research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 139-141

Crystal structure of a mixed solvated form of amoxapine acetate

aStrathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, Scotland
*Correspondence e-mail: alastair.florence@strath.ac.uk

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 7 December 2014; accepted 24 December 2014; online 10 January 2015)

The mixed solvated salt 4-(2-chloro­dibenzo[b,f][1,4]oxazepin-11-yl)piperazin-1-ium acetate–acetic acid–cyclo­hexane (2/2/1), C17H17ClN3O+·C2H3O2·C2H4O2·0.5C6H12, crystallizes with one mol­ecule of protonated amoxapine (AXPN), an acetate anion and a mol­ecule of acetic acid together with half a mol­ecule of cyclo­hexane. In the centrosymmetric crystal, both enanti­omers of the protonated AXPN mol­ecule stack alternatively along [001]. Acetate anions connect the AXPN cations through N—H⋯O hydrogen bonding in the [010] direction, creating a sheet lying parallel to (100). The acetic acid mol­ecules are linked to the acetate anions via O—H⋯O hydrogen bonds within the sheets. Within the sheets there are also a number of C—H⋯O hydrogen bonds present. The cyclo­hexane solvent mol­ecules occupy the space between the sheets.

1. Chemical context

2-Chloro-11-(piperazin-1-yl)dibenzo[b,f][1,4]oxazepine (Amox­apine, AXPN) is a benzodiazepine derivative and exhibits anti-depressant properties (Greenbla & Osterber, 1968[Greenbla, E. & Osterber, A. (1968). Fed. Proc. 27, 438.]) with one reported crystal structure (CSD refcode: AMOXAP; Cosulich & Lovell, 1977[Cosulich, D. B. & Lovell, F. M. (1977). Acta Cryst. B33, 1147-1154.]). AXPN acetate acetic acid cyclo­hexane was obtained as a part of a wider investigation that couples experimental crystallization techniques with computational methods in order to obtain a better understanding of the factors underpinning the solid-state structure and diversity of structurally related compounds, i.e. olanzapine, clozapine, loxapine and AXPN (Bhardwaj & Florence, 2013[Bhardwaj, R. M. & Florence, A. J. (2013). Acta Cryst. E69, o752-o753.]; Bhardwaj, Johnston et al., 2013[Bhardwaj, R. M., Johnston, B. F., Oswald, I. D. H. & Florence, A. J. (2013). Acta Cryst. C69, 1273-1278.]; Bhardwaj, Price et al., 2013[Bhardwaj, R. M., Price, L. S., Price, S. L., Reutzel-Edens, S. M., Miller, G. J., Oswald, I. D. H., Johnston, B. & Florence, A. J. (2013). Cryst. Growth Des. 13, 1602-1617.]). The sample of AXPN acetate acetic acid cyclo­hexane was isolated during an experimental physical form screen of AXPN. The sample was identified as a novel form using multi-sample foil transmission X-ray powder diffraction analysis (Florence et al., 2003[Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930-1938.]). A suitable sample for single crystal X-ray diffraction analysis was obtained from slow evaporation of a saturated solution of AXPN in a 1:1 molar ratio of acetic acid and cyclo­hexane at room temperature.

[Scheme 1]

2. Structural commentary

The title compound crystallizes with one mol­ecule of protonated AXPN and an acetate anion each with a mol­ecule of acetic acid and a half mol­ecule of cyclo­hexane (which lies across a center of inversion) as solvent of crystallization in the asymmetric unit (Fig. 1[link]). The dioxazepine ring of AXPN exists in a puckered conformation between the planes of the benzene rings [the benzene rings fused to the central ring make a dihedral angle of 58.63 (6)°], and the piperazine ring adopts a chair conformation, as observed in the AXPN free base (CSD refcode: AMOXAP; Cosulich and Lovell, 1977[Cosulich, D. B. & Lovell, F. M. (1977). Acta Cryst. B33, 1147-1154.]) and structurally related analogues (Bhardwaj & Florence, 2013[Bhardwaj, R. M. & Florence, A. J. (2013). Acta Cryst. E69, o752-o753.]; Bhardwaj, Johnston et al., 2013[Bhardwaj, R. M., Johnston, B. F., Oswald, I. D. H. & Florence, A. J. (2013). Acta Cryst. C69, 1273-1278.]; Bhardwaj, Price et al., 2013[Bhardwaj, R. M., Price, L. S., Price, S. L., Reutzel-Edens, S. M., Miller, G. J., Oswald, I. D. H., Johnston, B. & Florence, A. J. (2013). Cryst. Growth Des. 13, 1602-1617.]).

[Figure 1]
Figure 1
A view of the mol­ecular structure of the asymmetric unit of the title mol­ecular salt, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, opposite enanti­omers of protonated AXPN mol­ecules stack along the c-axis direction. Each protonated AXPN mol­ecule forms two N—H⋯O hydrogen bonds with two acetate anions, which connect it to an adjacent protonated AXPN mol­ecule along the b axis, creating a sheet-like structure parallel to (100); see Fig. 2[link] and Table 1[link]. The acetic acid mol­ecules act as hydrogen-bond donors to acetate anions and are present between the protonated AXPN mol­ecules along the c-axis direction. There are also C—H⋯O hydrogen bonds present within the sheets (Table 1[link]). These sheets stack along the a axis and the cyclo­hexane mol­ecules occupy the space between the sheets (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯O1S 0.91 (2) 1.86 (2) 2.7664 (13) 175 (2)
O3S—H1S⋯O2Si 0.94 (2) 1.61 (2) 2.5375 (13) 171 (2)
N3—H2N3⋯O1Sii 0.94 (2) 1.82 (2) 2.7292 (14) 162 (1)
C1S—H1S1⋯O3Sii 0.96 2.42 3.3778 (18) 172
C14—H14A⋯O1iii 0.97 2.59 3.2448 (15) 125
C17—H17A⋯O4Siii 0.97 2.32 3.2314 (15) 155
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y-1, z.
[Figure 2]
Figure 2
The crystal packing of the title mol­ecular salt, viewed down the b axis. The cyclo­hexane mol­ecules are shown as a blue space-fill model. Hydrogen bonds are shown as green lines (see Table 1[link] for details; atom colour code: C, N, O, Cl and H are blue, violet, red, green and black, respectively; H atoms not involved in hydrogen bonding have been omitted for clarity).

4. Synthesis and crystallization

Rod-shaped crystals were grown from a saturated solution of AXPN in a 1:1 molar ratio of acetic acid and cyclo­hexane by isothermal solvent evaporation at 298 K.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The N- and O-bound H atoms were located in a difference Fourier map and freely refined. The C-bound H atoms were placed in calculated positions and refined as riding atoms: C—H = 0.95–0.99 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C17H17ClN3O+·C2H3O2·C2H4O2·0.5C6H12
Mr 475.96
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 21.0726 (12), 6.0393 (3), 18.6087 (10)
β (°) 92.096 (2)
V3) 2366.6 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.20
Crystal size (mm) 0.55 × 0.22 × 0.11
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.647, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 18828, 4860, 4177
Rint 0.018
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.082, 1.03
No. of reflections 4860
No. of parameters 312
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.28, −0.22
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

2-Chloro-11-(piperazin-1-yl)dibenzo[b,f][1,4]oxazepine (Amoxapine, AXPN) is a benzodiazepine derivative and exhibits anti-depressant properties (Greenbla & Osterber, 1968) with one reported crystal structure (CSD refcode: AMOXAP; Cosulich & Lovell, 1977). AXPN acetate acetic acid cyclo­hexane was obtained as a part of a wider investigation that couples experimental crystallization techniques with computational methods in order to obtain a better understanding of the factors underpinning the solid-state structure and diversity of structurally related compounds, i.e. olanzapine, clozapine, loxapine and AXPN (Bhardwaj & Florence, 2013; Bhardwaj, Johnston et al., 2013; Bhardwaj, Price et al., 2013). The sample of AXPN acetate acetic acid cyclo­hexane was isolated during an experimental physical form screen. The sample was identified as a novel form using multi-sample foil transmission X-ray powder diffraction analysis (Florence et al., 2003). A suitable sample for single crystal X-ray diffraction analysis was obtained from slow evaporation of a saturated solution of AXPN in a 1:1 molar ratio of acetic acid and cyclo­hexane at room temperature.

Structural commentary top

The title compound crystallizes with one molecule of protonated AXPN and an acetate anion each with a molecule of acetic acid and a half molecule of cyclo­hexane (which lies across a center of inversion) as solvent of crystallization in the asymmetric unit (Fig. 1). The dioxazepine ring of AXPN exists in a puckered conformation between the planes of the benzene rings and the piperazine ring adopts a chair conformation with the methyl group in an equatorial position, as observed in the AXPN free base (CSD refcode: AMOXAP; Cosulich and Lovell, 1977) and structurally related analogues (Bhardwaj & Florence, 2013; Bhardwaj, Johnston et al., 2013; Bhardwaj, Price et al., 2013).

Supra­molecular features top

In the crystal, opposite enanti­omers of protonated AXPN molecules stack along the c-axis direction. Each protonated AXPN molecule forms two N—H···O hydrogen bonds with two acetate anions, which connect it to an adjacent protonated AXPN molecule along the b axis, creating a sheet-like structure parallel to (100); see Fig 2 and Table 1. The acetic acid molecules act as hydrogen-bond donors to acetate anions and are present between the protonated AXPN molecules along the c-axis direction. There are also C—H···O hydrogen bonds present within the sheets (Table 1). These sheets stack along the a axis and the cyclo­hexane molecules occupy the space between the sheets (Fig. 2).

Synthesis and crystallization top

A single rod-shaped crystal was grown from a saturated solution of AXPN in a 1:1 molar ratio of acetic acid and cyclo­hexane by isothermal solvent evaporation at 298 K.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The N- and O-bound H atoms were located in a difference Fourier map and freely refined. The C-bound H atoms were placed in calculated positions and refined as riding atoms: C—H = 0.95–0.99 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Related literature top

For related literature, see: Bhardwaj & Florence (2013); Bhardwaj, Johnston, Oswald & Florence (2013); Bhardwaj, Price, Price, Reutzel-Edens, Miller, Oswald, Johnston & Florence (2013); Cosulich & Lovell (1977); Florence et al. (2003); Greenbla & Osterber (1968).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008), ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: enCIFer (Allen et al., 2004), publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the asymmetric unit of the title molecular salt, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title molecular salt, viewed along the b axis. The cyclohexane molecules are shown as a blue space-fill model. Hydrogen bonds are shown as green lines (see Table 1 for details; atom colour code: C, N, O, Cl and H are blue, violet, red, green and black, respectively; H atoms not involved in hydrogen bonding have been omitted for clarity).
4-(2-Chlorodibenzo[b,f][1,4]oxazepin-11-yl)piperazin-1-ium acetate–acetic acid–cyclohexane (2/2/1) top
Crystal data top
C17H17ClN3O+·C2H3O2·C2H4O2·0.5C6H12F(000) = 1008
Mr = 475.96Dx = 1.336 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9940 reflections
a = 21.0726 (12) Åθ = 2.9–26.4°
b = 6.0393 (3) ŵ = 0.20 mm1
c = 18.6087 (10) ÅT = 150 K
β = 92.096 (2)°Rod, colourless
V = 2366.6 (2) Å30.55 × 0.22 × 0.11 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4860 independent reflections
Radiation source: fine-focus sealed tube4177 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 26.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 2626
Tmin = 0.647, Tmax = 0.745k = 67
18828 measured reflectionsl = 2321
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0383P)2 + 1.089P]
where P = (Fo2 + 2Fc2)/3
4860 reflections(Δ/σ)max = 0.001
312 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C17H17ClN3O+·C2H3O2·C2H4O2·0.5C6H12V = 2366.6 (2) Å3
Mr = 475.96Z = 4
Monoclinic, P21/cMo Kα radiation
a = 21.0726 (12) ŵ = 0.20 mm1
b = 6.0393 (3) ÅT = 150 K
c = 18.6087 (10) Å0.55 × 0.22 × 0.11 mm
β = 92.096 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4860 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
4177 reflections with I > 2σ(I)
Tmin = 0.647, Tmax = 0.745Rint = 0.018
18828 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.28 e Å3
4860 reflectionsΔρmin = 0.22 e Å3
312 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H2N30.0503 (7)0.014 (3)0.3171 (8)0.029 (4)*
H1N30.0584 (7)0.167 (3)0.2658 (9)0.025 (4)*
H1S0.1043 (10)0.564 (4)0.5635 (12)0.064 (6)*
Cl0.276361 (16)0.39554 (6)0.594267 (17)0.02772 (10)
O10.30157 (4)0.90957 (15)0.32837 (5)0.0225 (2)
O2S0.07221 (4)0.03016 (16)0.13430 (5)0.0259 (2)
O1S0.01425 (4)0.28471 (16)0.18632 (5)0.0234 (2)
N30.07793 (5)0.09975 (18)0.30430 (6)0.0161 (2)
N20.19325 (5)0.34168 (17)0.31916 (5)0.0160 (2)
N10.27645 (5)0.48819 (18)0.25813 (6)0.0196 (2)
C40.33285 (6)0.6088 (2)0.25098 (7)0.0198 (3)
C60.25997 (5)0.4584 (2)0.45099 (6)0.0177 (2)
H60.24040.32040.45010.021*
C2S0.03703 (5)0.1974 (2)0.13128 (6)0.0175 (2)
C50.24619 (5)0.4789 (2)0.31684 (6)0.0170 (2)
C20.29573 (5)0.7852 (2)0.39086 (7)0.0183 (3)
C80.31125 (6)0.7556 (2)0.51865 (7)0.0228 (3)
H80.32560.81400.56250.027*
C150.13972 (6)0.0041 (2)0.28291 (6)0.0167 (2)
H15A0.13260.10060.24390.020*
H15B0.15960.07410.32330.020*
C10.26655 (5)0.5783 (2)0.38728 (7)0.0168 (2)
C170.08763 (5)0.2614 (2)0.36432 (6)0.0169 (2)
H17A0.10440.18550.40680.020*
H17B0.04730.32780.37570.020*
C70.28300 (6)0.5483 (2)0.51529 (7)0.0200 (3)
C90.31772 (6)0.8743 (2)0.45570 (7)0.0219 (3)
H90.33681.01330.45690.026*
C160.13360 (5)0.4404 (2)0.34257 (7)0.0164 (2)
H16A0.11450.52760.30370.020*
H16B0.14250.53840.38300.020*
C100.39883 (6)0.9372 (2)0.26691 (7)0.0264 (3)
H100.40591.07450.28840.032*
C30.34532 (6)0.8156 (2)0.28257 (7)0.0208 (3)
C130.37702 (6)0.5278 (2)0.20305 (7)0.0234 (3)
H130.37010.39110.18110.028*
C140.18287 (6)0.1887 (2)0.25899 (6)0.0167 (2)
H14A0.22310.12800.24460.020*
H14B0.16340.26600.21820.020*
C120.43094 (6)0.6479 (3)0.18768 (7)0.0275 (3)
H120.46000.59040.15620.033*
C1S0.02027 (7)0.2996 (3)0.05945 (7)0.0298 (3)
H1S10.01770.23230.03960.045*
H1S20.05440.27630.02750.045*
H1S30.01340.45560.06530.045*
C110.44173 (6)0.8535 (3)0.21911 (8)0.0297 (3)
H110.47760.93480.20820.036*
O4S0.15853 (5)0.90631 (17)0.46941 (5)0.0285 (2)
O3S0.11677 (5)0.61112 (17)0.51804 (5)0.0266 (2)
C4S0.16200 (7)0.8869 (2)0.59805 (7)0.0292 (3)
H4S10.17801.03540.59580.044*
H4S20.19370.79260.62020.044*
H4S30.12460.88490.62590.044*
C3S0.14591 (6)0.8053 (2)0.52335 (7)0.0212 (3)
C6S0.44669 (7)0.4352 (3)0.45153 (8)0.0347 (4)
H6S10.46590.32590.42090.042*
H6S20.40240.45050.43620.042*
C5S0.45086 (7)0.3553 (3)0.52918 (9)0.0363 (4)
H5S10.43170.20970.53220.044*
H5S20.42740.45550.55910.044*
C7S0.48016 (7)0.6561 (3)0.44293 (9)0.0370 (4)
H7S10.45800.76930.46910.044*
H7S20.47890.69740.39250.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.02984 (17)0.0361 (2)0.01704 (16)0.00076 (14)0.00169 (12)0.00358 (14)
O10.0221 (4)0.0177 (4)0.0275 (5)0.0006 (4)0.0010 (4)0.0056 (4)
O2S0.0311 (5)0.0282 (5)0.0183 (5)0.0132 (4)0.0001 (4)0.0000 (4)
O1S0.0258 (5)0.0263 (5)0.0179 (4)0.0112 (4)0.0001 (4)0.0005 (4)
N30.0174 (5)0.0156 (5)0.0151 (5)0.0033 (4)0.0012 (4)0.0029 (4)
N20.0154 (5)0.0161 (5)0.0165 (5)0.0018 (4)0.0005 (4)0.0018 (4)
N10.0178 (5)0.0222 (5)0.0186 (5)0.0040 (4)0.0010 (4)0.0033 (4)
C40.0183 (6)0.0232 (7)0.0175 (6)0.0036 (5)0.0034 (5)0.0071 (5)
C60.0149 (5)0.0185 (6)0.0197 (6)0.0015 (5)0.0005 (4)0.0006 (5)
C2S0.0154 (5)0.0197 (6)0.0174 (6)0.0009 (5)0.0012 (4)0.0017 (5)
C50.0164 (5)0.0151 (6)0.0192 (6)0.0001 (5)0.0024 (4)0.0025 (5)
C20.0146 (5)0.0179 (6)0.0223 (6)0.0017 (5)0.0010 (5)0.0020 (5)
C80.0184 (6)0.0274 (7)0.0222 (6)0.0019 (5)0.0036 (5)0.0073 (6)
C150.0201 (6)0.0144 (6)0.0155 (6)0.0002 (5)0.0011 (4)0.0011 (5)
C10.0133 (5)0.0175 (6)0.0196 (6)0.0010 (4)0.0013 (4)0.0007 (5)
C170.0171 (5)0.0184 (6)0.0154 (6)0.0001 (5)0.0010 (4)0.0006 (5)
C70.0166 (6)0.0259 (7)0.0175 (6)0.0040 (5)0.0005 (5)0.0011 (5)
C90.0164 (6)0.0192 (6)0.0298 (7)0.0009 (5)0.0021 (5)0.0047 (5)
C160.0173 (6)0.0141 (6)0.0179 (6)0.0001 (4)0.0003 (4)0.0003 (5)
C100.0266 (7)0.0256 (7)0.0264 (7)0.0086 (6)0.0048 (5)0.0074 (6)
C30.0184 (6)0.0235 (7)0.0202 (6)0.0008 (5)0.0029 (5)0.0074 (5)
C130.0228 (6)0.0281 (7)0.0193 (6)0.0038 (5)0.0009 (5)0.0039 (6)
C140.0176 (5)0.0173 (6)0.0150 (6)0.0011 (5)0.0001 (4)0.0002 (5)
C120.0211 (6)0.0394 (8)0.0221 (7)0.0036 (6)0.0017 (5)0.0069 (6)
C1S0.0350 (7)0.0344 (8)0.0197 (7)0.0083 (6)0.0014 (6)0.0068 (6)
C110.0221 (6)0.0392 (8)0.0278 (7)0.0122 (6)0.0008 (5)0.0099 (6)
O4S0.0308 (5)0.0296 (5)0.0254 (5)0.0071 (4)0.0062 (4)0.0109 (4)
O3S0.0309 (5)0.0308 (5)0.0182 (5)0.0071 (4)0.0018 (4)0.0010 (4)
C4S0.0341 (7)0.0292 (8)0.0244 (7)0.0058 (6)0.0035 (6)0.0020 (6)
C3S0.0188 (6)0.0233 (7)0.0215 (6)0.0054 (5)0.0027 (5)0.0031 (5)
C6S0.0226 (7)0.0481 (9)0.0332 (8)0.0057 (6)0.0017 (6)0.0085 (7)
C5S0.0256 (7)0.0440 (9)0.0394 (9)0.0011 (6)0.0031 (6)0.0021 (7)
C7S0.0302 (8)0.0467 (9)0.0341 (8)0.0076 (7)0.0009 (6)0.0030 (7)
Geometric parameters (Å, º) top
Cl—C71.7450 (13)C16—H16A0.9700
O1—C21.3936 (15)C16—H16B0.9700
O1—C31.3985 (16)C10—C31.3856 (18)
O2S—C2S1.2529 (15)C10—C111.387 (2)
O1S—C2S1.2623 (15)C10—H100.9300
N3—C151.4918 (15)C13—C121.3866 (18)
N3—C171.4919 (16)C13—H130.9300
N3—H2N30.938 (17)C14—H14A0.9700
N3—H1N30.908 (16)C14—H14B0.9700
N2—C51.3916 (15)C12—C111.388 (2)
N2—C141.4618 (15)C12—H120.9300
N2—C161.4716 (15)C1S—H1S10.9600
N1—C51.2863 (16)C1S—H1S20.9600
N1—C41.4044 (16)C1S—H1S30.9600
C4—C131.4006 (19)C11—H110.9300
C4—C31.4010 (19)O4S—C3S1.2125 (16)
C6—C71.3852 (17)O3S—C3S1.3256 (16)
C6—C11.4005 (17)O3S—H1S0.94 (2)
C6—H60.9300C4S—C3S1.5019 (19)
C2S—C1S1.5027 (17)C4S—H4S10.9600
C5—C11.4905 (17)C4S—H4S20.9600
C2—C91.3854 (18)C4S—H4S30.9600
C2—C11.3929 (17)C6S—C7S1.520 (2)
C8—C91.3845 (19)C6S—C5S1.523 (2)
C8—C71.3867 (19)C6S—H6S10.9700
C8—H80.9300C6S—H6S20.9700
C15—C141.5156 (16)C5S—C7Si1.527 (2)
C15—H15A0.9700C5S—H5S10.9700
C15—H15B0.9700C5S—H5S20.9700
C17—C161.5164 (16)C7S—C5Si1.527 (2)
C17—H17A0.9700C7S—H7S10.9700
C17—H17B0.9700C7S—H7S20.9700
C9—H90.9300
C2—O1—C3111.72 (9)C3—C10—C11119.77 (13)
C15—N3—C17110.86 (9)C3—C10—H10120.1
C15—N3—H2N3110.0 (10)C11—C10—H10120.1
C17—N3—H2N3111.0 (10)C10—C3—O1118.21 (12)
C15—N3—H1N3109.7 (9)C10—C3—C4121.72 (13)
C17—N3—H1N3110.1 (10)O1—C3—C4119.99 (11)
H2N3—N3—H1N3105.1 (13)C12—C13—C4121.16 (13)
C5—N2—C14116.76 (10)C12—C13—H13119.4
C5—N2—C16117.53 (10)C4—C13—H13119.4
C14—N2—C16112.18 (9)N2—C14—C15108.33 (9)
C5—N1—C4123.41 (11)N2—C14—H14A110.0
C13—C4—C3117.37 (12)C15—C14—H14A110.0
C13—C4—N1117.62 (12)N2—C14—H14B110.0
C3—C4—N1124.68 (12)C15—C14—H14B110.0
C7—C6—C1119.10 (12)H14A—C14—H14B108.4
C7—C6—H6120.4C13—C12—C11120.26 (13)
C1—C6—H6120.4C13—C12—H12119.9
O2S—C2S—O1S122.84 (11)C11—C12—H12119.9
O2S—C2S—C1S119.38 (11)C2S—C1S—H1S1109.5
O1S—C2S—C1S117.79 (11)C2S—C1S—H1S2109.5
N1—C5—N2118.38 (11)H1S1—C1S—H1S2109.5
N1—C5—C1126.41 (11)C2S—C1S—H1S3109.5
N2—C5—C1114.71 (10)H1S1—C1S—H1S3109.5
C9—C2—C1121.55 (12)H1S2—C1S—H1S3109.5
C9—C2—O1118.71 (11)C10—C11—C12119.73 (13)
C1—C2—O1119.72 (11)C10—C11—H11120.1
C9—C8—C7119.01 (12)C12—C11—H11120.1
C9—C8—H8120.5C3S—O3S—H1S110.1 (14)
C7—C8—H8120.5C3S—C4S—H4S1109.5
N3—C15—C14109.42 (10)C3S—C4S—H4S2109.5
N3—C15—H15A109.8H4S1—C4S—H4S2109.5
C14—C15—H15A109.8C3S—C4S—H4S3109.5
N3—C15—H15B109.8H4S1—C4S—H4S3109.5
C14—C15—H15B109.8H4S2—C4S—H4S3109.5
H15A—C15—H15B108.2O4S—C3S—O3S119.90 (12)
C2—C1—C6118.71 (11)O4S—C3S—C4S123.51 (13)
C2—C1—C5121.06 (11)O3S—C3S—C4S116.59 (11)
C6—C1—C5120.13 (11)C7S—C6S—C5S111.54 (13)
N3—C17—C16109.77 (9)C7S—C6S—H6S1109.3
N3—C17—H17A109.7C5S—C6S—H6S1109.3
C16—C17—H17A109.7C7S—C6S—H6S2109.3
N3—C17—H17B109.7C5S—C6S—H6S2109.3
C16—C17—H17B109.7H6S1—C6S—H6S2108.0
H17A—C17—H17B108.2C6S—C5S—C7Si110.96 (13)
C6—C7—C8121.92 (12)C6S—C5S—H5S1109.4
C6—C7—Cl118.96 (10)C7Si—C5S—H5S1109.4
C8—C7—Cl119.13 (10)C6S—C5S—H5S2109.4
C8—C9—C2119.70 (12)C7Si—C5S—H5S2109.4
C8—C9—H9120.2H5S1—C5S—H5S2108.0
C2—C9—H9120.2C6S—C7S—C5Si111.37 (13)
N2—C16—C17110.55 (10)C6S—C7S—H7S1109.4
N2—C16—H16A109.5C5Si—C7S—H7S1109.4
C17—C16—H16A109.5C6S—C7S—H7S2109.4
N2—C16—H16B109.5C5Si—C7S—H7S2109.4
C17—C16—H16B109.5H7S1—C7S—H7S2108.0
H16A—C16—H16B108.1
C5—N1—C4—C13148.72 (12)C9—C8—C7—Cl178.58 (9)
C5—N1—C4—C338.18 (18)C7—C8—C9—C20.34 (18)
C4—N1—C5—N2175.55 (11)C1—C2—C9—C80.53 (18)
C4—N1—C5—C14.1 (2)O1—C2—C9—C8178.70 (11)
C14—N2—C5—N110.69 (16)C5—N2—C16—C17162.34 (10)
C16—N2—C5—N1127.00 (12)C14—N2—C16—C1758.13 (12)
C14—N2—C5—C1161.70 (10)N3—C17—C16—N254.59 (12)
C16—N2—C5—C160.61 (14)C11—C10—C3—O1177.05 (11)
C3—O1—C2—C9111.88 (12)C11—C10—C3—C40.4 (2)
C3—O1—C2—C169.92 (13)C2—O1—C3—C10117.96 (12)
C17—N3—C15—C1459.51 (12)C2—O1—C3—C465.30 (14)
C9—C2—C1—C60.46 (17)C13—C4—C3—C100.51 (18)
O1—C2—C1—C6178.62 (10)N1—C4—C3—C10172.60 (12)
C9—C2—C1—C5176.70 (11)C13—C4—C3—O1177.14 (11)
O1—C2—C1—C55.14 (17)N1—C4—C3—O14.02 (18)
C7—C6—C1—C20.46 (17)C3—C4—C13—C120.09 (18)
C7—C6—C1—C5175.81 (11)N1—C4—C13—C12173.70 (12)
N1—C5—C1—C238.92 (18)C5—N2—C14—C15159.85 (10)
N2—C5—C1—C2149.41 (11)C16—N2—C14—C1560.29 (12)
N1—C5—C1—C6137.27 (13)N3—C15—C14—N260.12 (12)
N2—C5—C1—C634.41 (16)C4—C13—C12—C110.8 (2)
C15—N3—C17—C1656.29 (12)C3—C10—C11—C120.4 (2)
C1—C6—C7—C81.35 (18)C13—C12—C11—C101.0 (2)
C1—C6—C7—Cl178.52 (9)C7S—C6S—C5S—C7Si55.20 (19)
C9—C8—C7—C61.29 (18)C5S—C6S—C7S—C5Si55.42 (18)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···O1S0.91 (2)1.86 (2)2.7664 (13)175 (2)
O3S—H1S···O2Sii0.94 (2)1.61 (2)2.5375 (13)171 (2)
N3—H2N3···O1Siii0.94 (2)1.82 (2)2.7292 (14)162 (1)
C1S—H1S1···O3Siii0.962.423.3778 (18)172
C14—H14A···O1iv0.972.593.2448 (15)125
C17—H17A···O4Siv0.972.323.2314 (15)155
Symmetry codes: (ii) x, y+1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···O1S0.91 (2)1.86 (2)2.7664 (13)175 (2)
O3S—H1S···O2Si0.94 (2)1.61 (2)2.5375 (13)171 (2)
N3—H2N3···O1Sii0.94 (2)1.82 (2)2.7292 (14)162 (1)
C1S—H1S1···O3Sii0.962.423.3778 (18)172
C14—H14A···O1iii0.972.593.2448 (15)125
C17—H17A···O4Siii0.972.323.2314 (15)155
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC17H17ClN3O+·C2H3O2·C2H4O2·0.5C6H12
Mr475.96
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)21.0726 (12), 6.0393 (3), 18.6087 (10)
β (°) 92.096 (2)
V3)2366.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.55 × 0.22 × 0.11
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.647, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
18828, 4860, 4177
Rint0.018
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.082, 1.03
No. of reflections4860
No. of parameters312
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.22

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), ORTEP-3 for Windows (Farrugia, 2012), enCIFer (Allen et al., 2004), publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank the UK Research Councils for funding under the project Control and Prediction of the Organic Solid State (www.cposs.org.uk). RMB thanks the Commonwealth Scholarship Commission for providing a scholarship.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBhardwaj, R. M. & Florence, A. J. (2013). Acta Cryst. E69, o752–o753.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBhardwaj, R. M., Johnston, B. F., Oswald, I. D. H. & Florence, A. J. (2013). Acta Cryst. C69, 1273–1278.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBhardwaj, R. M., Price, L. S., Price, S. L., Reutzel-Edens, S. M., Miller, G. J., Oswald, I. D. H., Johnston, B. & Florence, A. J. (2013). Cryst. Growth Des. 13, 1602–1617.  Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosulich, D. B. & Lovell, F. M. (1977). Acta Cryst. B33, 1147–1154.  CSD CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlorence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGreenbla, E. & Osterber, A. (1968). Fed. Proc. 27, 438.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 139-141
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds