research communications
of a mixed solvated form of amoxapine acetate
aStrathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, Scotland
*Correspondence e-mail: alastair.florence@strath.ac.uk
The mixed solvated salt 4-(2-chlorodibenzo[b,f][1,4]oxazepin-11-yl)piperazin-1-ium acetate–acetic acid–cyclohexane (2/2/1), C17H17ClN3O+·C2H3O2−·C2H4O2·0.5C6H12, crystallizes with one molecule of protonated amoxapine (AXPN), an acetate anion and a molecule of acetic acid together with half a molecule of cyclohexane. In the centrosymmetric crystal, both enantiomers of the protonated AXPN molecule stack alternatively along [001]. Acetate anions connect the AXPN cations through N—H⋯O hydrogen bonding in the [010] direction, creating a sheet lying parallel to (100). The acetic acid molecules are linked to the acetate anions via O—H⋯O hydrogen bonds within the sheets. Within the sheets there are also a number of C—H⋯O hydrogen bonds present. The cyclohexane solvent molecules occupy the space between the sheets.
Keywords: crystal structure; amoxapine; oxazepine; mixed solvate; hydrogen bonding..
CCDC reference: 1040948
1. Chemical context
2-Chloro-11-(piperazin-1-yl)dibenzo[b,f][1,4]oxazepine (Amoxapine, AXPN) is a benzodiazepine derivative and exhibits anti-depressant properties (Greenbla & Osterber, 1968) with one reported (CSD refcode: AMOXAP; Cosulich & Lovell, 1977). AXPN acetate acetic acid cyclohexane was obtained as a part of a wider investigation that couples experimental crystallization techniques with computational methods in order to obtain a better understanding of the factors underpinning the solid-state structure and diversity of structurally related compounds, i.e. olanzapine, clozapine, loxapine and AXPN (Bhardwaj & Florence, 2013; Bhardwaj, Johnston et al., 2013; Bhardwaj, Price et al., 2013). The sample of AXPN acetate acetic acid cyclohexane was isolated during an experimental physical form screen of AXPN. The sample was identified as a novel form using multi-sample foil transmission X-ray powder (Florence et al., 2003). A suitable sample for single crystal X-ray was obtained from slow evaporation of a of AXPN in a 1:1 molar ratio of acetic acid and cyclohexane at room temperature.
2. Structural commentary
The title compound crystallizes with one molecule of protonated AXPN and an acetate anion each with a molecule of acetic acid and a half molecule of cyclohexane (which lies across a center of inversion) as solvent of crystallization in the ). The dioxazepine ring of AXPN exists in a puckered conformation between the planes of the benzene rings [the benzene rings fused to the central ring make a dihedral angle of 58.63 (6)°], and the piperazine ring adopts a chair conformation, as observed in the AXPN free base (CSD refcode: AMOXAP; Cosulich and Lovell, 1977) and structurally related analogues (Bhardwaj & Florence, 2013; Bhardwaj, Johnston et al., 2013; Bhardwaj, Price et al., 2013).
(Fig. 13. Supramolecular features
In the crystal, opposite enantiomers of protonated AXPN molecules stack along the c-axis direction. Each protonated AXPN molecule forms two N—H⋯O hydrogen bonds with two acetate anions, which connect it to an adjacent protonated AXPN molecule along the b axis, creating a sheet-like structure parallel to (100); see Fig. 2 and Table 1. The acetic acid molecules act as hydrogen-bond donors to acetate anions and are present between the protonated AXPN molecules along the c-axis direction. There are also C—H⋯O hydrogen bonds present within the sheets (Table 1). These sheets stack along the a axis and the cyclohexane molecules occupy the space between the sheets (Fig. 2).
4. Synthesis and crystallization
Rod-shaped crystals were grown from a
of AXPN in a 1:1 molar ratio of acetic acid and cyclohexane by isothermal solvent evaporation at 298 K.5. Refinement
Crystal data, data collection and structure . The N- and O-bound H atoms were located in a difference Fourier map and freely refined. The C-bound H atoms were placed in calculated positions and refined as riding atoms: C—H = 0.95–0.99 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1040948
10.1107/S2056989014028096/su5039sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989014028096/su5039Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989014028096/su5039Isup3.mol
Supporting information file. DOI: 10.1107/S2056989014028096/su5039Isup4.cml
2-Chloro-11-(piperazin-1-yl)dibenzo[b,f][1,4]oxazepine (Amoxapine, AXPN) is a benzodiazepine derivative and exhibits anti-depressant properties (Greenbla & Osterber, 1968) with one reported
(CSD refcode: AMOXAP; Cosulich & Lovell, 1977). AXPN acetate acetic acid cyclohexane was obtained as a part of a wider investigation that couples experimental crystallization techniques with computational methods in order to obtain a better understanding of the factors underpinning the solid-state structure and diversity of structurally related compounds, i.e. olanzapine, clozapine, loxapine and AXPN (Bhardwaj & Florence, 2013; Bhardwaj, Johnston et al., 2013; Bhardwaj, Price et al., 2013). The sample of AXPN acetate acetic acid cyclohexane was isolated during an experimental physical form screen. The sample was identified as a novel form using multi-sample foil transmission X-ray powder (Florence et al., 2003). A suitable sample for single crystal X-ray was obtained from slow evaporation of a of AXPN in a 1:1 molar ratio of acetic acid and cyclohexane at room temperature.The title compound crystallizes with one molecule of protonated AXPN and an acetate anion each with a molecule of acetic acid and a half molecule of cyclohexane (which lies across a center of inversion) as solvent of crystallization in the
(Fig. 1). The dioxazepine ring of AXPN exists in a puckered conformation between the planes of the benzene rings and the piperazine ring adopts a chair conformation with the methyl group in an equatorial position, as observed in the AXPN free base (CSD refcode: AMOXAP; Cosulich and Lovell, 1977) and structurally related analogues (Bhardwaj & Florence, 2013; Bhardwaj, Johnston et al., 2013; Bhardwaj, Price et al., 2013).In the crystal, opposite enantiomers of protonated AXPN molecules stack along the c-axis direction. Each protonated AXPN molecule forms two N—H···O hydrogen bonds with two acetate anions, which connect it to an adjacent protonated AXPN molecule along the b axis, creating a sheet-like structure parallel to (100); see Fig 2 and Table 1. The acetic acid molecules act as hydrogen-bond donors to acetate anions and are present between the protonated AXPN molecules along the c-axis direction. There are also C—H···O hydrogen bonds present within the sheets (Table 1). These sheets stack along the a axis and the cyclohexane molecules occupy the space between the sheets (Fig. 2).
A single rod-shaped crystal was grown from a
of AXPN in a 1:1 molar ratio of acetic acid and cyclohexane by isothermal solvent evaporation at 298 K.Crystal data, data collection and structure
details are summarized in Table 2. The N- and O-bound H atoms were located in a difference Fourier map and freely refined. The C-bound H atoms were placed in calculated positions and refined as riding atoms: C—H = 0.95–0.99 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008), ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: enCIFer (Allen et al., 2004), publCIF (Westrip, 2010).Fig. 1. A view of the molecular structure of the asymmetric unit of the title molecular salt, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. The crystal packing of the title molecular salt, viewed along the b axis. The cyclohexane molecules are shown as a blue space-fill model. Hydrogen bonds are shown as green lines (see Table 1 for details; atom colour code: C, N, O, Cl and H are blue, violet, red, green and black, respectively; H atoms not involved in hydrogen bonding have been omitted for clarity). |
C17H17ClN3O+·C2H3O2−·C2H4O2·0.5C6H12 | F(000) = 1008 |
Mr = 475.96 | Dx = 1.336 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 9940 reflections |
a = 21.0726 (12) Å | θ = 2.9–26.4° |
b = 6.0393 (3) Å | µ = 0.20 mm−1 |
c = 18.6087 (10) Å | T = 150 K |
β = 92.096 (2)° | Rod, colourless |
V = 2366.6 (2) Å3 | 0.55 × 0.22 × 0.11 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 4860 independent reflections |
Radiation source: fine-focus sealed tube | 4177 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
ϕ and ω scans | θmax = 26.4°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −26→26 |
Tmin = 0.647, Tmax = 0.745 | k = −6→7 |
18828 measured reflections | l = −23→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.082 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0383P)2 + 1.089P] where P = (Fo2 + 2Fc2)/3 |
4860 reflections | (Δ/σ)max = 0.001 |
312 parameters | Δρmax = 0.28 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
C17H17ClN3O+·C2H3O2−·C2H4O2·0.5C6H12 | V = 2366.6 (2) Å3 |
Mr = 475.96 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 21.0726 (12) Å | µ = 0.20 mm−1 |
b = 6.0393 (3) Å | T = 150 K |
c = 18.6087 (10) Å | 0.55 × 0.22 × 0.11 mm |
β = 92.096 (2)° |
Bruker APEXII CCD diffractometer | 4860 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 4177 reflections with I > 2σ(I) |
Tmin = 0.647, Tmax = 0.745 | Rint = 0.018 |
18828 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.082 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.28 e Å−3 |
4860 reflections | Δρmin = −0.22 e Å−3 |
312 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
H2N3 | 0.0503 (7) | −0.014 (3) | 0.3171 (8) | 0.029 (4)* | |
H1N3 | 0.0584 (7) | 0.167 (3) | 0.2658 (9) | 0.025 (4)* | |
H1S | 0.1043 (10) | 0.564 (4) | 0.5635 (12) | 0.064 (6)* | |
Cl | 0.276361 (16) | 0.39554 (6) | 0.594267 (17) | 0.02772 (10) | |
O1 | 0.30157 (4) | 0.90957 (15) | 0.32837 (5) | 0.0225 (2) | |
O2S | 0.07221 (4) | 0.03016 (16) | 0.13430 (5) | 0.0259 (2) | |
O1S | 0.01425 (4) | 0.28471 (16) | 0.18632 (5) | 0.0234 (2) | |
N3 | 0.07793 (5) | 0.09975 (18) | 0.30430 (6) | 0.0161 (2) | |
N2 | 0.19325 (5) | 0.34168 (17) | 0.31916 (5) | 0.0160 (2) | |
N1 | 0.27645 (5) | 0.48819 (18) | 0.25813 (6) | 0.0196 (2) | |
C4 | 0.33285 (6) | 0.6088 (2) | 0.25098 (7) | 0.0198 (3) | |
C6 | 0.25997 (5) | 0.4584 (2) | 0.45099 (6) | 0.0177 (2) | |
H6 | 0.2404 | 0.3204 | 0.4501 | 0.021* | |
C2S | 0.03703 (5) | 0.1974 (2) | 0.13128 (6) | 0.0175 (2) | |
C5 | 0.24619 (5) | 0.4789 (2) | 0.31684 (6) | 0.0170 (2) | |
C2 | 0.29573 (5) | 0.7852 (2) | 0.39086 (7) | 0.0183 (3) | |
C8 | 0.31125 (6) | 0.7556 (2) | 0.51865 (7) | 0.0228 (3) | |
H8 | 0.3256 | 0.8140 | 0.5625 | 0.027* | |
C15 | 0.13972 (6) | 0.0041 (2) | 0.28291 (6) | 0.0167 (2) | |
H15A | 0.1326 | −0.1006 | 0.2439 | 0.020* | |
H15B | 0.1596 | −0.0741 | 0.3233 | 0.020* | |
C1 | 0.26655 (5) | 0.5783 (2) | 0.38728 (7) | 0.0168 (2) | |
C17 | 0.08763 (5) | 0.2614 (2) | 0.36432 (6) | 0.0169 (2) | |
H17A | 0.1044 | 0.1855 | 0.4068 | 0.020* | |
H17B | 0.0473 | 0.3278 | 0.3757 | 0.020* | |
C7 | 0.28300 (6) | 0.5483 (2) | 0.51529 (7) | 0.0200 (3) | |
C9 | 0.31772 (6) | 0.8743 (2) | 0.45570 (7) | 0.0219 (3) | |
H9 | 0.3368 | 1.0133 | 0.4569 | 0.026* | |
C16 | 0.13360 (5) | 0.4404 (2) | 0.34257 (7) | 0.0164 (2) | |
H16A | 0.1145 | 0.5276 | 0.3037 | 0.020* | |
H16B | 0.1425 | 0.5384 | 0.3830 | 0.020* | |
C10 | 0.39883 (6) | 0.9372 (2) | 0.26691 (7) | 0.0264 (3) | |
H10 | 0.4059 | 1.0745 | 0.2884 | 0.032* | |
C3 | 0.34532 (6) | 0.8156 (2) | 0.28257 (7) | 0.0208 (3) | |
C13 | 0.37702 (6) | 0.5278 (2) | 0.20305 (7) | 0.0234 (3) | |
H13 | 0.3701 | 0.3911 | 0.1811 | 0.028* | |
C14 | 0.18287 (6) | 0.1887 (2) | 0.25899 (6) | 0.0167 (2) | |
H14A | 0.2231 | 0.1280 | 0.2446 | 0.020* | |
H14B | 0.1634 | 0.2660 | 0.2182 | 0.020* | |
C12 | 0.43094 (6) | 0.6479 (3) | 0.18768 (7) | 0.0275 (3) | |
H12 | 0.4600 | 0.5904 | 0.1562 | 0.033* | |
C1S | 0.02027 (7) | 0.2996 (3) | 0.05945 (7) | 0.0298 (3) | |
H1S1 | −0.0177 | 0.2323 | 0.0396 | 0.045* | |
H1S2 | 0.0544 | 0.2763 | 0.0275 | 0.045* | |
H1S3 | 0.0134 | 0.4556 | 0.0653 | 0.045* | |
C11 | 0.44173 (6) | 0.8535 (3) | 0.21911 (8) | 0.0297 (3) | |
H11 | 0.4776 | 0.9348 | 0.2082 | 0.036* | |
O4S | 0.15853 (5) | 0.90631 (17) | 0.46941 (5) | 0.0285 (2) | |
O3S | 0.11677 (5) | 0.61112 (17) | 0.51804 (5) | 0.0266 (2) | |
C4S | 0.16200 (7) | 0.8869 (2) | 0.59805 (7) | 0.0292 (3) | |
H4S1 | 0.1780 | 1.0354 | 0.5958 | 0.044* | |
H4S2 | 0.1937 | 0.7926 | 0.6202 | 0.044* | |
H4S3 | 0.1246 | 0.8849 | 0.6259 | 0.044* | |
C3S | 0.14591 (6) | 0.8053 (2) | 0.52335 (7) | 0.0212 (3) | |
C6S | 0.44669 (7) | 0.4352 (3) | 0.45153 (8) | 0.0347 (4) | |
H6S1 | 0.4659 | 0.3259 | 0.4209 | 0.042* | |
H6S2 | 0.4024 | 0.4505 | 0.4362 | 0.042* | |
C5S | 0.45086 (7) | 0.3553 (3) | 0.52918 (9) | 0.0363 (4) | |
H5S1 | 0.4317 | 0.2097 | 0.5322 | 0.044* | |
H5S2 | 0.4274 | 0.4555 | 0.5591 | 0.044* | |
C7S | 0.48016 (7) | 0.6561 (3) | 0.44293 (9) | 0.0370 (4) | |
H7S1 | 0.4580 | 0.7693 | 0.4691 | 0.044* | |
H7S2 | 0.4789 | 0.6974 | 0.3925 | 0.044* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl | 0.02984 (17) | 0.0361 (2) | 0.01704 (16) | 0.00076 (14) | −0.00169 (12) | 0.00358 (14) |
O1 | 0.0221 (4) | 0.0177 (4) | 0.0275 (5) | −0.0006 (4) | −0.0010 (4) | 0.0056 (4) |
O2S | 0.0311 (5) | 0.0282 (5) | 0.0183 (5) | 0.0132 (4) | 0.0001 (4) | 0.0000 (4) |
O1S | 0.0258 (5) | 0.0263 (5) | 0.0179 (4) | 0.0112 (4) | 0.0001 (4) | 0.0005 (4) |
N3 | 0.0174 (5) | 0.0156 (5) | 0.0151 (5) | −0.0033 (4) | −0.0012 (4) | 0.0029 (4) |
N2 | 0.0154 (5) | 0.0161 (5) | 0.0165 (5) | −0.0018 (4) | 0.0005 (4) | −0.0018 (4) |
N1 | 0.0178 (5) | 0.0222 (5) | 0.0186 (5) | −0.0040 (4) | −0.0010 (4) | 0.0033 (4) |
C4 | 0.0183 (6) | 0.0232 (7) | 0.0175 (6) | −0.0036 (5) | −0.0034 (5) | 0.0071 (5) |
C6 | 0.0149 (5) | 0.0185 (6) | 0.0197 (6) | 0.0015 (5) | −0.0005 (4) | −0.0006 (5) |
C2S | 0.0154 (5) | 0.0197 (6) | 0.0174 (6) | −0.0009 (5) | −0.0012 (4) | 0.0017 (5) |
C5 | 0.0164 (5) | 0.0151 (6) | 0.0192 (6) | −0.0001 (5) | −0.0024 (4) | 0.0025 (5) |
C2 | 0.0146 (5) | 0.0179 (6) | 0.0223 (6) | 0.0017 (5) | −0.0010 (5) | 0.0020 (5) |
C8 | 0.0184 (6) | 0.0274 (7) | 0.0222 (6) | 0.0019 (5) | −0.0036 (5) | −0.0073 (6) |
C15 | 0.0201 (6) | 0.0144 (6) | 0.0155 (6) | 0.0002 (5) | −0.0011 (4) | 0.0011 (5) |
C1 | 0.0133 (5) | 0.0175 (6) | 0.0196 (6) | 0.0010 (4) | −0.0013 (4) | −0.0007 (5) |
C17 | 0.0171 (5) | 0.0184 (6) | 0.0154 (6) | −0.0001 (5) | 0.0010 (4) | 0.0006 (5) |
C7 | 0.0166 (6) | 0.0259 (7) | 0.0175 (6) | 0.0040 (5) | −0.0005 (5) | 0.0011 (5) |
C9 | 0.0164 (6) | 0.0192 (6) | 0.0298 (7) | −0.0009 (5) | −0.0021 (5) | −0.0047 (5) |
C16 | 0.0173 (6) | 0.0141 (6) | 0.0179 (6) | −0.0001 (4) | 0.0003 (4) | −0.0003 (5) |
C10 | 0.0266 (7) | 0.0256 (7) | 0.0264 (7) | −0.0086 (6) | −0.0048 (5) | 0.0074 (6) |
C3 | 0.0184 (6) | 0.0235 (7) | 0.0202 (6) | −0.0008 (5) | −0.0029 (5) | 0.0074 (5) |
C13 | 0.0228 (6) | 0.0281 (7) | 0.0193 (6) | −0.0038 (5) | −0.0009 (5) | 0.0039 (6) |
C14 | 0.0176 (5) | 0.0173 (6) | 0.0150 (6) | −0.0011 (5) | −0.0001 (4) | −0.0002 (5) |
C12 | 0.0211 (6) | 0.0394 (8) | 0.0221 (7) | −0.0036 (6) | 0.0017 (5) | 0.0069 (6) |
C1S | 0.0350 (7) | 0.0344 (8) | 0.0197 (7) | 0.0083 (6) | −0.0014 (6) | 0.0068 (6) |
C11 | 0.0221 (6) | 0.0392 (8) | 0.0278 (7) | −0.0122 (6) | −0.0008 (5) | 0.0099 (6) |
O4S | 0.0308 (5) | 0.0296 (5) | 0.0254 (5) | 0.0071 (4) | 0.0062 (4) | 0.0109 (4) |
O3S | 0.0309 (5) | 0.0308 (5) | 0.0182 (5) | −0.0071 (4) | 0.0018 (4) | 0.0010 (4) |
C4S | 0.0341 (7) | 0.0292 (8) | 0.0244 (7) | −0.0058 (6) | 0.0035 (6) | −0.0020 (6) |
C3S | 0.0188 (6) | 0.0233 (7) | 0.0215 (6) | 0.0054 (5) | 0.0027 (5) | 0.0031 (5) |
C6S | 0.0226 (7) | 0.0481 (9) | 0.0332 (8) | 0.0057 (6) | −0.0017 (6) | −0.0085 (7) |
C5S | 0.0256 (7) | 0.0440 (9) | 0.0394 (9) | 0.0011 (6) | 0.0031 (6) | −0.0021 (7) |
C7S | 0.0302 (8) | 0.0467 (9) | 0.0341 (8) | 0.0076 (7) | −0.0009 (6) | 0.0030 (7) |
Cl—C7 | 1.7450 (13) | C16—H16A | 0.9700 |
O1—C2 | 1.3936 (15) | C16—H16B | 0.9700 |
O1—C3 | 1.3985 (16) | C10—C3 | 1.3856 (18) |
O2S—C2S | 1.2529 (15) | C10—C11 | 1.387 (2) |
O1S—C2S | 1.2623 (15) | C10—H10 | 0.9300 |
N3—C15 | 1.4918 (15) | C13—C12 | 1.3866 (18) |
N3—C17 | 1.4919 (16) | C13—H13 | 0.9300 |
N3—H2N3 | 0.938 (17) | C14—H14A | 0.9700 |
N3—H1N3 | 0.908 (16) | C14—H14B | 0.9700 |
N2—C5 | 1.3916 (15) | C12—C11 | 1.388 (2) |
N2—C14 | 1.4618 (15) | C12—H12 | 0.9300 |
N2—C16 | 1.4716 (15) | C1S—H1S1 | 0.9600 |
N1—C5 | 1.2863 (16) | C1S—H1S2 | 0.9600 |
N1—C4 | 1.4044 (16) | C1S—H1S3 | 0.9600 |
C4—C13 | 1.4006 (19) | C11—H11 | 0.9300 |
C4—C3 | 1.4010 (19) | O4S—C3S | 1.2125 (16) |
C6—C7 | 1.3852 (17) | O3S—C3S | 1.3256 (16) |
C6—C1 | 1.4005 (17) | O3S—H1S | 0.94 (2) |
C6—H6 | 0.9300 | C4S—C3S | 1.5019 (19) |
C2S—C1S | 1.5027 (17) | C4S—H4S1 | 0.9600 |
C5—C1 | 1.4905 (17) | C4S—H4S2 | 0.9600 |
C2—C9 | 1.3854 (18) | C4S—H4S3 | 0.9600 |
C2—C1 | 1.3929 (17) | C6S—C7S | 1.520 (2) |
C8—C9 | 1.3845 (19) | C6S—C5S | 1.523 (2) |
C8—C7 | 1.3867 (19) | C6S—H6S1 | 0.9700 |
C8—H8 | 0.9300 | C6S—H6S2 | 0.9700 |
C15—C14 | 1.5156 (16) | C5S—C7Si | 1.527 (2) |
C15—H15A | 0.9700 | C5S—H5S1 | 0.9700 |
C15—H15B | 0.9700 | C5S—H5S2 | 0.9700 |
C17—C16 | 1.5164 (16) | C7S—C5Si | 1.527 (2) |
C17—H17A | 0.9700 | C7S—H7S1 | 0.9700 |
C17—H17B | 0.9700 | C7S—H7S2 | 0.9700 |
C9—H9 | 0.9300 | ||
C2—O1—C3 | 111.72 (9) | C3—C10—C11 | 119.77 (13) |
C15—N3—C17 | 110.86 (9) | C3—C10—H10 | 120.1 |
C15—N3—H2N3 | 110.0 (10) | C11—C10—H10 | 120.1 |
C17—N3—H2N3 | 111.0 (10) | C10—C3—O1 | 118.21 (12) |
C15—N3—H1N3 | 109.7 (9) | C10—C3—C4 | 121.72 (13) |
C17—N3—H1N3 | 110.1 (10) | O1—C3—C4 | 119.99 (11) |
H2N3—N3—H1N3 | 105.1 (13) | C12—C13—C4 | 121.16 (13) |
C5—N2—C14 | 116.76 (10) | C12—C13—H13 | 119.4 |
C5—N2—C16 | 117.53 (10) | C4—C13—H13 | 119.4 |
C14—N2—C16 | 112.18 (9) | N2—C14—C15 | 108.33 (9) |
C5—N1—C4 | 123.41 (11) | N2—C14—H14A | 110.0 |
C13—C4—C3 | 117.37 (12) | C15—C14—H14A | 110.0 |
C13—C4—N1 | 117.62 (12) | N2—C14—H14B | 110.0 |
C3—C4—N1 | 124.68 (12) | C15—C14—H14B | 110.0 |
C7—C6—C1 | 119.10 (12) | H14A—C14—H14B | 108.4 |
C7—C6—H6 | 120.4 | C13—C12—C11 | 120.26 (13) |
C1—C6—H6 | 120.4 | C13—C12—H12 | 119.9 |
O2S—C2S—O1S | 122.84 (11) | C11—C12—H12 | 119.9 |
O2S—C2S—C1S | 119.38 (11) | C2S—C1S—H1S1 | 109.5 |
O1S—C2S—C1S | 117.79 (11) | C2S—C1S—H1S2 | 109.5 |
N1—C5—N2 | 118.38 (11) | H1S1—C1S—H1S2 | 109.5 |
N1—C5—C1 | 126.41 (11) | C2S—C1S—H1S3 | 109.5 |
N2—C5—C1 | 114.71 (10) | H1S1—C1S—H1S3 | 109.5 |
C9—C2—C1 | 121.55 (12) | H1S2—C1S—H1S3 | 109.5 |
C9—C2—O1 | 118.71 (11) | C10—C11—C12 | 119.73 (13) |
C1—C2—O1 | 119.72 (11) | C10—C11—H11 | 120.1 |
C9—C8—C7 | 119.01 (12) | C12—C11—H11 | 120.1 |
C9—C8—H8 | 120.5 | C3S—O3S—H1S | 110.1 (14) |
C7—C8—H8 | 120.5 | C3S—C4S—H4S1 | 109.5 |
N3—C15—C14 | 109.42 (10) | C3S—C4S—H4S2 | 109.5 |
N3—C15—H15A | 109.8 | H4S1—C4S—H4S2 | 109.5 |
C14—C15—H15A | 109.8 | C3S—C4S—H4S3 | 109.5 |
N3—C15—H15B | 109.8 | H4S1—C4S—H4S3 | 109.5 |
C14—C15—H15B | 109.8 | H4S2—C4S—H4S3 | 109.5 |
H15A—C15—H15B | 108.2 | O4S—C3S—O3S | 119.90 (12) |
C2—C1—C6 | 118.71 (11) | O4S—C3S—C4S | 123.51 (13) |
C2—C1—C5 | 121.06 (11) | O3S—C3S—C4S | 116.59 (11) |
C6—C1—C5 | 120.13 (11) | C7S—C6S—C5S | 111.54 (13) |
N3—C17—C16 | 109.77 (9) | C7S—C6S—H6S1 | 109.3 |
N3—C17—H17A | 109.7 | C5S—C6S—H6S1 | 109.3 |
C16—C17—H17A | 109.7 | C7S—C6S—H6S2 | 109.3 |
N3—C17—H17B | 109.7 | C5S—C6S—H6S2 | 109.3 |
C16—C17—H17B | 109.7 | H6S1—C6S—H6S2 | 108.0 |
H17A—C17—H17B | 108.2 | C6S—C5S—C7Si | 110.96 (13) |
C6—C7—C8 | 121.92 (12) | C6S—C5S—H5S1 | 109.4 |
C6—C7—Cl | 118.96 (10) | C7Si—C5S—H5S1 | 109.4 |
C8—C7—Cl | 119.13 (10) | C6S—C5S—H5S2 | 109.4 |
C8—C9—C2 | 119.70 (12) | C7Si—C5S—H5S2 | 109.4 |
C8—C9—H9 | 120.2 | H5S1—C5S—H5S2 | 108.0 |
C2—C9—H9 | 120.2 | C6S—C7S—C5Si | 111.37 (13) |
N2—C16—C17 | 110.55 (10) | C6S—C7S—H7S1 | 109.4 |
N2—C16—H16A | 109.5 | C5Si—C7S—H7S1 | 109.4 |
C17—C16—H16A | 109.5 | C6S—C7S—H7S2 | 109.4 |
N2—C16—H16B | 109.5 | C5Si—C7S—H7S2 | 109.4 |
C17—C16—H16B | 109.5 | H7S1—C7S—H7S2 | 108.0 |
H16A—C16—H16B | 108.1 | ||
C5—N1—C4—C13 | 148.72 (12) | C9—C8—C7—Cl | 178.58 (9) |
C5—N1—C4—C3 | −38.18 (18) | C7—C8—C9—C2 | 0.34 (18) |
C4—N1—C5—N2 | −175.55 (11) | C1—C2—C9—C8 | 0.53 (18) |
C4—N1—C5—C1 | −4.1 (2) | O1—C2—C9—C8 | 178.70 (11) |
C14—N2—C5—N1 | 10.69 (16) | C5—N2—C16—C17 | −162.34 (10) |
C16—N2—C5—N1 | −127.00 (12) | C14—N2—C16—C17 | 58.13 (12) |
C14—N2—C5—C1 | −161.70 (10) | N3—C17—C16—N2 | −54.59 (12) |
C16—N2—C5—C1 | 60.61 (14) | C11—C10—C3—O1 | −177.05 (11) |
C3—O1—C2—C9 | 111.88 (12) | C11—C10—C3—C4 | −0.4 (2) |
C3—O1—C2—C1 | −69.92 (13) | C2—O1—C3—C10 | −117.96 (12) |
C17—N3—C15—C14 | −59.51 (12) | C2—O1—C3—C4 | 65.30 (14) |
C9—C2—C1—C6 | −0.46 (17) | C13—C4—C3—C10 | 0.51 (18) |
O1—C2—C1—C6 | −178.62 (10) | N1—C4—C3—C10 | −172.60 (12) |
C9—C2—C1—C5 | −176.70 (11) | C13—C4—C3—O1 | 177.14 (11) |
O1—C2—C1—C5 | 5.14 (17) | N1—C4—C3—O1 | 4.02 (18) |
C7—C6—C1—C2 | −0.46 (17) | C3—C4—C13—C12 | 0.09 (18) |
C7—C6—C1—C5 | 175.81 (11) | N1—C4—C13—C12 | 173.70 (12) |
N1—C5—C1—C2 | 38.92 (18) | C5—N2—C14—C15 | 159.85 (10) |
N2—C5—C1—C2 | −149.41 (11) | C16—N2—C14—C15 | −60.29 (12) |
N1—C5—C1—C6 | −137.27 (13) | N3—C15—C14—N2 | 60.12 (12) |
N2—C5—C1—C6 | 34.41 (16) | C4—C13—C12—C11 | −0.8 (2) |
C15—N3—C17—C16 | 56.29 (12) | C3—C10—C11—C12 | −0.4 (2) |
C1—C6—C7—C8 | 1.35 (18) | C13—C12—C11—C10 | 1.0 (2) |
C1—C6—C7—Cl | −178.52 (9) | C7S—C6S—C5S—C7Si | −55.20 (19) |
C9—C8—C7—C6 | −1.29 (18) | C5S—C6S—C7S—C5Si | 55.42 (18) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H1N3···O1S | 0.91 (2) | 1.86 (2) | 2.7664 (13) | 175 (2) |
O3S—H1S···O2Sii | 0.94 (2) | 1.61 (2) | 2.5375 (13) | 171 (2) |
N3—H2N3···O1Siii | 0.94 (2) | 1.82 (2) | 2.7292 (14) | 162 (1) |
C1S—H1S1···O3Siii | 0.96 | 2.42 | 3.3778 (18) | 172 |
C14—H14A···O1iv | 0.97 | 2.59 | 3.2448 (15) | 125 |
C17—H17A···O4Siv | 0.97 | 2.32 | 3.2314 (15) | 155 |
Symmetry codes: (ii) x, −y+1/2, z+1/2; (iii) −x, y−1/2, −z+1/2; (iv) x, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H1N3···O1S | 0.91 (2) | 1.86 (2) | 2.7664 (13) | 175 (2) |
O3S—H1S···O2Si | 0.94 (2) | 1.61 (2) | 2.5375 (13) | 171 (2) |
N3—H2N3···O1Sii | 0.94 (2) | 1.82 (2) | 2.7292 (14) | 162 (1) |
C1S—H1S1···O3Sii | 0.96 | 2.42 | 3.3778 (18) | 172 |
C14—H14A···O1iii | 0.97 | 2.59 | 3.2448 (15) | 125 |
C17—H17A···O4Siii | 0.97 | 2.32 | 3.2314 (15) | 155 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x, y−1/2, −z+1/2; (iii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C17H17ClN3O+·C2H3O2−·C2H4O2·0.5C6H12 |
Mr | 475.96 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 150 |
a, b, c (Å) | 21.0726 (12), 6.0393 (3), 18.6087 (10) |
β (°) | 92.096 (2) |
V (Å3) | 2366.6 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.20 |
Crystal size (mm) | 0.55 × 0.22 × 0.11 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2007) |
Tmin, Tmax | 0.647, 0.745 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18828, 4860, 4177 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.626 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.082, 1.03 |
No. of reflections | 4860 |
No. of parameters | 312 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.28, −0.22 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), ORTEP-3 for Windows (Farrugia, 2012), enCIFer (Allen et al., 2004), publCIF (Westrip, 2010).
Acknowledgements
The authors thank the UK Research Councils for funding under the project Control and Prediction of the Organic Solid State (www.cposs.org.uk). RMB thanks the Commonwealth Scholarship Commission for providing a scholarship.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bhardwaj, R. M. & Florence, A. J. (2013). Acta Cryst. E69, o752–o753. CSD CrossRef CAS IUCr Journals Google Scholar
Bhardwaj, R. M., Johnston, B. F., Oswald, I. D. H. & Florence, A. J. (2013). Acta Cryst. C69, 1273–1278. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bhardwaj, R. M., Price, L. S., Price, S. L., Reutzel-Edens, S. M., Miller, G. J., Oswald, I. D. H., Johnston, B. & Florence, A. J. (2013). Cryst. Growth Des. 13, 1602–1617. Google Scholar
Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosulich, D. B. & Lovell, F. M. (1977). Acta Cryst. B33, 1147–1154. CSD CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938. Web of Science CSD CrossRef PubMed CAS Google Scholar
Greenbla, E. & Osterber, A. (1968). Fed. Proc. 27, 438. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.