622 (5)0.6541 (3)0.0936 (5)0.0735 (19)
H43A0.19490.62690.06350.110*
H43B0.10100.63170.07060.110*
H43C0.19310.64290.15700.110*
C510.2460 (4)0.9416 (3)0.2801 (3)0.0477 (13)
H51A0.25620.99650.25960.072*
H51B0.26120.94440.34320.072*
H51C0.18280.92580.24770.072*
C520.4313 (3)0.9011 (4)0.3307 (3)0.0522 (14)
H52A0.47610.86070.33020.078*
H52B0.43760.90820.39110.078*
H52C0.44060.95530.30800.078*
C530.3059 (4)0.7705 (3)0.3231 (3)0.0480 (13)
H53A0.24480.74820.29370.072*
H53B0.31770.78820.38300.072*
H53C0.34910.72690.32560.072*
C610.2455 (4)0.9750 (3)0.0508 (3)0.0470 (13)
H61A0.30620.96310.04520.071*
H61B0.22921.03290.07110.071*
H61C0.20280.93620.09340.071*
C620.3089 (4)1.0522 (3)0.1198 (3)0.0516 (14)
H62A0.31241.05110.17970.077*
H62B0.27981.10450.09050.077*
H62C0.36961.04930.12260.077*
C630.1272 (3)0.9971 (3)0.0347 (3)0.0425 (12)
H63A0.08320.95930.00820.064*
H63B0.11801.05430.01080.064*
H63C0.11960.99650.08960.064*
O10.0306 (5)1.0413 (3)0.1833 (4)0.1076 (18)
H10.03271.09130.19960.161*
C20.0030 (4)0.9903 (4)0.2311 (4)0.0705 (17)
H2A0.03550.94250.19460.106*
H2B0.04391.02320.24760.106*
H2C0.04710.96960.28450.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.0230 (2)0.02200 (19)0.02360 (19)0.00153 (14)0.01137 (15)0.00271 (14)
Cl10.0405 (7)0.0301 (6)0.0631 (8)0.0004 (5)0.0251 (6)0.0148 (6)
Cl20.0390 (7)0.0641 (8)0.0261 (6)0.0069 (6)0.0096 (5)0.0060 (5)
Cl30.0452 (7)0.0563 (8)0.0423 (7)0.0173 (6)0.0273 (6)0.0041 (6)
P10.0411 (7)0.0244 (6)0.0434 (7)0.0039 (5)0.0186 (6)0.0009 (5)
P20.0303 (6)0.0311 (6)0.0282 (6)0.0023 (5)0.0095 (5)0.0005 (5)
P30.0265 (6)0.0341 (6)0.0373 (7)0.0029 (5)0.0172 (5)0.0018 (5)
C110.065 (4)0.027 (3)0.068 (4)0.011 (3)0.015 (3)0.004 (3)
C120.102 (5)0.042 (3)0.114 (6)0.013 (3)0.076 (5)0.013 (3)
C130.062 (4)0.043 (3)0.064 (4)0.009 (3)0.012 (3)0.015 (3)
C210.078 (4)0.060 (4)0.036 (3)0.002 (3)0.022 (3)0.009 (3)
C220.025 (3)0.081 (4)0.050 (3)0.010 (3)0.002 (2)0.003 (3)
C230.057 (3)0.044 (3)0.046 (3)0.009 (3)0.008 (3)0.018 (3)
C310.029 (3)0.086 (4)0.054 (3)0.004 (3)0.016 (3)0.004 (3)
C320.069 (4)0.042 (3)0.131 (6)0.026 (3)0.070 (4)0.022 (3)
C330.049 (3)0.081 (4)0.043 (3)0.007 (3)0.027 (3)0.010 (3)
Rh20.0255 (2)0.0244 (2)0.0276 (2)0.00468 (14)0.01264 (16)0.00091 (14)
Cl40.0295 (6)0.0641 (8)0.0616 (8)0.0000 (6)0.0253 (6)0.0014 (7)
Cl50.0720 (9)0.0401 (7)0.0366 (7)0.0102 (6)0.0275 (6)0.0030 (5)
Cl60.0707 (9)0.0416 (7)0.0518 (8)0.0308 (7)0.0297 (7)0.0140 (6)
P40.0372 (7)0.0310 (7)0.0511 (8)0.0076 (6)0.0145 (6)0.0006 (6)
P50.0313 (7)0.0342 (7)0.0281 (6)0.0046 (5)0.0134 (5)0.0024 (5)
P60.0283 (6)0.0244 (6)0.0297 (6)0.0011 (5)0.0118 (5)0.0003 (5)
C410.050 (3)0.068 (4)0.062 (4)0.019 (3)0.001 (3)0.013 (3)
C420.040 (3)0.071 (4)0.079 (4)0.009 (3)0.031 (3)0.004 (3)
C430.079 (5)0.033 (3)0.101 (5)0.013 (3)0.032 (4)0.002 (3)
C510.061 (3)0.047 (3)0.043 (3)0.016 (3)0.030 (3)0.000 (2)
C520.045 (3)0.066 (4)0.033 (3)0.003 (3)0.004 (2)0.002 (3)
C530.063 (3)0.044 (3)0.045 (3)0.005 (3)0.031 (3)0.013 (2)
C610.064 (3)0.039 (3)0.047 (3)0.011 (3)0.032 (3)0.009 (2)
C620.058 (3)0.030 (3)0.053 (3)0.013 (2)0.012 (3)0.006 (2)
C630.035 (3)0.042 (3)0.050 (3)0.011 (2)0.017 (2)0.006 (2)
O10.145 (5)0.095 (4)0.077 (3)0.022 (4)0.040 (3)0.020 (3)
C20.063 (4)0.084 (5)0.063 (4)0.003 (4)0.026 (3)0.001 (4)
Geometric parameters (Å, º) top
Rh1—Cl12.4248 (11)Rh2—P42.2857 (13)
Rh1—Cl22.4455 (12)Rh2—P52.2952 (12)
Rh1—Cl32.4363 (12)Rh2—P62.2922 (11)
Rh1—P12.2825 (12)P4—C411.814 (6)
Rh1—P22.2951 (12)P4—C421.819 (5)
Rh1—P32.2998 (12)P4—C431.815 (5)
P1—C111.816 (5)P5—C511.815 (5)
P1—C121.816 (5)P5—C521.804 (5)
P1—C131.811 (5)P5—C531.812 (5)
P2—C211.827 (5)P6—C611.802 (5)
P2—C221.803 (5)P6—C621.808 (5)
P2—C231.810 (5)P6—C631.820 (4)
P3—C311.820 (5)C41—H41A0.9600
P3—C321.793 (5)C41—H41B0.9600
P3—C331.810 (5)C41—H41C0.9600
C11—H11A0.9600C42—H42A0.9600
C11—H11B0.9600C42—H42B0.9600
C11—H11C0.9600C42—H42C0.9600
C12—H12A0.9600C43—H43A0.9600
C12—H12B0.9600C43—H43B0.9600
C12—H12C0.9600C43—H43C0.9600
C13—H13A0.9600C51—H51A0.9600
C13—H13B0.9600C51—H51B0.9600
C13—H13C0.9600C51—H51C0.9600
C21—H21A0.9600C52—H52A0.9600
C21—H21B0.9600C52—H52B0.9600
C21—H21C0.9600C52—H52C0.9600
C22—H22A0.9600C53—H53A0.9600
C22—H22B0.9600C53—H53B0.9600
C22—H22C0.9600C53—H53C0.9600
C23—H23A0.9600C61—H61A0.9600
C23—H23B0.9600C61—H61B0.9600
C23—H23C0.9600C61—H61C0.9600
C31—H31A0.9600C62—H62A0.9600
C31—H31B0.9600C62—H62B0.9600
C31—H31C0.9600C62—H62C0.9600
C32—H32A0.9600C63—H63A0.9600
C32—H32B0.9600C63—H63B0.9600
C32—H32C0.9600C63—H63C0.9600
C33—H33A0.9600O1—H10.8200
C33—H33B0.9600O1—C21.379 (7)
C33—H33C0.9600C2—H2A0.9600
Rh2—Cl42.4371 (12)C2—H2B0.9600
Rh2—Cl52.4477 (12)C2—H2C0.9600
Rh2—Cl62.4424 (12)
Cl1—Rh1—Cl287.44 (4)P4—Rh2—Cl585.19 (5)
Cl1—Rh1—Cl386.01 (4)P4—Rh2—Cl694.79 (5)
Cl3—Rh1—Cl288.69 (4)P4—Rh2—P595.00 (5)
P1—Rh1—Cl1169.61 (4)P4—Rh2—P694.38 (4)
P1—Rh1—Cl293.24 (5)P5—Rh2—Cl492.68 (5)
P1—Rh1—Cl383.64 (5)P5—Rh2—Cl5170.38 (4)
P1—Rh1—P296.15 (4)P5—Rh2—Cl685.24 (4)
P1—Rh1—P396.41 (4)P6—Rh2—Cl484.07 (4)
P2—Rh1—Cl183.39 (4)P6—Rh2—Cl593.63 (4)
P2—Rh1—Cl2170.60 (4)P6—Rh2—Cl6170.61 (5)
P2—Rh1—Cl392.69 (4)P6—Rh2—P595.95 (4)
P2—Rh1—P395.95 (4)C41—P4—Rh2114.5 (2)
P3—Rh1—Cl193.96 (4)C41—P4—C42101.8 (3)
P3—Rh1—Cl282.62 (4)C41—P4—C43102.4 (3)
P3—Rh1—Cl3171.30 (4)C42—P4—Rh2120.21 (19)
C11—P1—Rh1115.90 (18)C43—P4—Rh2113.5 (2)
C11—P1—C12101.2 (3)C43—P4—C42102.2 (3)
C12—P1—Rh1120.2 (2)C51—P5—Rh2120.87 (17)
C13—P1—Rh1112.00 (19)C52—P5—Rh2112.52 (18)
C13—P1—C11102.3 (3)C52—P5—C51101.8 (3)
C13—P1—C12103.0 (3)C52—P5—C53103.1 (2)
C21—P2—Rh1121.30 (19)C53—P5—Rh2114.25 (18)
C22—P2—Rh1112.11 (18)C53—P5—C51102.1 (2)
C22—P2—C21102.8 (3)C61—P6—Rh2110.90 (16)
C22—P2—C23103.1 (3)C61—P6—C62102.3 (2)
C23—P2—Rh1114.92 (18)C61—P6—C63102.5 (2)
C23—P2—C21100.4 (3)C62—P6—Rh2114.98 (17)
C31—P3—Rh1115.75 (18)C62—P6—C63100.5 (2)
C32—P3—Rh1111.43 (18)C63—P6—Rh2123.06 (16)
C32—P3—C31102.1 (3)P4—C41—H41A109.5
C32—P3—C33103.4 (3)P4—C41—H41B109.5
C33—P3—Rh1120.93 (18)P4—C41—H41C109.5
C33—P3—C31100.9 (3)H41A—C41—H41B109.5
P1—C11—H11A109.5H41A—C41—H41C109.5
P1—C11—H11B109.5H41B—C41—H41C109.5
P1—C11—H11C109.5P4—C42—H42A109.5
H11A—C11—H11B109.5P4—C42—H42B109.5
H11A—C11—H11C109.5P4—C42—H42C109.5
H11B—C11—H11C109.5H42A—C42—H42B109.5
P1—C12—H12A109.5H42A—C42—H42C109.5
P1—C12—H12B109.5H42B—C42—H42C109.5
P1—C12—H12C109.5P4—C43—H43A109.5
H12A—C12—H12B109.5P4—C43—H43B109.5
H12A—C12—H12C109.5P4—C43—H43C109.5
H12B—C12—H12C109.5H43A—C43—H43B109.5
P1—C13—H13A109.5H43A—C43—H43C109.5
P1—C13—H13B109.5H43B—C43—H43C109.5
P1—C13—H13C109.5P5—C51—H51A109.5
H13A—C13—H13B109.5P5—C51—H51B109.5
H13A—C13—H13C109.5P5—C51—H51C109.5
H13B—C13—H13C109.5H51A—C51—H51B109.5
P2—C21—H21A109.5H51A—C51—H51C109.5
P2—C21—H21B109.5H51B—C51—H51C109.5
P2—C21—H21C109.5P5—C52—H52A109.5
H21A—C21—H21B109.5P5—C52—H52B109.5
H21A—C21—H21C109.5P5—C52—H52C109.5
H21B—C21—H21C109.5H52A—C52—H52B109.5
P2—C22—H22A109.5H52A—C52—H52C109.5
P2—C22—H22B109.5H52B—C52—H52C109.5
P2—C22—H22C109.5P5—C53—H53A109.5
H22A—C22—H22B109.5P5—C53—H53B109.5
H22A—C22—H22C109.5P5—C53—H53C109.5
H22B—C22—H22C109.5H53A—C53—H53B109.5
P2—C23—H23A109.5H53A—C53—H53C109.5
P2—C23—H23B109.5H53B—C53—H53C109.5
P2—C23—H23C109.5P6—C61—H61A109.5
H23A—C23—H23B109.5P6—C61—H61B109.5
H23A—C23—H23C109.5P6—C61—H61C109.5
H23B—C23—H23C109.5H61A—C61—H61B109.5
P3—C31—H31A109.5H61A—C61—H61C109.5
P3—C31—H31B109.5H61B—C61—H61C109.5
P3—C31—H31C109.5P6—C62—H62A109.5
H31A—C31—H31B109.5P6—C62—H62B109.5
H31A—C31—H31C109.5P6—C62—H62C109.5
H31B—C31—H31C109.5H62A—C62—H62B109.5
P3—C32—H32A109.5H62A—C62—H62C109.5
P3—C32—H32B109.5H62B—C62—H62C109.5
P3—C32—H32C109.5P6—C63—H63A109.5
H32A—C32—H32B109.5P6—C63—H63B109.5
H32A—C32—H32C109.5P6—C63—H63C109.5
H32B—C32—H32C109.5H63A—C63—H63B109.5
P3—C33—H33A109.5H63A—C63—H63C109.5
P3—C33—H33B109.5H63B—C63—H63C109.5
P3—C33—H33C109.5C2—O1—H1109.5
H33A—C33—H33B109.5O1—C2—H2A109.5
H33A—C33—H33C109.5O1—C2—H2B109.5
H33B—C33—H33C109.5O1—C2—H2C109.5
Cl4—Rh2—Cl587.35 (5)H2A—C2—H2B109.5
Cl4—Rh2—Cl686.57 (5)H2A—C2—H2C109.5
Cl6—Rh2—Cl585.15 (4)H2B—C2—H2C109.5
P4—Rh2—Cl4172.28 (5)
Cl1—Rh1—P1—C1136.4 (4)P3—Rh1—P2—C2347.9 (2)
Cl1—Rh1—P1—C12158.6 (3)Cl4—Rh2—P5—C51111.9 (2)
Cl1—Rh1—P1—C1380.4 (3)Cl4—Rh2—P5—C528.4 (2)
Cl1—Rh1—P2—C21166.5 (2)Cl4—Rh2—P5—C53125.53 (19)
Cl1—Rh1—P2—C2271.8 (2)Cl4—Rh2—P6—C6172.9 (2)
Cl1—Rh1—P2—C2345.5 (2)Cl4—Rh2—P6—C6242.6 (2)
Cl1—Rh1—P3—C31130.6 (2)Cl4—Rh2—P6—C63165.5 (2)
Cl1—Rh1—P3—C3214.5 (3)Cl5—Rh2—P4—C4138.0 (2)
Cl1—Rh1—P3—C33107.1 (2)Cl5—Rh2—P4—C42159.7 (2)
Cl2—Rh1—P1—C11129.9 (2)Cl5—Rh2—P4—C4379.1 (3)
Cl2—Rh1—P1—C12108.0 (3)Cl5—Rh2—P6—C6114.1 (2)
Cl2—Rh1—P1—C1313.1 (2)Cl5—Rh2—P6—C62129.6 (2)
Cl2—Rh1—P3—C3143.7 (2)Cl5—Rh2—P6—C63107.5 (2)
Cl2—Rh1—P3—C3272.3 (3)Cl6—Rh2—P4—C41122.7 (2)
Cl2—Rh1—P3—C33166.0 (2)Cl6—Rh2—P4—C42115.6 (2)
Cl3—Rh1—P1—C1141.5 (2)Cl6—Rh2—P4—C435.6 (3)
Cl3—Rh1—P1—C12163.7 (3)Cl6—Rh2—P5—C51161.7 (2)
Cl3—Rh1—P1—C1375.3 (2)Cl6—Rh2—P5—C5277.9 (2)
Cl3—Rh1—P2—C21107.9 (2)Cl6—Rh2—P5—C5339.2 (2)
Cl3—Rh1—P2—C2213.9 (2)P4—Rh2—P5—C5167.3 (2)
Cl3—Rh1—P2—C23131.1 (2)P4—Rh2—P5—C52172.3 (2)
P1—Rh1—P2—C2124.0 (2)P4—Rh2—P5—C5355.2 (2)
P1—Rh1—P2—C2297.7 (2)P4—Rh2—P6—C6199.5 (2)
P1—Rh1—P2—C23145.0 (2)P4—Rh2—P6—C62145.0 (2)
P1—Rh1—P3—C3148.7 (2)P4—Rh2—P6—C6322.1 (2)
P1—Rh1—P3—C32164.8 (3)P5—Rh2—P4—C41151.7 (2)
P1—Rh1—P3—C3373.5 (2)P5—Rh2—P4—C4230.0 (2)
P2—Rh1—P1—C1150.5 (2)P5—Rh2—P4—C4391.3 (3)
P2—Rh1—P1—C1271.7 (3)P5—Rh2—P6—C61164.96 (19)
P2—Rh1—P1—C13167.3 (2)P5—Rh2—P6—C6249.5 (2)
P2—Rh1—P3—C31145.7 (2)P5—Rh2—P6—C6373.4 (2)
P2—Rh1—P3—C3298.3 (3)P6—Rh2—P4—C4155.3 (2)
P2—Rh1—P3—C3323.4 (2)P6—Rh2—P4—C4266.4 (2)
P3—Rh1—P1—C11147.2 (2)P6—Rh2—P4—C43172.4 (3)
P3—Rh1—P1—C1225.0 (3)P6—Rh2—P5—C5127.6 (2)
P3—Rh1—P1—C1396.0 (2)P6—Rh2—P5—C5292.7 (2)
P3—Rh1—P2—C2173.1 (2)P6—Rh2—P5—C53150.16 (19)
P3—Rh1—P2—C22165.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl6i0.822.473.184 (5)147
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
Comparison of unit-cell dimensions (Å, °) for water solvate complexes RhP3Cl3water and IrP3Cl3water top
Compoundspace groupabcαβγ
RhP3Cl3waterCc15.8650 (12)9.0396 (3)14.8223 (18)90120.820 (7)90
IrP3Cl3waterCc15.8830 (10)9.0590 (10)14.829 (2)90120.530 (8)90
Comparison of unit-cell dimensions (Å, °) for methanol solvate complexes RhP3Cl3MeOH and IrP3Cl3MeOH. top
Compoundspace groupabcαβγ
RhP3Cl3MeOHP21/n16.0993 (16)15.5910 (9)16.4152 (14)90115.084 (13)90
IrP3Cl3MeOHP21/n16.144 (3)15.631 (4)16.469 (4)90115.400 (17)90
Comparison of significant bond distances (Å) for RhP3Cl3water and IrP3Cl3water top
CompoundM—P1M—P2M—P3M—Cl1M—Cl2M—Cl3
RhP3Cl3water2.279 (2)2.295 (3)2.292 (2)2.450 (2)2.444 (3)2.436 (3)
IrP3Cl3water2.2787 (18)2.2880 (19)2.2912 (17)2.4320 (19)2.4469 (18)2.4451 (19)
Comparison of significant bond distances (Å) for RhP3Cl3MeOH and IrP3Cl3MeOH top
CompoundM—P1M—P2M—P3M—Cl1M—Cl2M—Cl3
RhP3Cl3MeOH a2.2824 (12)2.2950 (13)2.2995 (12)2.4246 (11)2.4453 (12)2.4364 (12)
RhP3Cl3MeOH b2.2860 (13)2.2954 (12)2.2923 (11)2.4372 (12)2.4476 (12)2.4426 (12)
IrP3Cl3MeOH a2.2809 (16)2.2847 (17)2.2964 (15)2.4245 (16)2.4368 (17)2.4394 (15)
IrP3Cl3MeOH b2.2932 (16)2.2795 (17)2.2869 (16)2.4442 (16)2.4316 (17)2.4405 (17)
Hydrogen-bond geometry (Å, º) for (RhP3Cl3water) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···Cl30.97002.573.481157
Hydrogen-bond geometry (Å, º) for (RhP3Cl3MeOH) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl6i0.822.473.184 (5)146.5
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

(RhP3Cl3water)(RhP3Cl3MeOH)
Crystal data
Chemical formula[RhCl3(C3H9P)3]·H2O[RhCl3(C3H9P)3]·0.5CH4O
Mr455.49453.50
Crystal system, space groupMonoclinic, CcMonoclinic, P21/n
Temperature (K)298298
a, b, c (Å)15.8650 (12), 9.0396 (3), 14.8223 (18)16.0993 (16), 15.5910 (9), 16.4152 (14)
β (°) 120.820 (7) 115.084 (13)
V3)1825.5 (3)3731.7 (5)
Z48
Radiation typeMo KαMo Kα
µ (mm1)1.621.59
Crystal size (mm)0.4 × 0.4 × 0.30.6 × 0.6 × 0.3
Data collection
DiffractometerSiemens P4
diffractometer
Siemens P4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
ψ scan
(North et al., 1968)
Tmin, Tmax0.762, 0.9740.807, 0.915
No. of measured, independent and
observed [I > 2σ(I)] reflections
2034, 1784, 1763 5957, 4858, 4171
Rint0.0210.034
θmax (°)25.022.5
(sin θ/λ)max1)0.5950.538
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.059, 1.08 0.029, 0.071, 1.08
No. of reflections17844858
No. of parameters170328
No. of restraints50
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.601.03, 0.41
Absolute structureClassical Flack (1983) method preferred over Parsons because s.u. lower.?
Absolute structure parameter0.06 (3)?

Computer programs: XSCANS (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXS87 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

Financial support for this work was provided by ACS–PRF (grant No. 23961-C1) and by the National Science Foundation (CHE-902244). The open-access fee was provided by the Virginia Tech Open Access Subvention Fund.

References

First citationAllen, F. H., Chang, G., Cheung, K. K., Lai, T. F., Lee, L. M. & Pidcock, A. (1970). J. Chem. Soc. D, pp. 1297–1298.  Google Scholar
First citationCordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. & Alvarez, S. (2008). Dalton Trans. pp. 2832–2838.  Web of Science CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEdwards, P. G., Fleming, J. S., Coles, S. J. & Hursthouse, M. B. (1997). J. Chem. Soc. Dalton Trans. pp. 3201–3206.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFrazier, J. F. & Merola, J. S. (1992). Polyhedron, 11, 2917–2927.  CSD CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationMarsh, R. E. (1997). Acta Cryst. B53, 317–322.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMayer, H. A., Otto, H., Kühbauch, H., Fawzi, R. & Steimann, M. (1994). J. Organomet. Chem. 472, 347–354.  Google Scholar
First citationMerola, J. S., Franks, M. A. & Frazier, J. F. (2013). Polyhedron, 54, 67–73.  Web of Science CSD CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationParsons, S., Payne, N. L., Yellowlees, L., Harris, S. & Wood, P. A. (2004). Private communication (CCDC 247871). CCDC, Cambridge, England.  Google Scholar
First citationRaghuraman, K., Pillarsetty, N., Volkert, W. A., Barnes, C., Jurisson, S. & Katti, K. V. (2002). J. Am. Chem. Soc. 124, 7276–7277.  Google Scholar
First citationRobertson, G. B. & Tucker, P. A. (1981). Acta Cryst. B37, 814–821.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSkapski, A. C. & Stephens, F. A. (1973). J. Chem. Soc. Dalton Trans. pp. 1789–1793.  Google Scholar
First citationSuzuki, T., Isobe, K., Kashiwabara, K., Fujita, J. & Kaizaki, S. (1996). J. Chem. Soc. Dalton Trans. pp. 3779–3786.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 226-230
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds