organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o79-o80

Crystal structure of 4-{(E)-[2-(pyridin-4-ylcarbon­yl)hydrazin-1-yl­­idene]meth­yl}phenyl acetate monohydrate

aDepartment of Chemistry, Christ University, Hosur Road, Bangalore 560 029, India, bDepartment of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka, and cDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India
*Correspondence e-mail: msithambaresan@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 15 December 2014; accepted 20 December 2014; online 3 January 2015)

The asymmetric unit of the title compound, C15H13N3O3·H2O, comprises a 4-{(E)-[2-(pyridin-4-ylcarbon­yl)hydrazinyl­idene]meth­yl}phenyl acetate mol­ecule and a solvent water mol­ecule linked by O—H⋯O and O—H⋯N hydrogen bonds from the water mol­ecule and a C—H⋯O contact from the organic mol­ecule. The compound adopts an E conformation with respect to the azomethine bond and the dihedral angle between the pyridine and benzene rings is 21.90 (7)°. The azomethine bond [1.275 (2) Å] distance is very close to the formal C=N bond length, which confirms the azomethine bond formation. An extensive set of O—H⋯O, O—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds builds a two-dimensional network progressing along the c axis.

1. Related literature

For biological applications of hydrazone derivatives, see: Sreeja et al. (2004[Sreeja, P. B., Kurup, M. R. P., Kishore, A. & Jasmin, C. (2004). Polyhedron, 23, 575-581.]); Prasanna & Kumar (2013[Prasanna, M. K. & Kumar, K. P. (2013). Int. J. Pharm. Biomed. Sci. 4, 24-29.]). For the synthesis of related compounds, see: Joseph et al. (2013[Joseph, B., Sithambaresan, M. & Kurup, M. R. P. (2013). Acta Cryst. E69, o1160-o1161.]); Thilagavathi et al. (2010[Thilagavathi, N., Manimaran, A., Priya, N. P., Sathya, N. & Jayabalakrishnan, C. (2010). Appl. Organomet. Chem. 24, 301-307.]). For the anti­cancer activity of hydrazones against cervical cancer, see: Nair et al. (2014[Nair, R. S., Kuriakose, M., Somasundaram, V., Shenoi, V., Kurup, M. R. P. & Srinivas, P. (2014). Life Sci. 116, 90-97.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H13N3O3·H2O

  • Mr = 301.30

  • Monoclinic, P 21 /c

  • a = 17.3297 (15) Å

  • b = 7.3058 (7) Å

  • c = 12.4632 (10) Å

  • β = 111.034 (3)°

  • V = 1472.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.50 × 0.45 × 0.40 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.951, Tmax = 0.961

  • 8648 measured reflections

  • 2614 independent reflections

  • 2153 reflections with I > 2σ(I)

  • Rint = 0.028

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.113

  • S = 0.94

  • 2614 reflections

  • 213 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1Si 0.93 2.56 3.375 (2) 147
C7—H7⋯O1Si 0.93 2.56 3.3655 (19) 145
C12—H12⋯O3i 0.93 2.54 3.329 (2) 143
N2—H2′⋯O1Si 0.88 (1) 2.08 (1) 2.9529 (18) 170 (2)
O1S—H1S⋯N3 0.86 (2) 2.65 (2) 3.2897 (18) 133 (2)
O1S—H1S⋯O1 0.86 (2) 2.02 (2) 2.8382 (17) 159 (2)
O1S—H2S⋯O3ii 0.86 (2) 2.38 (2) 3.1754 (19) 154 (2)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Structural commentary top

Hydrazone derivatives are found to have structural diversity due to their coordinative ability (Sreeja et al., 2004; Prasanna & Kumar, 2013) arising from thio­amido-thio­iminol tautomerism. Ruthenium(II) complexes with such compounds as ligands have been shown to function as catalysts (Thilagavathi et al., 2010). The title compound [C15H13N3O3].(H2O) adopts an E configuration with respect to C7N3 bond and O1 and N3 are cis with respect to the C6—N2 bond (Fig. 1). The dihedral angle between the pyridine and benzene rings is 21.90 (7) Å. The C7N3 [1.275 (2) Å] bond distances are very close to the formal CN bond length, which confirms the azomethine bond formation.

There are four classical inter­molecular O—H···O, O—H···N and N—H···O hydrogen bonds and three non-classical C—H···O inter­actions, (Table 1, Figure 2). These inter­molecular hydrogen bonds build a two-dimensional network progressing along the c axis (Fig. 3). Fig. 4 shows the packing diagram of the title compound along the a axis.

Synthesis and crystallization top

The title compound was synthesised by adapting a reported procedure (Joseph et al., 2013). A solution of isonicotinic acid hydrazide (0.137 g, 1 mmol) in methanol/DMF (1:1 v/v, 10 ml) was mixed with a methanol /DMF solution (10 ml) of 4-formyl­phenyl acetate (0.164 g, 1 mmol). The mixture was refluxed for 6 h and then cooled to room temperature. The resulting solid was recrystallized from chloro­form/methanol (1:1 v/v). Colorless, block shaped crystals suitable for XRD studies were obtained after slow evaporation of the solution in air over several days.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms bound to C were placed in calculated positions, guided by difference maps, with C—H bond distances of 0.93-0.96 Å. H atoms were assigned Uiso(H) values of 1.2Ueq(carrier). H2 on N2 and H1S & H2S of the water molecule were located in a difference Fourier map and refined with the bond distances restrained to 0.88±0.01 and 0.86±0.02 Å respectively. The low angle reflection (1 0 0) was omitted from the refinement.

Related literature top

For biological applications of hydrazone derivatives, see: Sreeja et al. (2004); Prasanna & Kumar (2013). For the synthesis of related compounds, see: Joseph et al. (2013); Thilagavathi et al. (2010). For the anticancer activity of hydrazones against cervical cancer, see: Nair et al. (2014).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the compound, with 50% probability displacement ellipsoids for the non-H atoms.
[Figure 2] Fig. 2. Graphical representation showing hydrogen bonding interactions in the crystal structure of [C15H13N3O3]·(H2O).
[Figure 3] Fig. 3. The hydrogen bonding interactions build a double layer progressing along the c axis in the title compound.
[Figure 4] Fig. 4. A view of the overall crystal packing along the a axis.
4-{(E)-[2-(Pyridin-4-ylcarbonyl)hydrazin-1-ylidene]methyl}phenyl acetate monohydrate top
Crystal data top
C15H13N3O3·H2OF(000) = 632
Mr = 301.30Dx = 1.359 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.3297 (15) ÅCell parameters from 4335 reflections
b = 7.3058 (7) Åθ = 3.1–28.1°
c = 12.4632 (10) ŵ = 0.10 mm1
β = 111.034 (3)°T = 296 K
V = 1472.8 (2) Å3Block, colorless
Z = 40.50 × 0.45 × 0.40 mm
Data collection top
Bruker APEXII CCD
diffractometer
2614 independent reflections
Radiation source: fine-focus sealed tube2153 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and ϕ scansθmax = 25.1°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2015
Tmin = 0.951, Tmax = 0.961k = 88
8648 measured reflectionsl = 1114
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0674P)2 + 0.4633P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.113(Δ/σ)max < 0.001
S = 0.94Δρmax = 0.21 e Å3
2614 reflectionsΔρmin = 0.17 e Å3
213 parametersExtinction correction: SHELXL2014 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
4 restraintsExtinction coefficient: 0.024 (3)
Crystal data top
C15H13N3O3·H2OV = 1472.8 (2) Å3
Mr = 301.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.3297 (15) ŵ = 0.10 mm1
b = 7.3058 (7) ÅT = 296 K
c = 12.4632 (10) Å0.50 × 0.45 × 0.40 mm
β = 111.034 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2614 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2153 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.961Rint = 0.028
8648 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0374 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 0.21 e Å3
2614 reflectionsΔρmin = 0.17 e Å3
213 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.16188 (10)0.0685 (2)0.93233 (14)0.0400 (4)
H10.20960.01250.98170.048*
C20.08732 (10)0.0473 (2)0.94865 (14)0.0427 (4)
H20.08680.02311.01050.051*
C30.01996 (10)0.2228 (3)0.79347 (15)0.0476 (4)
H30.02870.27630.74490.057*
C40.09113 (10)0.2527 (2)0.77045 (14)0.0423 (4)
H40.08990.32450.70820.051*
C50.16422 (9)0.1743 (2)0.84140 (12)0.0340 (4)
C60.24113 (9)0.2125 (2)0.81590 (13)0.0369 (4)
C70.45140 (9)0.2232 (2)0.97566 (13)0.0367 (4)
H70.44830.17541.04310.044*
C80.53158 (9)0.2825 (2)0.97427 (13)0.0340 (4)
C90.54021 (9)0.3707 (2)0.87968 (13)0.0380 (4)
H90.49410.38870.81340.046*
C100.61707 (10)0.4314 (2)0.88411 (13)0.0388 (4)
H100.62290.49150.82160.047*
C110.68496 (9)0.4011 (2)0.98292 (14)0.0364 (4)
C120.67832 (9)0.3173 (2)1.07787 (13)0.0397 (4)
H120.72470.30001.14400.048*
C130.60111 (10)0.2590 (2)1.07295 (14)0.0395 (4)
H130.59570.20301.13690.047*
C140.80143 (9)0.3873 (2)0.92676 (13)0.0367 (4)
C150.88679 (10)0.4588 (3)0.95589 (16)0.0483 (4)
H15A0.91270.39930.90890.072*
H15B0.91810.43511.03540.072*
H15C0.88470.58840.94210.072*
N10.01652 (8)0.1220 (2)0.88093 (12)0.0455 (4)
N20.31362 (7)0.18494 (18)0.90293 (11)0.0358 (3)
N30.38562 (8)0.23535 (18)0.88687 (11)0.0369 (3)
O10.23649 (7)0.2689 (2)0.72122 (10)0.0589 (4)
O1S0.35113 (8)0.4455 (2)0.64055 (10)0.0480 (3)
O20.76382 (7)0.46558 (16)0.99337 (10)0.0446 (3)
O30.76890 (8)0.27267 (19)0.85709 (12)0.0598 (4)
H1S0.3278 (13)0.387 (3)0.6800 (18)0.080 (7)*
H2S0.3334 (15)0.554 (2)0.644 (2)0.094 (9)*
H2'0.3186 (11)0.148 (2)0.9725 (10)0.049 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0310 (8)0.0445 (10)0.0443 (9)0.0027 (7)0.0131 (7)0.0066 (7)
C20.0399 (9)0.0451 (10)0.0471 (9)0.0080 (8)0.0205 (7)0.0024 (7)
C30.0328 (9)0.0593 (12)0.0497 (10)0.0064 (8)0.0138 (7)0.0032 (8)
C40.0376 (9)0.0498 (10)0.0412 (8)0.0021 (8)0.0162 (7)0.0055 (7)
C50.0308 (8)0.0363 (9)0.0357 (8)0.0045 (7)0.0132 (6)0.0039 (6)
C60.0343 (8)0.0403 (9)0.0385 (8)0.0059 (7)0.0158 (7)0.0003 (7)
C70.0347 (9)0.0365 (9)0.0435 (9)0.0015 (7)0.0199 (7)0.0004 (7)
C80.0303 (8)0.0330 (8)0.0419 (8)0.0002 (6)0.0169 (6)0.0039 (6)
C90.0317 (8)0.0445 (9)0.0373 (8)0.0010 (7)0.0118 (6)0.0013 (7)
C100.0391 (9)0.0441 (9)0.0379 (8)0.0048 (7)0.0196 (7)0.0012 (7)
C110.0304 (8)0.0386 (9)0.0443 (8)0.0071 (7)0.0184 (7)0.0121 (7)
C120.0315 (8)0.0465 (10)0.0395 (8)0.0005 (7)0.0106 (7)0.0013 (7)
C130.0388 (9)0.0426 (9)0.0400 (8)0.0003 (7)0.0176 (7)0.0040 (7)
C140.0351 (8)0.0394 (9)0.0378 (8)0.0001 (7)0.0157 (7)0.0018 (7)
C150.0375 (9)0.0532 (11)0.0600 (10)0.0045 (8)0.0246 (8)0.0013 (8)
N10.0352 (8)0.0526 (9)0.0534 (8)0.0053 (7)0.0216 (7)0.0049 (7)
N20.0286 (7)0.0437 (8)0.0394 (7)0.0049 (6)0.0174 (6)0.0019 (6)
N30.0305 (7)0.0402 (8)0.0455 (7)0.0042 (6)0.0203 (6)0.0011 (6)
O10.0413 (7)0.0937 (11)0.0431 (7)0.0115 (7)0.0168 (5)0.0149 (7)
O1S0.0471 (7)0.0572 (9)0.0459 (7)0.0022 (6)0.0241 (6)0.0071 (6)
O20.0342 (6)0.0543 (7)0.0512 (7)0.0151 (5)0.0223 (5)0.0191 (5)
O30.0482 (8)0.0701 (9)0.0660 (8)0.0102 (7)0.0266 (6)0.0306 (7)
Geometric parameters (Å, º) top
C1—C21.387 (2)C9—H90.9300
C1—C51.384 (2)C10—C111.382 (2)
C1—H10.9300C10—H100.9300
C2—N11.331 (2)C11—C121.374 (2)
C2—H20.9300C11—O21.4066 (18)
C3—N11.334 (2)C12—C131.384 (2)
C3—C41.380 (2)C12—H120.9300
C3—H30.9300C13—H130.9300
C4—C51.382 (2)C14—O31.1921 (19)
C4—H40.9300C14—O21.3527 (18)
C5—C61.503 (2)C14—C151.486 (2)
C6—O11.2252 (19)C15—H15A0.9600
C6—N21.348 (2)C15—H15B0.9600
C7—N31.275 (2)C15—H15C0.9600
C7—C81.462 (2)N2—N31.3827 (17)
C7—H70.9300N2—H2'0.883 (9)
C8—C131.389 (2)O1S—H1S0.857 (16)
C8—C91.398 (2)O1S—H2S0.860 (16)
C9—C101.386 (2)
C2—C1—C5119.01 (15)C11—C10—H10120.6
C2—C1—H1120.5C9—C10—H10120.6
C5—C1—H1120.5C12—C11—C10122.10 (14)
N1—C2—C1123.81 (15)C12—C11—O2116.65 (14)
N1—C2—H2118.1C10—C11—O2121.14 (14)
C1—C2—H2118.1C11—C12—C13118.52 (14)
N1—C3—C4124.23 (16)C11—C12—H12120.7
N1—C3—H3117.9C13—C12—H12120.7
C4—C3—H3117.9C12—C13—C8121.23 (15)
C3—C4—C5118.91 (15)C12—C13—H13119.4
C3—C4—H4120.5C8—C13—H13119.4
C5—C4—H4120.5O3—C14—O2122.55 (14)
C4—C5—C1117.75 (14)O3—C14—C15126.45 (15)
C4—C5—C6117.81 (14)O2—C14—C15110.97 (14)
C1—C5—C6124.43 (14)C14—C15—H15A109.5
O1—C6—N2123.04 (14)C14—C15—H15B109.5
O1—C6—C5120.63 (14)H15A—C15—H15B109.5
N2—C6—C5116.31 (13)C14—C15—H15C109.5
N3—C7—C8121.78 (14)H15A—C15—H15C109.5
N3—C7—H7119.1H15B—C15—H15C109.5
C8—C7—H7119.1C2—N1—C3116.29 (14)
C13—C8—C9118.84 (14)C6—N2—N3118.20 (12)
C13—C8—C7118.62 (14)C6—N2—H2'124.8 (11)
C9—C8—C7122.45 (14)N3—N2—H2'116.7 (11)
C10—C9—C8120.40 (14)C7—N3—N2115.33 (13)
C10—C9—H9119.8H1S—O1S—H2S100.4 (19)
C8—C9—H9119.8C14—O2—C11117.88 (12)
C11—C10—C9118.88 (14)
C5—C1—C2—N10.6 (3)C9—C10—C11—O2177.75 (14)
N1—C3—C4—C50.1 (3)C10—C11—C12—C131.1 (2)
C3—C4—C5—C10.2 (2)O2—C11—C12—C13177.22 (14)
C3—C4—C5—C6178.71 (15)C11—C12—C13—C80.6 (2)
C2—C1—C5—C40.5 (2)C9—C8—C13—C121.5 (2)
C2—C1—C5—C6178.31 (14)C7—C8—C13—C12178.10 (15)
C4—C5—C6—O118.5 (2)C1—C2—N1—C30.3 (2)
C1—C5—C6—O1162.62 (17)C4—C3—N1—C20.1 (3)
C4—C5—C6—N2160.04 (15)O1—C6—N2—N34.8 (2)
C1—C5—C6—N218.8 (2)C5—C6—N2—N3173.74 (12)
N3—C7—C8—C13177.64 (15)C8—C7—N3—N2176.06 (13)
N3—C7—C8—C95.9 (2)C6—N2—N3—C7173.26 (14)
C13—C8—C9—C100.8 (2)O3—C14—O2—C113.2 (2)
C7—C8—C9—C10177.24 (15)C15—C14—O2—C11174.82 (14)
C8—C9—C10—C110.8 (2)C12—C11—O2—C14115.34 (16)
C9—C10—C11—C121.8 (2)C10—C11—O2—C1468.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1Si0.932.563.375 (2)147
C7—H7···O1Si0.932.563.3655 (19)145
C12—H12···O3i0.932.543.329 (2)143
N2—H2···O1Si0.88 (1)2.08 (1)2.9529 (18)170 (2)
O1S—H1S···N30.86 (2)2.65 (2)3.2897 (18)133 (2)
O1S—H1S···O10.86 (2)2.02 (2)2.8382 (17)159 (2)
O1S—H2S···O3ii0.86 (2)2.38 (2)3.1754 (19)154 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1Si0.932.563.375 (2)146.8
C7—H7···O1Si0.932.563.3655 (19)145.1
C12—H12···O3i0.932.543.329 (2)142.6
N2—H2'···O1Si0.883 (9)2.079 (10)2.9529 (18)170.4 (16)
O1S—H1S···N30.857 (16)2.65 (2)3.2897 (18)132.6 (19)
O1S—H1S···O10.857 (16)2.021 (17)2.8382 (17)159 (2)
O1S—H2S···O3ii0.860 (16)2.379 (19)3.1754 (19)154 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+3/2.
 

Acknowledgements

The authors are grateful to the Sophisticated Analytical Instruments Facility, Cochin University of Science and Technology, Kochi-22, India, for the diffraction measurements and thank Christ University for financial support.

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJoseph, B., Sithambaresan, M. & Kurup, M. R. P. (2013). Acta Cryst. E69, o1160–o1161.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationNair, R. S., Kuriakose, M., Somasundaram, V., Shenoi, V., Kurup, M. R. P. & Srinivas, P. (2014). Life Sci. 116, 90–97.  CrossRef CAS PubMed Google Scholar
First citationPrasanna, M. K. & Kumar, K. P. (2013). Int. J. Pharm. Biomed. Sci. 4, 24–29.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSreeja, P. B., Kurup, M. R. P., Kishore, A. & Jasmin, C. (2004). Polyhedron, 23, 575–581.  Web of Science CSD CrossRef CAS Google Scholar
First citationThilagavathi, N., Manimaran, A., Priya, N. P., Sathya, N. & Jayabalakrishnan, C. (2010). Appl. Organomet. Chem. 24, 301–307.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o79-o80
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds