research communications
Crystal structures of fac-trichloridotris(trimethylphosphane-κP)rhodium(III) monohydrate and fac-trichloridotris(trimethylphosphane-κP)rhodium(III) methanol hemisolvate: rhodium structures that are isotypic with their iridium analogs
aDepartment of Chemistry 0212, Virginia Tech, Blacksburg, VA 24061, USA
*Correspondence e-mail: jmerola@vt.edu
The crystal structures of two solvates of fac-trichloridotris(trimethylphosphane-κP)rhodium(III) are reported, i.e. one with water in the fac-[RhCl3(Me3P)3]·H2O, and one with methanol in the fac-[RhCl3(Me3P)3]·0.5CH3OH. These rhodium compounds exhibit distorted octahedral coordination spheres at the metal and are isotypic with the analogous iridium compounds previously reported by us [Merola et al. (2013). Polyhedron, 54, 67–73]. Comparison is made between the rhodium and iridium compounds, highlighting their isostructural relationships.
Keywords: crystal structure; iridium; rhodium; phosphane ligands; isotypism.
1. Chemical context
Phosphane complexes of noble metals, especially those of rhodium and iridium, have proven to be important in catalysis as well as in studying fundamental reactions at metal surfaces. Chlorido compounds of rhodium and iridium with phosphane ligands provide important starting materials for other metal complexes of that family through replacement of the chlorine. For example, we have shown that (Me3P)3IrCl3 can be converted into (Me3P)3IrMe3 through reaction with methylmagnesiumchloride. This trimethyliridium compound can, in turn, be used to study organometallic reactions at the iridium(III) atom (Merola et al., 2013). Thus, the fundamental study of crystal structures of phosphane–chlorido complexes of iridium and rhodium is important to help understand the structures, the bonding and the stereochemistry of this class of compounds. This paper adds to the body of knowledge of rhodium complexes that complement the already published structures of the analogous iridium compounds. It contributes to the information on crystal structures of L3MCl3 compounds, comparing the rhodium structures to the iridium structures as well as confirming the nature of solvate formation in both the iridium and rhodium structures.
2. Structural commentary
The title complexes fac-trichloridotris(trimethylphosphane-κP)rhodium(III) monohydrate, RhP3Cl3water, and fac-trichloridotris(trimethylphosphane-κP)rhodium(III) methanol hemihydrate, RhP3Cl3MeOH, are isotypic with their iridium counterparts (CCDC 896072, 896073; Merola et al., 2013). Isotypism in rhodium and iridium complexes is not unusual, largely owing to the lanthanide contraction resulting in very similar radii for both second- and third-row transition elements (Cordero et al., 2008).
Fig. 1 is a displacement ellipsoid rendering of compound RhP3Cl3water and Fig. 2 is a displacement ellipsoid rendering of compound RhP3Cl3MeOH. For compounds RhP3Cl3water and RhP3Cl3MeOH reported here, the comparison with their iridium analogs can be found in Tables 1 and 2 which list the corresponding unit-cell parameters for the rhodium and iridium water solvates (Table 1) and the rhodium and iridium methanol solvate (Table 2). The iridium compounds show a very slight lengthening of the unit-cell dimensions compared to rhodium but they are clearly isotypic overall. Table 3 lists the important bond lengths for RhP3Cl3water and IrP3Cl3water while Table 4 lists these for RhP3Cl3MeOH and IrP3Cl3MeOH. Bond-length comparisons show little significant difference between the rhodium and iridium analogs.
|
|
|
|
3. Supramolecular features
It is not surprising that fac-tris(trimethylphosphane)trichloroidium(III) and -rhodium(III) complexes form lattice solvates since the shape of the individual molecules leads to packing with voids in the lattice. Thus, every structure we have determined with the iridium compounds, as well as the ones reported here, contains a solvent. In the case of the water solvate, Fig. 3 shows the packing diagram for RhP3Cl3water looking down the c axis. One can see that the packing involves alternating layers of rhodium molecules and water molecules. The water molecules show close, hydrogen-bonding interactions (Table 5) between the water and the chlorines on one layer of the rhodium compound as well as close C—H⋯O interactions between the phosphane methyl groups and the water oxygen. One should not make much of the hydrogen positions on the water since, although they were originally found in difference maps, the O—H bond lengths and the H—O—H angle were restrained with DFIX and DANG commands (Sheldrick, 2015). Fig. 4 shows the packing diagram for RhP3Cl3MeOH, looking down the c axis, illustrating the O—H⋯Cl hydrogen bonding (Table 6) and the location of the methanol molecules in a channel in the crystal.
|
4. Database survey
A search of the Cambridge Structural Database (Groom & Allen, 2014) surprisingly shows very few structurally characterized trichloridotrisphosphaneiridium or rhodium compounds. In the case of iridium, beside the structures we recently published (CCDC 896072–896076; Merola et al., 2013), there are only three other P3IrCl3 compounds in the database – the mer and fac isomers with P = phenyldimethylphosphane (refcodes CTPIRA01, CTPIRC: Marsh, 1997; Robertson & Tucker, 1981) and one entry where P3 is cis,cis-1,3,5-tris(diphenylphosphino)cyclohexane (refcode LEXFAV; Mayer et al., 1994). For rhodium, P3RhCl3 structurally characterized compounds are also rare with one mixed-ligand complex (two tri-n-butylphosphane ligands and one trimethylphosphite ligand; refcode CBPMRH; Allen et al., 1970), a complex with 3 hydroxymethylphosphane ligands (CCDC 189926; Raghuraman et al., 2002), a complex with the tripodal ligand, 1,1,1-tris(dimethylphosphinomethyl)ethane (refcode NAHXID; Suzuki et al., 1996), a complex with the tridentate ligand, 1,5,9-tris(2-propyl)-1,5,9-triphosphacyclododecane (refcode NOLPIN; Edwards et al., 1997), a mer-tris-dimethylphenylphosphane compound (CCDC 247871; Parsons et al., 2004) and a mer-tris-diethylphenylphosphane compound (refcode TCPERH; Skapski & Stephens, 1973). Of those, the only directly comparable structures are the mer isomer complexes of rhodium and iridium with dimethylphenylphosphane ligands and those two are indeed isostructural with each other.
5. Synthesis and crystallization
The rhodium complexes described herein could not be characterized spectroscopically as pure materials, but were isolated as crystals from complex mixtures. In contrast to the iridium complex [IrCOD(PMe3)3]Cl (COD = cyclooctadiene) (Frazier & Merola, 1992) which is the starting material for much of our iridium work, attempts to synthesize the analogous rhodium compound met with no success. Reaction between various RhI olefin complexes, including COD, especially in dichloromethane solvent, led to complex mixtures of Rh(PMe3)n compounds in all cases. That these compounds are compounds of Rh is clearly seen in the Rh–P chemical coupling in the complicated 31P NMR spectra. Attempts at extracting a pure compound from the complex mixture with various solvents including dichloromethane, water, methanol and acetone did not yield clean materials. Following extraction, the solutions were allowed to sit in the open air for several days and, in the case of water and methanol, a few crystals suitable for X-ray crystallography were formed and used for the data collection described in this communication.
6. Refinement
Crystal data, data collection and structure . The hydrogens on the lattice water molecule in RhP3Cl3water were initially assigned based on residual electron density but were then restrained with DFIX and DANG instructions in SHELXL (Sheldrick, 2015) during refinement.
details are summarized in Table 7Supporting information
10.1107/S2056989015001516/pk2543sup1.cif
contains datablocks RhP3Cl3water, RhP3Cl3MeOH. DOI:Supporting information file. DOI: 10.1107/S2056989015001516/pk2543RhP3Cl3watersup4.mol
Supporting information file. DOI: 10.1107/S2056989015001516/pk2543RhP3Cl3MeOHsup5.mol
Structure factors: contains datablock RhP3Cl3MeOH. DOI: 10.1107/S2056989015001516/pk2543RhP3Cl3MeOHsup3.hkl
Phosphane complexes of noble metals, especially those of rhodium and iridium, have proven to be important in catalysis as well as in studying fundamental reactions at metal surfaces. Chloro compounds of rhodium and iridium with phosphane ligands provide important starting materials for other metal complexes of that family through replacement of the chlorine. For example, we have shown that (Me3P)3IrCl3 can be converted into (Me3P)3IrMe3 through reaction with methylmagnesiumchloride. This trimethyliridium compound can, in turn, be used to study organometallic reactions at the iridium center (Merola et al., 2013). Thus, the fundamental study of crystal structures of phosphane–chloro complexes of iridium and rhodium is important to help understand the structures, the bonding and the stereochemistry of this class of compounds. This paper adds to the body of knowledge of rhodium complexes that complement the already published structures of the analogous iridium compounds. It contributes to the information on crystal structures of L3MCl3 compounds, comparing the rhodium structures to the iridium structures as well as confirming the nature of solvate formation in both the iridium and rhodium structures.
The title complexes fac-trichloridotris(trimethylphosphane-κP)rhodium(III) monohydrate, RhP3Cl3water, and fac-trichloridotris(trimethylphosphane-κP)rhodium(III) methanol hemihydrate, Rh3PCl3MeOH, are isomorphous with their iridium counterparts (CCDC 896072, 896073; Merola et al., 2013). Isomorphism in rhodium and iridium complexes is not unusual, largely owing to the lanthanide contraction resulting in very similar radii for both second- and third-row transition elements (Cordero et al., 2008).
Fig. 1 is a thermal displacement ellipsoid rendering of compound RhP3Cl3water and Fig. 2 is a thermal displacement ellipsoid rendering of compound RhP3Cl3MeOH. For compounds RhP3Cl3water and RhP3Cl3MeOH reported here, the comparison with their iridium analogs can be found in Tables 1 and 2 which list the corresponding unit-cell parameters for the rhodium and iridium water solvates (Table 1) and the rhodium and iridium methanol solvate (Table 2). The iridium compounds show a very slight lengthening of the unit-cell dimensions compared to rhodium but they are clearly isomorphous overall. Table 3 lists the important bond distances for RhP3Cl3water and IrP3Cl3water and while Table 4 lists these for RhP3Cl3MeOH and IrP3Cl3MeOH. Bond-distance comparisons show little significant difference between rhodium and iridium analogues.
It is not surprising that fac-tris(trimethylphosphane)trichloridium(III) and -rhodium(III) complexes form lattice solvates since the shape of the individual molecules leads to packing with voids in the lattice. Thus, every structure we have determined with the iridium compounds, as well as the ones reported here, contains a solvent. In the case of the water solvate, Fig. 3 shows the packing diagram for RhP3Cl3water looking down the c axis. One can see that the packing involves alternating layers of rhodium molecules and water molecules. The water molecules show close, hydrogen-bonding interactions (Table 5) between the water and the chlorines on one layer of the rhodium compound as well as close C—H···O interactions between the phosphane methyl groups and the water oxygen. One should not make much of the hydrogen positions on the water since, although they were originally found in difference maps, the O—H bond distances and the H—O—H angle were restrained with DFIX and DANG commands (Sheldrick, 2015). Fig. 4 shows the packing diagram for RhP3Cl3MeOH looking down the c axis illustrating the O—H···Cl hydrogen bonding (Table 6) and the location of the methanol molecules in a channel in the crystal.
A search of the Cambridge Structural Database (Groom & Allen, 2014) surprisingly shows very few structurally characterized trichloridotrisphosphaneiridium or rhodium compounds. In the case of iridium, beside the structures we recently published (CCDC 896072–896076; Merola et al., 2013), there are only three other P3IrCl3 compounds in the database – the mer and fac isomers with P = phenyldimethylphosphane (refcodes CTPIRA01, CTPIRC: Marsh, 1997; Robertson & Tucker, 1981) and one entry where P3 is cis,cis-1,3,5-tris(diphenylphosphino)cyclohexane (refcode LEXFAV; Mayer et al., 1994). For rhodium, P3RhCl3 structurally characterized compounds are also rare with one mixed-ligand complex (two tri-n-butylphosphane ligands and one trimethylphosphite ligand; refcode CBPMRH; Allen et al., 1970), a complex with 3 hydroxymethylphosphane ligands (CCDC 189926; Raghuraman et al., 2002), a complex with the tripodal ligand, 1,1,1-tris(Dimethylphosphinomethyl)ethane (refcode NAHXID; Suzuki et al., 1996), a complex with the tridentate ligand, 1,5,9-tris(2-propyl)-1,5,9-triphosphacyclododecane (refcode NOLPIN; Edwards et al., 1997), a mer-tris-dimethylphenylphosphane compound (CCDC 247871; Parsons et al., 2004) and a mer-tris-diethylphenylphosphane compound (refcode TCPERH; Skapski & Stephens, 1973). Of those, the only directly comparable structures are the mer isomer complexes of rhodium and iridium with dimethylphenylphosphane ligands and those two are indeed isostructural with each other.
The rhodium complexes described herein could not be characterized spectroscopically as pure materials, but were isolated as crystals from complex mixtures. In contrast to the iridium complex [IrCOD(PMe3)3]Cl (COD = cyclooctadiene) (Frazier & Merola, 1992) which is the starting material for much of our iridium work, attempts to synthesize the analogous rhodium compound met with no success. Reaction between various RhI olefin complexes, including COD, especially in dichloromethane solvent, led to complex mixtures of Rh(PMe3)n compounds in all cases. That these compounds are compounds of Rh is clearly seen in the Rh—P chemical coupling in the complicated 31P NMR spectra. Attempts at extracting a pure compound from the complex mixture with various solvents including dichloromethane, water, methanol and acetone did not yield clean materials. Following extraction, the solutions were allowed to sit in the open air for several days and, in the case of water and methanol, a few crystals suitable for X-ray crystallography were formed and used for the data collection described in this communication.
Crystal data, data collection and structure
details are summarized in Table 7. The hydrogens on the lattice water molecule in RhP3Cl3water were initially assigned based on residual electron density but were then restrained with DFIX and DANG instructions in SHELXL (Sheldrick, 2015) during refinement.For both compounds, data collection: XSCANS (Siemens, 1996); cell
XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996). Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for RhP3Cl3water; SHELXS87 (Sheldrick, 2008) for RhP3Cl3MeOH. For both compounds, program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).Fig. 1. Displacement ellipsoid (??% probability level) rendering of the fac-trichloridotris(trimethylphosphane)rhodium–water compound, RhP3Cl3water. | |
Fig. 2. Displacement ellipsoid (??% probability level) rendering of the fac-trichloridotris(trimethylphosphane)rhodium–0.5(methanol) compound, RhP3Cl3MeOH. | |
Fig. 3. Packing diagram of the fac-trichloridotris(trimethylphosphane)rhodium–water compound, RhP3Cl3water, viewed down the c axis, showing the alternating layers of complex and water molecules. Hydrogen atoms except for water H atoms are omitted for clarity. | |
Fig. 4. Packing diagram of the fac-trichloridotris(trimethylphosphane)rhodium–0.5(methanol) compound, RhP3Cl3MeOH, viewed down the c axis, showing the methanol-containing channel in the structure. H atoms, except for water H atoms, a omitted for clarity. |
[RhCl3(C3H9P)3]·H2O | F(000) = 928 |
Mr = 455.49 | Dx = 1.657 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
a = 15.8650 (12) Å | Cell parameters from 35 reflections |
b = 9.0396 (3) Å | θ = 3–20° |
c = 14.8223 (18) Å | µ = 1.62 mm−1 |
β = 120.820 (7)° | T = 298 K |
V = 1825.5 (3) Å3 | Prism, clear colourless |
Z = 4 | 0.4 × 0.4 × 0.3 mm |
Siemens P4 diffractometer | 1763 reflections with I > 2σ(I) |
Radiation source: Sealed X-ray tube | Rint = 0.021 |
Graphite monochromator | θmax = 25.0°, θmin = 2.7° |
Wyckoff scans | h = −1→18 |
Absorption correction: ψ scan (North et al., 1968) | k = −1→10 |
Tmin = 0.762, Tmax = 0.974 | l = −17→15 |
2034 measured reflections | 3 standard reflections every 300 reflections |
1784 independent reflections | intensity decay: 0.0(2) |
Refinement on F2 | H atoms treated by a mixture of independent and constrained refinement |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0359P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.023 | (Δ/σ)max < 0.001 |
wR(F2) = 0.059 | Δρmax = 0.47 e Å−3 |
S = 1.08 | Δρmin = −0.60 e Å−3 |
1784 reflections | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
170 parameters | Extinction coefficient: 0.0052 (3) |
5 restraints | Absolute structure: Classical Flack (1983) method preferred over Parsons because s.u. lower. |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.06 (3) |
Hydrogen site location: mixed |
[RhCl3(C3H9P)3]·H2O | V = 1825.5 (3) Å3 |
Mr = 455.49 | Z = 4 |
Monoclinic, Cc | Mo Kα radiation |
a = 15.8650 (12) Å | µ = 1.62 mm−1 |
b = 9.0396 (3) Å | T = 298 K |
c = 14.8223 (18) Å | 0.4 × 0.4 × 0.3 mm |
β = 120.820 (7)° |
Siemens P4 diffractometer | 1763 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.021 |
Tmin = 0.762, Tmax = 0.974 | 3 standard reflections every 300 reflections |
2034 measured reflections | intensity decay: 0.0(2) |
1784 independent reflections |
R[F2 > 2σ(F2)] = 0.023 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.059 | Δρmax = 0.47 e Å−3 |
S = 1.08 | Δρmin = −0.60 e Å−3 |
1784 reflections | Absolute structure: Classical Flack (1983) method preferred over Parsons because s.u. lower. |
170 parameters | Absolute structure parameter: −0.06 (3) |
5 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Rh1 | 0.38961 (3) | 0.77430 (4) | 0.26210 (3) | 0.01905 (13) | |
Cl1 | 0.55310 (9) | 0.86978 (16) | 0.31510 (10) | 0.0352 (3) | |
Cl2 | 0.46887 (10) | 0.59591 (16) | 0.40575 (10) | 0.0377 (3) | |
Cl3 | 0.39164 (11) | 0.94682 (18) | 0.38953 (10) | 0.0416 (3) | |
P1 | 0.41363 (10) | 0.63338 (15) | 0.14978 (10) | 0.0255 (3) | |
P2 | 0.24900 (9) | 0.65676 (15) | 0.23097 (9) | 0.0246 (3) | |
P3 | 0.30855 (10) | 0.95935 (15) | 0.14271 (10) | 0.0283 (3) | |
C11 | 0.3120 (5) | 0.5348 (7) | 0.0413 (5) | 0.0426 (14) | |
H11A | 0.2644 | 0.6048 | −0.0062 | 0.064* | |
H11B | 0.2820 | 0.4703 | 0.0682 | 0.064* | |
H11C | 0.3362 | 0.4775 | 0.0048 | 0.064* | |
C12 | 0.4653 (6) | 0.7274 (7) | 0.0813 (6) | 0.0435 (16) | |
H12A | 0.5270 | 0.7710 | 0.1315 | 0.065* | |
H12B | 0.4210 | 0.8033 | 0.0372 | 0.065* | |
H12C | 0.4753 | 0.6576 | 0.0388 | 0.065* | |
C13 | 0.5027 (5) | 0.4886 (7) | 0.2167 (5) | 0.0454 (15) | |
H13A | 0.4804 | 0.4245 | 0.2518 | 0.068* | |
H13B | 0.5645 | 0.5318 | 0.2673 | 0.068* | |
H13C | 0.5107 | 0.4327 | 0.1665 | 0.068* | |
C21 | 0.2580 (5) | 0.4567 (7) | 0.2475 (5) | 0.0399 (14) | |
H21A | 0.3094 | 0.4328 | 0.3175 | 0.060* | |
H21B | 0.2725 | 0.4136 | 0.1978 | 0.060* | |
H21C | 0.1968 | 0.4182 | 0.2358 | 0.060* | |
C22 | 0.2117 (5) | 0.7170 (7) | 0.3217 (5) | 0.0380 (14) | |
H22A | 0.1904 | 0.8181 | 0.3073 | 0.057* | |
H22B | 0.2662 | 0.7088 | 0.3924 | 0.057* | |
H22C | 0.1588 | 0.6559 | 0.3137 | 0.057* | |
C23 | 0.1367 (4) | 0.6719 (8) | 0.1054 (4) | 0.0415 (14) | |
H23A | 0.1448 | 0.6243 | 0.0524 | 0.062* | |
H23B | 0.1212 | 0.7744 | 0.0878 | 0.062* | |
H23C | 0.0843 | 0.6250 | 0.1091 | 0.062* | |
C31 | 0.3893 (5) | 1.1078 (7) | 0.1529 (5) | 0.0521 (17) | |
H31A | 0.4393 | 1.0695 | 0.1411 | 0.078* | |
H31B | 0.4193 | 1.1509 | 0.2217 | 0.078* | |
H31C | 0.3522 | 1.1820 | 0.1011 | 0.078* | |
C32 | 0.2160 (5) | 1.0542 (7) | 0.1596 (6) | 0.0531 (17) | |
H32A | 0.2457 | 1.0911 | 0.2302 | 0.080* | |
H32B | 0.1645 | 0.9862 | 0.1466 | 0.080* | |
H32C | 0.1892 | 1.1352 | 0.1111 | 0.080* | |
C33 | 0.2405 (4) | 0.9229 (7) | 0.0029 (4) | 0.0403 (13) | |
H33A | 0.1990 | 0.8382 | −0.0110 | 0.060* | |
H33B | 0.2854 | 0.9038 | −0.0209 | 0.060* | |
H33C | 0.2008 | 1.0073 | −0.0335 | 0.060* | |
O1 | 0.5879 (6) | 1.1825 (10) | 0.4533 (7) | 0.102 (3) | |
H1A | 0.542 (2) | 1.263 (3) | 0.418 (7) | 0.123* | |
H1B | 0.546 (2) | 1.096 (2) | 0.435 (7) | 0.123* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Rh1 | 0.01842 (18) | 0.02103 (18) | 0.01697 (18) | −0.00103 (18) | 0.00854 (13) | −0.00138 (16) |
Cl1 | 0.0244 (6) | 0.0419 (7) | 0.0363 (6) | −0.0104 (5) | 0.0135 (5) | −0.0040 (5) |
Cl2 | 0.0330 (7) | 0.0425 (7) | 0.0269 (6) | −0.0004 (6) | 0.0076 (5) | 0.0103 (6) |
Cl3 | 0.0456 (8) | 0.0473 (8) | 0.0356 (7) | −0.0046 (7) | 0.0235 (6) | −0.0184 (6) |
P1 | 0.0274 (6) | 0.0260 (6) | 0.0259 (6) | 0.0006 (5) | 0.0158 (5) | −0.0042 (5) |
P2 | 0.0209 (6) | 0.0295 (7) | 0.0235 (6) | −0.0014 (5) | 0.0115 (5) | 0.0028 (5) |
P3 | 0.0306 (6) | 0.0232 (6) | 0.0305 (6) | 0.0020 (5) | 0.0153 (5) | 0.0045 (5) |
C11 | 0.046 (3) | 0.045 (3) | 0.039 (3) | −0.015 (3) | 0.024 (3) | −0.024 (3) |
C12 | 0.052 (4) | 0.048 (4) | 0.048 (4) | 0.001 (3) | 0.038 (4) | 0.003 (3) |
C13 | 0.046 (3) | 0.039 (3) | 0.049 (4) | 0.018 (3) | 0.023 (3) | 0.002 (3) |
C21 | 0.042 (3) | 0.031 (3) | 0.048 (3) | −0.008 (3) | 0.024 (3) | 0.002 (3) |
C22 | 0.043 (4) | 0.042 (3) | 0.046 (3) | −0.001 (3) | 0.035 (3) | 0.002 (2) |
C23 | 0.023 (3) | 0.057 (4) | 0.034 (3) | −0.008 (3) | 0.008 (2) | 0.011 (3) |
C31 | 0.053 (4) | 0.037 (3) | 0.053 (4) | −0.012 (3) | 0.018 (3) | 0.007 (3) |
C32 | 0.062 (4) | 0.045 (3) | 0.059 (4) | 0.027 (3) | 0.036 (4) | 0.010 (3) |
C33 | 0.038 (3) | 0.043 (3) | 0.035 (3) | 0.000 (3) | 0.015 (2) | 0.007 (3) |
O1 | 0.092 (5) | 0.123 (6) | 0.113 (6) | −0.030 (5) | 0.067 (5) | −0.048 (5) |
Rh1—Cl1 | 2.4499 (13) | C13—H13B | 0.9600 |
Rh1—Cl2 | 2.4437 (13) | C13—H13C | 0.9600 |
Rh1—Cl3 | 2.4369 (13) | C21—H21A | 0.9600 |
Rh1—P1 | 2.2781 (13) | C21—H21B | 0.9600 |
Rh1—P2 | 2.2942 (13) | C21—H21C | 0.9600 |
Rh1—P3 | 2.2917 (13) | C22—H22A | 0.9600 |
P1—C11 | 1.822 (6) | C22—H22B | 0.9600 |
P1—C12 | 1.810 (6) | C22—H22C | 0.9600 |
P1—C13 | 1.805 (6) | C23—H23A | 0.9600 |
P2—C21 | 1.820 (6) | C23—H23B | 0.9600 |
P2—C22 | 1.809 (6) | C23—H23C | 0.9600 |
P2—C23 | 1.806 (6) | C31—H31A | 0.9600 |
P3—C31 | 1.808 (6) | C31—H31B | 0.9600 |
P3—C32 | 1.825 (6) | C31—H31C | 0.9600 |
P3—C33 | 1.810 (6) | C32—H32A | 0.9600 |
C11—H11A | 0.9600 | C32—H32B | 0.9600 |
C11—H11B | 0.9600 | C32—H32C | 0.9600 |
C11—H11C | 0.9600 | C33—H33A | 0.9600 |
C12—H12A | 0.9600 | C33—H33B | 0.9600 |
C12—H12B | 0.9600 | C33—H33C | 0.9600 |
C12—H12C | 0.9600 | O1—H1A | 0.9700 (11) |
C13—H13A | 0.9600 | O1—H1B | 0.9700 (11) |
Cl2—Rh1—Cl1 | 88.02 (5) | P1—C13—H13A | 109.5 |
Cl3—Rh1—Cl1 | 86.25 (5) | P1—C13—H13B | 109.5 |
Cl3—Rh1—Cl2 | 87.16 (5) | P1—C13—H13C | 109.5 |
P1—Rh1—Cl1 | 83.42 (5) | H13A—C13—H13B | 109.5 |
P1—Rh1—Cl2 | 93.65 (5) | H13A—C13—H13C | 109.5 |
P1—Rh1—Cl3 | 169.60 (5) | H13B—C13—H13C | 109.5 |
P1—Rh1—P2 | 95.94 (5) | P2—C21—H21A | 109.5 |
P1—Rh1—P3 | 94.68 (5) | P2—C21—H21B | 109.5 |
P2—Rh1—Cl1 | 171.22 (5) | P2—C21—H21C | 109.5 |
P2—Rh1—Cl2 | 83.28 (5) | H21A—C21—H21B | 109.5 |
P2—Rh1—Cl3 | 94.45 (5) | H21A—C21—H21C | 109.5 |
P3—Rh1—Cl1 | 94.22 (5) | H21B—C21—H21C | 109.5 |
P3—Rh1—Cl2 | 171.57 (5) | P2—C22—H22A | 109.5 |
P3—Rh1—Cl3 | 84.88 (5) | P2—C22—H22B | 109.5 |
P3—Rh1—P2 | 94.57 (5) | P2—C22—H22C | 109.5 |
C11—P1—Rh1 | 121.0 (2) | H22A—C22—H22B | 109.5 |
C12—P1—Rh1 | 116.1 (2) | H22A—C22—H22C | 109.5 |
C12—P1—C11 | 100.6 (3) | H22B—C22—H22C | 109.5 |
C13—P1—Rh1 | 112.4 (2) | P2—C23—H23A | 109.5 |
C13—P1—C11 | 102.7 (3) | P2—C23—H23B | 109.5 |
C13—P1—C12 | 101.3 (3) | P2—C23—H23C | 109.5 |
C21—P2—Rh1 | 115.6 (2) | H23A—C23—H23B | 109.5 |
C22—P2—Rh1 | 111.5 (2) | H23A—C23—H23C | 109.5 |
C22—P2—C21 | 103.4 (3) | H23B—C23—H23C | 109.5 |
C23—P2—Rh1 | 121.1 (2) | P3—C31—H31A | 109.5 |
C23—P2—C21 | 100.5 (3) | P3—C31—H31B | 109.5 |
C23—P2—C22 | 102.6 (3) | P3—C31—H31C | 109.5 |
C31—P3—Rh1 | 112.6 (2) | H31A—C31—H31B | 109.5 |
C31—P3—C32 | 103.0 (4) | H31A—C31—H31C | 109.5 |
C31—P3—C33 | 102.3 (3) | H31B—C31—H31C | 109.5 |
C32—P3—Rh1 | 114.2 (2) | P3—C32—H32A | 109.5 |
C33—P3—Rh1 | 121.4 (2) | P3—C32—H32B | 109.5 |
C33—P3—C32 | 101.1 (3) | P3—C32—H32C | 109.5 |
P1—C11—H11A | 109.5 | H32A—C32—H32B | 109.5 |
P1—C11—H11B | 109.5 | H32A—C32—H32C | 109.5 |
P1—C11—H11C | 109.5 | H32B—C32—H32C | 109.5 |
H11A—C11—H11B | 109.5 | P3—C33—H33A | 109.5 |
H11A—C11—H11C | 109.5 | P3—C33—H33B | 109.5 |
H11B—C11—H11C | 109.5 | P3—C33—H33C | 109.5 |
P1—C12—H12A | 109.5 | H33A—C33—H33B | 109.5 |
P1—C12—H12B | 109.5 | H33A—C33—H33C | 109.5 |
P1—C12—H12C | 109.5 | H33B—C33—H33C | 109.5 |
H12A—C12—H12B | 109.5 | H1A—O1—H1B | 104.12 (17) |
H12A—C12—H12C | 109.5 | H1B—O1—H1A | 104.12 (17) |
H12B—C12—H12C | 109.5 |
[RhCl3(C3H9P)3]·0.5CH4O | F(000) = 1848 |
Mr = 453.50 | Dx = 1.614 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 16.0993 (16) Å | Cell parameters from 50 reflections |
b = 15.5910 (9) Å | θ = 3–20° |
c = 16.4152 (14) Å | µ = 1.59 mm−1 |
β = 115.084 (13)° | T = 298 K |
V = 3731.7 (5) Å3 | Prism, clear light yellow |
Z = 8 | 0.6 × 0.6 × 0.3 mm |
Siemens P4 diffractometer | 4171 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.034 |
Graphite monochromator | θmax = 22.5°, θmin = 1.9° |
sea;ed X–ray tube scans | h = −1→17 |
Absorption correction: ψ scan (North et al., 1968) | k = −1→16 |
Tmin = 0.807, Tmax = 0.915 | l = −17→16 |
5957 measured reflections | 3 standard reflections every 200 reflections |
4858 independent reflections | intensity decay: 0.0(2) |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters constrained |
wR(F2) = 0.071 | w = 1/[σ2(Fo2) + (0.0286P)2 + 4.1793P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.003 |
4858 reflections | Δρmax = 1.03 e Å−3 |
328 parameters | Δρmin = −0.41 e Å−3 |
0 restraints | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00519 (17) |
[RhCl3(C3H9P)3]·0.5CH4O | V = 3731.7 (5) Å3 |
Mr = 453.50 | Z = 8 |
Monoclinic, P21/n | Mo Kα radiation |
a = 16.0993 (16) Å | µ = 1.59 mm−1 |
b = 15.5910 (9) Å | T = 298 K |
c = 16.4152 (14) Å | 0.6 × 0.6 × 0.3 mm |
β = 115.084 (13)° |
Siemens P4 diffractometer | 4171 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.034 |
Tmin = 0.807, Tmax = 0.915 | θmax = 22.5° |
5957 measured reflections | 3 standard reflections every 200 reflections |
4858 independent reflections | intensity decay: 0.0(2) |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.071 | H-atom parameters constrained |
S = 1.08 | Δρmax = 1.03 e Å−3 |
4858 reflections | Δρmin = −0.41 e Å−3 |
328 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Rh1 | 0.76635 (2) | 0.66132 (2) | 0.08786 (2) | 0.02237 (12) | |
Cl1 | 0.82866 (8) | 0.79954 (7) | 0.07477 (9) | 0.0435 (3) | |
Cl2 | 0.65651 (8) | 0.67764 (8) | −0.06932 (7) | 0.0445 (3) | |
Cl3 | 0.87487 (8) | 0.60045 (8) | 0.03606 (8) | 0.0449 (3) | |
P1 | 0.72796 (9) | 0.52126 (7) | 0.09374 (8) | 0.0361 (3) | |
P2 | 0.87465 (8) | 0.66934 (7) | 0.23406 (8) | 0.0308 (3) | |
P3 | 0.64873 (8) | 0.71971 (7) | 0.11404 (8) | 0.0314 (3) | |
C11 | 0.8230 (4) | 0.4462 (3) | 0.1382 (4) | 0.0583 (15) | |
H11A | 0.8605 | 0.4524 | 0.1061 | 0.087* | |
H11B | 0.7996 | 0.3887 | 0.1311 | 0.087* | |
H11C | 0.8590 | 0.4577 | 0.2009 | 0.087* | |
C12 | 0.6631 (5) | 0.4911 (4) | 0.1567 (5) | 0.076 (2) | |
H12A | 0.6949 | 0.5102 | 0.2178 | 0.114* | |
H12B | 0.6565 | 0.4298 | 0.1557 | 0.114* | |
H12C | 0.6035 | 0.5172 | 0.1299 | 0.114* | |
C13 | 0.6596 (4) | 0.4779 (3) | −0.0171 (4) | 0.0614 (16) | |
H13A | 0.6011 | 0.5060 | −0.0426 | 0.092* | |
H13B | 0.6509 | 0.4175 | −0.0125 | 0.092* | |
H13C | 0.6907 | 0.4872 | −0.0550 | 0.092* | |
C21 | 0.8719 (4) | 0.5969 (4) | 0.3203 (3) | 0.0588 (15) | |
H21A | 0.8132 | 0.6008 | 0.3222 | 0.088* | |
H21B | 0.9191 | 0.6127 | 0.3778 | 0.088* | |
H21C | 0.8818 | 0.5391 | 0.3063 | 0.088* | |
C22 | 0.9893 (3) | 0.6550 (4) | 0.2430 (4) | 0.0567 (15) | |
H22A | 0.9979 | 0.5962 | 0.2310 | 0.085* | |
H22B | 1.0329 | 0.6699 | 0.3027 | 0.085* | |
H22C | 0.9983 | 0.6914 | 0.2002 | 0.085* | |
C23 | 0.8810 (4) | 0.7718 (3) | 0.2882 (4) | 0.0536 (14) | |
H23A | 0.8582 | 0.8160 | 0.2434 | 0.080* | |
H23B | 0.9436 | 0.7839 | 0.3282 | 0.080* | |
H23C | 0.8445 | 0.7699 | 0.3217 | 0.080* | |
C31 | 0.5349 (3) | 0.6773 (4) | 0.0457 (4) | 0.0572 (15) | |
H31A | 0.5217 | 0.6830 | −0.0169 | 0.086* | |
H31B | 0.4902 | 0.7086 | 0.0580 | 0.086* | |
H31C | 0.5327 | 0.6178 | 0.0597 | 0.086* | |
C32 | 0.6344 (4) | 0.8316 (3) | 0.0863 (5) | 0.071 (2) | |
H32A | 0.6892 | 0.8621 | 0.1238 | 0.107* | |
H32B | 0.5835 | 0.8537 | 0.0958 | 0.107* | |
H32C | 0.6228 | 0.8391 | 0.0243 | 0.107* | |
C33 | 0.6502 (4) | 0.7160 (4) | 0.2248 (3) | 0.0554 (15) | |
H33A | 0.6542 | 0.6574 | 0.2442 | 0.083* | |
H33B | 0.5950 | 0.7413 | 0.2227 | 0.083* | |
H33C | 0.7023 | 0.7473 | 0.2664 | 0.083* | |
Rh2 | 0.29937 (2) | 0.83004 (2) | 0.11738 (2) | 0.02531 (12) | |
Cl4 | 0.44698 (8) | 0.89262 (9) | 0.14246 (9) | 0.0497 (3) | |
Cl5 | 0.29238 (9) | 0.77329 (8) | −0.02441 (8) | 0.0480 (3) | |
Cl6 | 0.38403 (10) | 0.69898 (8) | 0.18403 (9) | 0.0534 (4) | |
P4 | 0.15796 (9) | 0.76893 (8) | 0.07421 (9) | 0.0412 (3) | |
P5 | 0.31781 (8) | 0.86191 (7) | 0.26057 (7) | 0.0309 (3) | |
P6 | 0.24255 (8) | 0.96155 (7) | 0.05702 (7) | 0.0277 (3) | |
C41 | 0.0844 (4) | 0.7767 (4) | −0.0452 (4) | 0.0686 (17) | |
H41A | 0.0786 | 0.8357 | −0.0634 | 0.103* | |
H41B | 0.0250 | 0.7539 | −0.0571 | 0.103* | |
H41C | 0.1108 | 0.7445 | −0.0782 | 0.103* | |
C42 | 0.0818 (4) | 0.8051 (4) | 0.1233 (4) | 0.0610 (16) | |
H42A | 0.1085 | 0.7920 | 0.1864 | 0.092* | |
H42B | 0.0237 | 0.7766 | 0.0943 | 0.092* | |
H42C | 0.0729 | 0.8660 | 0.1152 | 0.092* | |
C43 | 0.1622 (5) | 0.6541 (3) | 0.0936 (5) | 0.0735 (19) | |
H43A | 0.1949 | 0.6269 | 0.0635 | 0.110* | |
H43B | 0.1010 | 0.6317 | 0.0706 | 0.110* | |
H43C | 0.1931 | 0.6429 | 0.1570 | 0.110* | |
C51 | 0.2460 (4) | 0.9416 (3) | 0.2801 (3) | 0.0477 (13) | |
H51A | 0.2562 | 0.9965 | 0.2596 | 0.072* | |
H51B | 0.2612 | 0.9444 | 0.3432 | 0.072* | |
H51C | 0.1828 | 0.9258 | 0.2477 | 0.072* | |
C52 | 0.4313 (3) | 0.9011 (4) | 0.3307 (3) | 0.0522 (14) | |
H52A | 0.4761 | 0.8607 | 0.3302 | 0.078* | |
H52B | 0.4376 | 0.9082 | 0.3911 | 0.078* | |
H52C | 0.4406 | 0.9553 | 0.3080 | 0.078* | |
C53 | 0.3059 (4) | 0.7705 (3) | 0.3231 (3) | 0.0480 (13) | |
H53A | 0.2448 | 0.7482 | 0.2937 | 0.072* | |
H53B | 0.3177 | 0.7882 | 0.3830 | 0.072* | |
H53C | 0.3491 | 0.7269 | 0.3256 | 0.072* | |
C61 | 0.2455 (4) | 0.9750 (3) | −0.0508 (3) | 0.0470 (13) | |
H61A | 0.3062 | 0.9631 | −0.0452 | 0.071* | |
H61B | 0.2292 | 1.0329 | −0.0711 | 0.071* | |
H61C | 0.2028 | 0.9362 | −0.0934 | 0.071* | |
C62 | 0.3089 (4) | 1.0522 (3) | 0.1198 (3) | 0.0516 (14) | |
H62A | 0.3124 | 1.0511 | 0.1797 | 0.077* | |
H62B | 0.2798 | 1.1045 | 0.0905 | 0.077* | |
H62C | 0.3696 | 1.0493 | 0.1226 | 0.077* | |
C63 | 0.1272 (3) | 0.9971 (3) | 0.0347 (3) | 0.0425 (12) | |
H63A | 0.0832 | 0.9593 | −0.0082 | 0.064* | |
H63B | 0.1180 | 1.0543 | 0.0108 | 0.064* | |
H63C | 0.1196 | 0.9965 | 0.0896 | 0.064* | |
O1 | 0.0306 (5) | 1.0413 (3) | 0.1833 (4) | 0.1076 (18) | |
H1 | 0.0327 | 1.0913 | 0.1996 | 0.161* | |
C2 | −0.0030 (4) | 0.9903 (4) | 0.2311 (4) | 0.0705 (17) | |
H2A | −0.0355 | 0.9425 | 0.1946 | 0.106* | |
H2B | −0.0439 | 1.0232 | 0.2476 | 0.106* | |
H2C | 0.0471 | 0.9696 | 0.2845 | 0.106* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Rh1 | 0.0230 (2) | 0.02200 (19) | 0.02360 (19) | 0.00153 (14) | 0.01137 (15) | 0.00271 (14) |
Cl1 | 0.0405 (7) | 0.0301 (6) | 0.0631 (8) | −0.0004 (5) | 0.0251 (6) | 0.0148 (6) |
Cl2 | 0.0390 (7) | 0.0641 (8) | 0.0261 (6) | 0.0069 (6) | 0.0096 (5) | 0.0060 (5) |
Cl3 | 0.0452 (7) | 0.0563 (8) | 0.0423 (7) | 0.0173 (6) | 0.0273 (6) | 0.0041 (6) |
P1 | 0.0411 (7) | 0.0244 (6) | 0.0434 (7) | −0.0039 (5) | 0.0186 (6) | −0.0009 (5) |
P2 | 0.0303 (6) | 0.0311 (6) | 0.0282 (6) | 0.0023 (5) | 0.0095 (5) | 0.0005 (5) |
P3 | 0.0265 (6) | 0.0341 (6) | 0.0373 (7) | 0.0029 (5) | 0.0172 (5) | 0.0018 (5) |
C11 | 0.065 (4) | 0.027 (3) | 0.068 (4) | 0.011 (3) | 0.015 (3) | 0.004 (3) |
C12 | 0.102 (5) | 0.042 (3) | 0.114 (6) | −0.013 (3) | 0.076 (5) | 0.013 (3) |
C13 | 0.062 (4) | 0.043 (3) | 0.064 (4) | −0.009 (3) | 0.012 (3) | −0.015 (3) |
C21 | 0.078 (4) | 0.060 (4) | 0.036 (3) | 0.002 (3) | 0.022 (3) | 0.009 (3) |
C22 | 0.025 (3) | 0.081 (4) | 0.050 (3) | 0.010 (3) | 0.002 (2) | 0.003 (3) |
C23 | 0.057 (3) | 0.044 (3) | 0.046 (3) | −0.009 (3) | 0.008 (3) | −0.018 (3) |
C31 | 0.029 (3) | 0.086 (4) | 0.054 (3) | −0.004 (3) | 0.016 (3) | −0.004 (3) |
C32 | 0.069 (4) | 0.042 (3) | 0.131 (6) | 0.026 (3) | 0.070 (4) | 0.022 (3) |
C33 | 0.049 (3) | 0.081 (4) | 0.043 (3) | 0.007 (3) | 0.027 (3) | −0.010 (3) |
Rh2 | 0.0255 (2) | 0.0244 (2) | 0.0276 (2) | 0.00468 (14) | 0.01264 (16) | 0.00091 (14) |
Cl4 | 0.0295 (6) | 0.0641 (8) | 0.0616 (8) | 0.0000 (6) | 0.0253 (6) | 0.0014 (7) |
Cl5 | 0.0720 (9) | 0.0401 (7) | 0.0366 (7) | 0.0102 (6) | 0.0275 (6) | −0.0030 (5) |
Cl6 | 0.0707 (9) | 0.0416 (7) | 0.0518 (8) | 0.0308 (7) | 0.0297 (7) | 0.0140 (6) |
P4 | 0.0372 (7) | 0.0310 (7) | 0.0511 (8) | −0.0076 (6) | 0.0145 (6) | −0.0006 (6) |
P5 | 0.0313 (7) | 0.0342 (7) | 0.0281 (6) | 0.0046 (5) | 0.0134 (5) | 0.0024 (5) |
P6 | 0.0283 (6) | 0.0244 (6) | 0.0297 (6) | 0.0011 (5) | 0.0118 (5) | 0.0003 (5) |
C41 | 0.050 (3) | 0.068 (4) | 0.062 (4) | −0.019 (3) | −0.001 (3) | −0.013 (3) |
C42 | 0.040 (3) | 0.071 (4) | 0.079 (4) | −0.009 (3) | 0.031 (3) | 0.004 (3) |
C43 | 0.079 (5) | 0.033 (3) | 0.101 (5) | −0.013 (3) | 0.032 (4) | 0.002 (3) |
C51 | 0.061 (3) | 0.047 (3) | 0.043 (3) | 0.016 (3) | 0.030 (3) | 0.000 (2) |
C52 | 0.045 (3) | 0.066 (4) | 0.033 (3) | −0.003 (3) | 0.004 (2) | 0.002 (3) |
C53 | 0.063 (3) | 0.044 (3) | 0.045 (3) | 0.005 (3) | 0.031 (3) | 0.013 (2) |
C61 | 0.064 (3) | 0.039 (3) | 0.047 (3) | 0.011 (3) | 0.032 (3) | 0.009 (2) |
C62 | 0.058 (3) | 0.030 (3) | 0.053 (3) | −0.013 (2) | 0.012 (3) | −0.006 (2) |
C63 | 0.035 (3) | 0.042 (3) | 0.050 (3) | 0.011 (2) | 0.017 (2) | 0.006 (2) |
O1 | 0.145 (5) | 0.095 (4) | 0.077 (3) | −0.022 (4) | 0.040 (3) | −0.020 (3) |
C2 | 0.063 (4) | 0.084 (5) | 0.063 (4) | −0.003 (4) | 0.026 (3) | 0.001 (4) |
Rh1—Cl1 | 2.4248 (11) | Rh2—P4 | 2.2857 (13) |
Rh1—Cl2 | 2.4455 (12) | Rh2—P5 | 2.2952 (12) |
Rh1—Cl3 | 2.4363 (12) | Rh2—P6 | 2.2922 (11) |
Rh1—P1 | 2.2825 (12) | P4—C41 | 1.814 (6) |
Rh1—P2 | 2.2951 (12) | P4—C42 | 1.819 (5) |
Rh1—P3 | 2.2998 (12) | P4—C43 | 1.815 (5) |
P1—C11 | 1.816 (5) | P5—C51 | 1.815 (5) |
P1—C12 | 1.816 (5) | P5—C52 | 1.804 (5) |
P1—C13 | 1.811 (5) | P5—C53 | 1.812 (5) |
P2—C21 | 1.827 (5) | P6—C61 | 1.802 (5) |
P2—C22 | 1.803 (5) | P6—C62 | 1.808 (5) |
P2—C23 | 1.810 (5) | P6—C63 | 1.820 (4) |
P3—C31 | 1.820 (5) | C41—H41A | 0.9600 |
P3—C32 | 1.793 (5) | C41—H41B | 0.9600 |
P3—C33 | 1.810 (5) | C41—H41C | 0.9600 |
C11—H11A | 0.9600 | C42—H42A | 0.9600 |
C11—H11B | 0.9600 | C42—H42B | 0.9600 |
C11—H11C | 0.9600 | C42—H42C | 0.9600 |
C12—H12A | 0.9600 | C43—H43A | 0.9600 |
C12—H12B | 0.9600 | C43—H43B | 0.9600 |
C12—H12C | 0.9600 | C43—H43C | 0.9600 |
C13—H13A | 0.9600 | C51—H51A | 0.9600 |
C13—H13B | 0.9600 | C51—H51B | 0.9600 |
C13—H13C | 0.9600 | C51—H51C | 0.9600 |
C21—H21A | 0.9600 | C52—H52A | 0.9600 |
C21—H21B | 0.9600 | C52—H52B | 0.9600 |
C21—H21C | 0.9600 | C52—H52C | 0.9600 |
C22—H22A | 0.9600 | C53—H53A | 0.9600 |
C22—H22B | 0.9600 | C53—H53B | 0.9600 |
C22—H22C | 0.9600 | C53—H53C | 0.9600 |
C23—H23A | 0.9600 | C61—H61A | 0.9600 |
C23—H23B | 0.9600 | C61—H61B | 0.9600 |
C23—H23C | 0.9600 | C61—H61C | 0.9600 |
C31—H31A | 0.9600 | C62—H62A | 0.9600 |
C31—H31B | 0.9600 | C62—H62B | 0.9600 |
C31—H31C | 0.9600 | C62—H62C | 0.9600 |
C32—H32A | 0.9600 | C63—H63A | 0.9600 |
C32—H32B | 0.9600 | C63—H63B | 0.9600 |
C32—H32C | 0.9600 | C63—H63C | 0.9600 |
C33—H33A | 0.9600 | O1—H1 | 0.8200 |
C33—H33B | 0.9600 | O1—C2 | 1.379 (7) |
C33—H33C | 0.9600 | C2—H2A | 0.9600 |
Rh2—Cl4 | 2.4371 (12) | C2—H2B | 0.9600 |
Rh2—Cl5 | 2.4477 (12) | C2—H2C | 0.9600 |
Rh2—Cl6 | 2.4424 (12) | ||
Cl1—Rh1—Cl2 | 87.44 (4) | P4—Rh2—Cl5 | 85.19 (5) |
Cl1—Rh1—Cl3 | 86.01 (4) | P4—Rh2—Cl6 | 94.79 (5) |
Cl3—Rh1—Cl2 | 88.69 (4) | P4—Rh2—P5 | 95.00 (5) |
P1—Rh1—Cl1 | 169.61 (4) | P4—Rh2—P6 | 94.38 (4) |
P1—Rh1—Cl2 | 93.24 (5) | P5—Rh2—Cl4 | 92.68 (5) |
P1—Rh1—Cl3 | 83.64 (5) | P5—Rh2—Cl5 | 170.38 (4) |
P1—Rh1—P2 | 96.15 (4) | P5—Rh2—Cl6 | 85.24 (4) |
P1—Rh1—P3 | 96.41 (4) | P6—Rh2—Cl4 | 84.07 (4) |
P2—Rh1—Cl1 | 83.39 (4) | P6—Rh2—Cl5 | 93.63 (4) |
P2—Rh1—Cl2 | 170.60 (4) | P6—Rh2—Cl6 | 170.61 (5) |
P2—Rh1—Cl3 | 92.69 (4) | P6—Rh2—P5 | 95.95 (4) |
P2—Rh1—P3 | 95.95 (4) | C41—P4—Rh2 | 114.5 (2) |
P3—Rh1—Cl1 | 93.96 (4) | C41—P4—C42 | 101.8 (3) |
P3—Rh1—Cl2 | 82.62 (4) | C41—P4—C43 | 102.4 (3) |
P3—Rh1—Cl3 | 171.30 (4) | C42—P4—Rh2 | 120.21 (19) |
C11—P1—Rh1 | 115.90 (18) | C43—P4—Rh2 | 113.5 (2) |
C11—P1—C12 | 101.2 (3) | C43—P4—C42 | 102.2 (3) |
C12—P1—Rh1 | 120.2 (2) | C51—P5—Rh2 | 120.87 (17) |
C13—P1—Rh1 | 112.00 (19) | C52—P5—Rh2 | 112.52 (18) |
C13—P1—C11 | 102.3 (3) | C52—P5—C51 | 101.8 (3) |
C13—P1—C12 | 103.0 (3) | C52—P5—C53 | 103.1 (2) |
C21—P2—Rh1 | 121.30 (19) | C53—P5—Rh2 | 114.25 (18) |
C22—P2—Rh1 | 112.11 (18) | C53—P5—C51 | 102.1 (2) |
C22—P2—C21 | 102.8 (3) | C61—P6—Rh2 | 110.90 (16) |
C22—P2—C23 | 103.1 (3) | C61—P6—C62 | 102.3 (2) |
C23—P2—Rh1 | 114.92 (18) | C61—P6—C63 | 102.5 (2) |
C23—P2—C21 | 100.4 (3) | C62—P6—Rh2 | 114.98 (17) |
C31—P3—Rh1 | 115.75 (18) | C62—P6—C63 | 100.5 (2) |
C32—P3—Rh1 | 111.43 (18) | C63—P6—Rh2 | 123.06 (16) |
C32—P3—C31 | 102.1 (3) | P4—C41—H41A | 109.5 |
C32—P3—C33 | 103.4 (3) | P4—C41—H41B | 109.5 |
C33—P3—Rh1 | 120.93 (18) | P4—C41—H41C | 109.5 |
C33—P3—C31 | 100.9 (3) | H41A—C41—H41B | 109.5 |
P1—C11—H11A | 109.5 | H41A—C41—H41C | 109.5 |
P1—C11—H11B | 109.5 | H41B—C41—H41C | 109.5 |
P1—C11—H11C | 109.5 | P4—C42—H42A | 109.5 |
H11A—C11—H11B | 109.5 | P4—C42—H42B | 109.5 |
H11A—C11—H11C | 109.5 | P4—C42—H42C | 109.5 |
H11B—C11—H11C | 109.5 | H42A—C42—H42B | 109.5 |
P1—C12—H12A | 109.5 | H42A—C42—H42C | 109.5 |
P1—C12—H12B | 109.5 | H42B—C42—H42C | 109.5 |
P1—C12—H12C | 109.5 | P4—C43—H43A | 109.5 |
H12A—C12—H12B | 109.5 | P4—C43—H43B | 109.5 |
H12A—C12—H12C | 109.5 | P4—C43—H43C | 109.5 |
H12B—C12—H12C | 109.5 | H43A—C43—H43B | 109.5 |
P1—C13—H13A | 109.5 | H43A—C43—H43C | 109.5 |
P1—C13—H13B | 109.5 | H43B—C43—H43C | 109.5 |
P1—C13—H13C | 109.5 | P5—C51—H51A | 109.5 |
H13A—C13—H13B | 109.5 | P5—C51—H51B | 109.5 |
H13A—C13—H13C | 109.5 | P5—C51—H51C | 109.5 |
H13B—C13—H13C | 109.5 | H51A—C51—H51B | 109.5 |
P2—C21—H21A | 109.5 | H51A—C51—H51C | 109.5 |
P2—C21—H21B | 109.5 | H51B—C51—H51C | 109.5 |
P2—C21—H21C | 109.5 | P5—C52—H52A | 109.5 |
H21A—C21—H21B | 109.5 | P5—C52—H52B | 109.5 |
H21A—C21—H21C | 109.5 | P5—C52—H52C | 109.5 |
H21B—C21—H21C | 109.5 | H52A—C52—H52B | 109.5 |
P2—C22—H22A | 109.5 | H52A—C52—H52C | 109.5 |
P2—C22—H22B | 109.5 | H52B—C52—H52C | 109.5 |
P2—C22—H22C | 109.5 | P5—C53—H53A | 109.5 |
H22A—C22—H22B | 109.5 | P5—C53—H53B | 109.5 |
H22A—C22—H22C | 109.5 | P5—C53—H53C | 109.5 |
H22B—C22—H22C | 109.5 | H53A—C53—H53B | 109.5 |
P2—C23—H23A | 109.5 | H53A—C53—H53C | 109.5 |
P2—C23—H23B | 109.5 | H53B—C53—H53C | 109.5 |
P2—C23—H23C | 109.5 | P6—C61—H61A | 109.5 |
H23A—C23—H23B | 109.5 | P6—C61—H61B | 109.5 |
H23A—C23—H23C | 109.5 | P6—C61—H61C | 109.5 |
H23B—C23—H23C | 109.5 | H61A—C61—H61B | 109.5 |
P3—C31—H31A | 109.5 | H61A—C61—H61C | 109.5 |
P3—C31—H31B | 109.5 | H61B—C61—H61C | 109.5 |
P3—C31—H31C | 109.5 | P6—C62—H62A | 109.5 |
H31A—C31—H31B | 109.5 | P6—C62—H62B | 109.5 |
H31A—C31—H31C | 109.5 | P6—C62—H62C | 109.5 |
H31B—C31—H31C | 109.5 | H62A—C62—H62B | 109.5 |
P3—C32—H32A | 109.5 | H62A—C62—H62C | 109.5 |
P3—C32—H32B | 109.5 | H62B—C62—H62C | 109.5 |
P3—C32—H32C | 109.5 | P6—C63—H63A | 109.5 |
H32A—C32—H32B | 109.5 | P6—C63—H63B | 109.5 |
H32A—C32—H32C | 109.5 | P6—C63—H63C | 109.5 |
H32B—C32—H32C | 109.5 | H63A—C63—H63B | 109.5 |
P3—C33—H33A | 109.5 | H63A—C63—H63C | 109.5 |
P3—C33—H33B | 109.5 | H63B—C63—H63C | 109.5 |
P3—C33—H33C | 109.5 | C2—O1—H1 | 109.5 |
H33A—C33—H33B | 109.5 | O1—C2—H2A | 109.5 |
H33A—C33—H33C | 109.5 | O1—C2—H2B | 109.5 |
H33B—C33—H33C | 109.5 | O1—C2—H2C | 109.5 |
Cl4—Rh2—Cl5 | 87.35 (5) | H2A—C2—H2B | 109.5 |
Cl4—Rh2—Cl6 | 86.57 (5) | H2A—C2—H2C | 109.5 |
Cl6—Rh2—Cl5 | 85.15 (4) | H2B—C2—H2C | 109.5 |
P4—Rh2—Cl4 | 172.28 (5) | ||
Cl1—Rh1—P1—C11 | 36.4 (4) | P3—Rh1—P2—C23 | −47.9 (2) |
Cl1—Rh1—P1—C12 | 158.6 (3) | Cl4—Rh2—P5—C51 | 111.9 (2) |
Cl1—Rh1—P1—C13 | −80.4 (3) | Cl4—Rh2—P5—C52 | −8.4 (2) |
Cl1—Rh1—P2—C21 | 166.5 (2) | Cl4—Rh2—P5—C53 | −125.53 (19) |
Cl1—Rh1—P2—C22 | −71.8 (2) | Cl4—Rh2—P6—C61 | 72.9 (2) |
Cl1—Rh1—P2—C23 | 45.5 (2) | Cl4—Rh2—P6—C62 | −42.6 (2) |
Cl1—Rh1—P3—C31 | 130.6 (2) | Cl4—Rh2—P6—C63 | −165.5 (2) |
Cl1—Rh1—P3—C32 | 14.5 (3) | Cl5—Rh2—P4—C41 | −38.0 (2) |
Cl1—Rh1—P3—C33 | −107.1 (2) | Cl5—Rh2—P4—C42 | −159.7 (2) |
Cl2—Rh1—P1—C11 | 129.9 (2) | Cl5—Rh2—P4—C43 | 79.1 (3) |
Cl2—Rh1—P1—C12 | −108.0 (3) | Cl5—Rh2—P6—C61 | −14.1 (2) |
Cl2—Rh1—P1—C13 | 13.1 (2) | Cl5—Rh2—P6—C62 | −129.6 (2) |
Cl2—Rh1—P3—C31 | 43.7 (2) | Cl5—Rh2—P6—C63 | 107.5 (2) |
Cl2—Rh1—P3—C32 | −72.3 (3) | Cl6—Rh2—P4—C41 | −122.7 (2) |
Cl2—Rh1—P3—C33 | 166.0 (2) | Cl6—Rh2—P4—C42 | 115.6 (2) |
Cl3—Rh1—P1—C11 | 41.5 (2) | Cl6—Rh2—P4—C43 | −5.6 (3) |
Cl3—Rh1—P1—C12 | 163.7 (3) | Cl6—Rh2—P5—C51 | −161.7 (2) |
Cl3—Rh1—P1—C13 | −75.3 (2) | Cl6—Rh2—P5—C52 | 77.9 (2) |
Cl3—Rh1—P2—C21 | −107.9 (2) | Cl6—Rh2—P5—C53 | −39.2 (2) |
Cl3—Rh1—P2—C22 | 13.9 (2) | P4—Rh2—P5—C51 | −67.3 (2) |
Cl3—Rh1—P2—C23 | 131.1 (2) | P4—Rh2—P5—C52 | 172.3 (2) |
P1—Rh1—P2—C21 | −24.0 (2) | P4—Rh2—P5—C53 | 55.2 (2) |
P1—Rh1—P2—C22 | 97.7 (2) | P4—Rh2—P6—C61 | −99.5 (2) |
P1—Rh1—P2—C23 | −145.0 (2) | P4—Rh2—P6—C62 | 145.0 (2) |
P1—Rh1—P3—C31 | −48.7 (2) | P4—Rh2—P6—C63 | 22.1 (2) |
P1—Rh1—P3—C32 | −164.8 (3) | P5—Rh2—P4—C41 | 151.7 (2) |
P1—Rh1—P3—C33 | 73.5 (2) | P5—Rh2—P4—C42 | 30.0 (2) |
P2—Rh1—P1—C11 | −50.5 (2) | P5—Rh2—P4—C43 | −91.3 (3) |
P2—Rh1—P1—C12 | 71.7 (3) | P5—Rh2—P6—C61 | 164.96 (19) |
P2—Rh1—P1—C13 | −167.3 (2) | P5—Rh2—P6—C62 | 49.5 (2) |
P2—Rh1—P3—C31 | −145.7 (2) | P5—Rh2—P6—C63 | −73.4 (2) |
P2—Rh1—P3—C32 | 98.3 (3) | P6—Rh2—P4—C41 | 55.3 (2) |
P2—Rh1—P3—C33 | −23.4 (2) | P6—Rh2—P4—C42 | −66.4 (2) |
P3—Rh1—P1—C11 | −147.2 (2) | P6—Rh2—P4—C43 | 172.4 (3) |
P3—Rh1—P1—C12 | −25.0 (3) | P6—Rh2—P5—C51 | 27.6 (2) |
P3—Rh1—P1—C13 | 96.0 (2) | P6—Rh2—P5—C52 | −92.7 (2) |
P3—Rh1—P2—C21 | 73.1 (2) | P6—Rh2—P5—C53 | 150.16 (19) |
P3—Rh1—P2—C22 | −165.1 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···Cl6i | 0.82 | 2.47 | 3.184 (5) | 147 |
Symmetry code: (i) −x+1/2, y+1/2, −z+1/2. |
Compound | space group | a | b | c | α | β | γ |
RhP3Cl3water | Cc | 15.8650 (12) | 9.0396 (3) | 14.8223 (18) | 90 | 120.820 (7) | 90 |
IrP3Cl3water | Cc | 15.8830 (10) | 9.0590 (10) | 14.829 (2) | 90 | 120.530 (8) | 90 |
Compound | space group | a | b | c | α | β | γ |
RhP3Cl3MeOH | P21/n | 16.0993 (16) | 15.5910 (9) | 16.4152 (14) | 90 | 115.084 (13) | 90 |
IrP3Cl3MeOH | P21/n | 16.144 (3) | 15.631 (4) | 16.469 (4) | 90 | 115.400 (17) | 90 |
Compound | M—P1 | M—P2 | M—P3 | M—Cl1 | M—Cl2 | M—Cl3 |
RhP3Cl3water | 2.279 (2) | 2.295 (3) | 2.292 (2) | 2.450 (2) | 2.444 (3) | 2.436 (3) |
IrP3Cl3water | 2.2787 (18) | 2.2880 (19) | 2.2912 (17) | 2.4320 (19) | 2.4469 (18) | 2.4451 (19) |
Compound | M—P1 | M—P2 | M—P3 | M—Cl1 | M—Cl2 | M—Cl3 |
RhP3Cl3MeOH a | 2.2824 (12) | 2.2950 (13) | 2.2995 (12) | 2.4246 (11) | 2.4453 (12) | 2.4364 (12) |
RhP3Cl3MeOH b | 2.2860 (13) | 2.2954 (12) | 2.2923 (11) | 2.4372 (12) | 2.4476 (12) | 2.4426 (12) |
IrP3Cl3MeOH a | 2.2809 (16) | 2.2847 (17) | 2.2964 (15) | 2.4245 (16) | 2.4368 (17) | 2.4394 (15) |
IrP3Cl3MeOH b | 2.2932 (16) | 2.2795 (17) | 2.2869 (16) | 2.4442 (16) | 2.4316 (17) | 2.4405 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1B···Cl3 | 0.9700 | 2.57 | 3.481 | 157 |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···Cl6i | 0.82 | 2.47 | 3.184 (5) | 146.5 |
Symmetry code: (i) −x+1/2, y+1/2, −z+1/2. |
Experimental details
(RhP3Cl3water) | (RhP3Cl3MeOH) | |
Crystal data | ||
Chemical formula | [RhCl3(C3H9P)3]·H2O | [RhCl3(C3H9P)3]·0.5CH4O |
Mr | 455.49 | 453.50 |
Crystal system, space group | Monoclinic, Cc | Monoclinic, P21/n |
Temperature (K) | 298 | 298 |
a, b, c (Å) | 15.8650 (12), 9.0396 (3), 14.8223 (18) | 16.0993 (16), 15.5910 (9), 16.4152 (14) |
β (°) | 120.820 (7) | 115.084 (13) |
V (Å3) | 1825.5 (3) | 3731.7 (5) |
Z | 4 | 8 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 1.62 | 1.59 |
Crystal size (mm) | 0.4 × 0.4 × 0.3 | 0.6 × 0.6 × 0.3 |
Data collection | ||
Diffractometer | Siemens P4 diffractometer | Siemens P4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.762, 0.974 | 0.807, 0.915 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2034, 1784, 1763 | 5957, 4858, 4171 |
Rint | 0.021 | 0.034 |
θmax (°) | 25.0 | 22.5 |
(sin θ/λ)max (Å−1) | 0.595 | 0.538 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.023, 0.059, 1.08 | 0.029, 0.071, 1.08 |
No. of reflections | 1784 | 4858 |
No. of parameters | 170 | 328 |
No. of restraints | 5 | 0 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.47, −0.60 | 1.03, −0.41 |
Absolute structure | Classical Flack (1983) method preferred over Parsons because s.u. lower. | ? |
Absolute structure parameter | −0.06 (3) | ? |
Computer programs: XSCANS (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXS87 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009).
Acknowledgements
Financial support for this work was provided by ACS–PRF (grant No. 23961-C1) and by the National Science Foundation (CHE-902244). The open-access fee was provided by the Virginia Tech Open Access Subvention Fund.
References
Allen, F. H., Chang, G., Cheung, K. K., Lai, T. F., Lee, L. M. & Pidcock, A. (1970). J. Chem. Soc. D, pp. 1297–1298. Google Scholar
Cordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. & Alvarez, S. (2008). Dalton Trans. pp. 2832–2838. Web of Science CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Edwards, P. G., Fleming, J. S., Coles, S. J. & Hursthouse, M. B. (1997). J. Chem. Soc. Dalton Trans. pp. 3201–3206. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Frazier, J. F. & Merola, J. S. (1992). Polyhedron, 11, 2917–2927. CSD CrossRef CAS Web of Science Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CrossRef CAS Google Scholar
Marsh, R. E. (1997). Acta Cryst. B53, 317–322. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Mayer, H. A., Otto, H., Kühbauch, H., Fawzi, R. & Steimann, M. (1994). J. Organomet. Chem. 472, 347–354. Google Scholar
Merola, J. S., Franks, M. A. & Frazier, J. F. (2013). Polyhedron, 54, 67–73. Web of Science CSD CrossRef CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Parsons, S., Payne, N. L., Yellowlees, L., Harris, S. & Wood, P. A. (2004). Private communication (CCDC 247871). CCDC, Cambridge, England. Google Scholar
Raghuraman, K., Pillarsetty, N., Volkert, W. A., Barnes, C., Jurisson, S. & Katti, K. V. (2002). J. Am. Chem. Soc. 124, 7276–7277. Google Scholar
Robertson, G. B. & Tucker, P. A. (1981). Acta Cryst. B37, 814–821. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Skapski, A. C. & Stephens, F. A. (1973). J. Chem. Soc. Dalton Trans. pp. 1789–1793. Google Scholar
Suzuki, T., Isobe, K., Kashiwabara, K., Fujita, J. & Kaizaki, S. (1996). J. Chem. Soc. Dalton Trans. pp. 3779–3786. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.