organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of ethyl 6-bromo-2-[(E)-2-phenyl­ethen­yl]quinoline-4-carboxyl­ate

aDepartment of Chemistry, Kuvempu University, Jnanasahyadri, Shankaraghatta 577 451, India, bInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, cDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysuru 570 005, India, dDepartment of Chemistry, Kuvempu University, Jnanasahyadri, Shankaraghatta 577451, India, and eDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India
*Correspondence e-mail: lokanath@physics.uni-mysore.ac.in

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 10 December 2014; accepted 31 December 2014; online 17 January 2015)

In the title compound, C20H16BrNO2, the dihedral angle between the quinolone ring system mean plane (r.m.s. deviation = 0.018 Å) and the phenyl ring bridged by the ethynyl group, is 25.44 (14)°. There is an intra­molecular C—H⋯O hydrogen bond forming an S(6) ring motif. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds forming chains propagating along the b-axis direction.

1. Related literature

For pharmaceutical and pharmacological activities of quinolines, see: Beagley et al. (2003[Beagley, P., Blackie, M. A., Chibale, K., Clarkson, C., Moss, J. R., Smith, P. & Su, H. (2003). J. Chem. Soc. Dalton Trans. pp. 3046-3051.]). The title compound was synthesized in a continuation of our work on new quinoline-based therapeutic agents, see: Pradeep et al. (2014[Pradeep, P. S., Naveen, S., Kumara, M. N., Mahadevan, K. M. & Lokanath, N. K. (2014). Acta Cryst. E70, o981-o982.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C20H16BrNO2

  • Mr = 382.24

  • Orthorhombic, P b c a

  • a = 14.0819 (7) Å

  • b = 9.7470 (5) Å

  • c = 24.0399 (12) Å

  • V = 3299.6 (3) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 3.49 mm−1

  • T = 293 K

  • 0.30 × 0.27 × 0.25 mm

2.2. Data collection

  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.421, Tmax = 0.476

  • 12970 measured reflections

  • 2722 independent reflections

  • 2213 reflections with I > 2σ(I)

  • Rint = 0.071

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.134

  • S = 1.04

  • 2722 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.92 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O13 0.93 2.22 2.848 (4) 124
C15—H15A⋯O13i 0.97 2.51 3.413 (4) 154
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Quinolines have been considered as the most prevalent N-hetero aromatic compounds that exhibit a wide spectrum of pharmaceutical and pharmacological activities (Beagley et al., 2003). Some of the quinoline-4-carboxylates were reported to possess potent 5HT3 antagonizing activity and anti-emetic activity. In view of their broad spectrum of medicinal properties and in continuation of our work on new quinoline based therapeutic agents (Pradeep et al., 2014), the title compound was synthesized, and we report herein on its crystal structure.

The molecular structure of the title molecule is shown in Fig. 1. The quinoline ring system (N1/C2-C10) is planar with the maximum deviations from the mean plane being for atoms C8 and C5 viz. 0.018 (2) Å. The dihedral angle between the quinoline ring and the phenyl ring (C19–C24) bridged by the ethynyl group is 25.44 (14)°. The two rings of the quinolyl moiety are fused in an axial fashion and form a dihedral angle of 1.15 (13)°.

In the crystal, molecules are linked via C–H···O hydrogen bonds forming chains propagating along the b axis direction (Table 1 and Fig. 2).

Related literature top

For pharmaceutical and pharmacological activities of quinolines, see: Beagley et al. (2003). The title compound was synthesized in a continuation of our work on new quinoline-based therapeutic agents, see: Pradeep et al. (2014).

Experimental top

A mixture of 2-aryl-6-chloro/bromo quinoline-4-carboxylic acid (1.0 g) and absolute EtOH (15 ml) was stirred at 273 - 278 K. The concentrated sulfuric acid (2 - 3 ml) was added drop wise into the flask until the powdered 2-aryl-6-chloroquinoline-4-carboxylic acid was completely dissolved. The solution was then refluxed for 15–17 h. The completion of the reaction was monitored by thin layer chromatography [hexane and ethyl acetate (9:1 v/v)]. The reaction mixture was poured into a crushed ice (100 ml), the precipitate was collected by filtration, washed with water and EtOH, dried under vacuum to afford crude product. The crude product was purified by column chromatography using silica gel (60–120 mesh, petroleum ether: ethyl acetate, 9:1 v/v). Green block-shaped crystals were obtained by slow evaporation of the solvent.

1H-NMR(400 MHz, CDCl3): δ = 8.95 (d, J = 2.00 Hz, 1H), 8.17 (s, 1H), 7.99 (d, J = 4.40 Hz, 1H), 7.82 (d, J = 2.40 Hz, 1H), 7.81 (t, J = 2.00 Hz, 1H), 7.75 (s, 1H), 7.65 (d, J = 7.20 Hz, 1H), 7.35–7.35 (m, 4H), 4.54 (q, J = 7.20 Hz, 2H), 1.46–1.49 (m, 3H) p.p.m.. MS (70 eV) m/z (%): 382.0 (M+).

Refinement top

All the H atoms were fixed geometrically (C—H = 0.93–0.96 Å and allowed to ride on their parent atoms with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular hydrogen bond is shown as dashed line (see Table 1 for details).
[Figure 2] Fig. 2. A partial view along the a axis of the crystal packing of the title compound. The intra- and inter-molecular hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms: grey balls; H atoms not involved in hydrogen bonding have been omitted for clarity).
Ethyl 6-bromo-2-[(E)-2-phenylethenyl]quinoline-4-carboxylate top
Crystal data top
C20H16BrNO2F(000) = 1552
Mr = 382.24Dx = 1.539 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ac 2abCell parameters from 2722 reflections
a = 14.0819 (7) Åθ = 5.8–64.5°
b = 9.7470 (5) ŵ = 3.49 mm1
c = 24.0399 (12) ÅT = 293 K
V = 3299.6 (3) Å3Block, green
Z = 80.30 × 0.27 × 0.25 mm
Data collection top
Bruker X8 Proteum
diffractometer
2722 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode2213 reflections with I > 2σ(I)
Helios multilayer optics monochromatorRint = 0.071
Detector resolution: 18.4 pixels mm-1θmax = 64.5°, θmin = 5.8°
ϕ and ω scansh = 1615
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1111
Tmin = 0.421, Tmax = 0.476l = 2827
12970 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0857P)2]
where P = (Fo2 + 2Fc2)/3
2722 reflections(Δ/σ)max = 0.001
218 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = 0.92 e Å3
Crystal data top
C20H16BrNO2V = 3299.6 (3) Å3
Mr = 382.24Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 14.0819 (7) ŵ = 3.49 mm1
b = 9.7470 (5) ÅT = 293 K
c = 24.0399 (12) Å0.30 × 0.27 × 0.25 mm
Data collection top
Bruker X8 Proteum
diffractometer
2722 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
2213 reflections with I > 2σ(I)
Tmin = 0.421, Tmax = 0.476Rint = 0.071
12970 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.04Δρmax = 0.78 e Å3
2722 reflectionsΔρmin = 0.92 e Å3
218 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br110.40232 (3)0.12926 (3)0.45926 (2)0.0260 (2)
O130.3502 (2)0.6096 (2)0.39081 (10)0.0299 (8)
O140.32650 (17)0.8275 (2)0.41637 (9)0.0225 (7)
N10.3740 (2)0.6330 (3)0.60400 (12)0.0194 (9)
C20.3819 (2)0.5243 (3)0.56849 (15)0.0186 (9)
C30.4009 (2)0.3948 (4)0.59271 (17)0.0235 (11)
C40.4086 (2)0.2801 (4)0.56073 (17)0.0252 (11)
C50.3971 (2)0.2916 (3)0.50306 (16)0.0212 (10)
C60.3799 (2)0.4140 (3)0.47707 (15)0.0186 (10)
C70.3720 (2)0.5345 (3)0.50974 (14)0.0169 (9)
C80.3536 (2)0.6688 (3)0.48784 (14)0.0170 (9)
C90.3445 (2)0.7753 (3)0.52462 (14)0.0194 (10)
C100.3557 (2)0.7552 (3)0.58248 (14)0.0183 (9)
C120.3436 (2)0.6941 (3)0.42679 (14)0.0191 (10)
C150.3129 (3)0.8638 (3)0.35775 (15)0.0256 (11)
C160.4064 (3)0.8926 (4)0.33011 (17)0.0305 (11)
C170.3493 (2)0.8754 (3)0.61965 (15)0.0208 (10)
C180.3704 (3)0.8739 (3)0.67333 (15)0.0208 (11)
C190.3718 (2)0.9924 (3)0.71107 (14)0.0189 (9)
C200.3281 (3)1.1179 (3)0.69823 (15)0.0237 (11)
C210.3389 (3)1.2296 (3)0.73304 (16)0.0251 (10)
C220.3913 (2)1.2187 (4)0.78153 (15)0.0237 (11)
C230.4324 (3)1.0941 (4)0.79619 (15)0.0246 (10)
C240.4218 (3)0.9823 (3)0.76129 (14)0.0216 (10)
H30.408200.387900.631100.0280*
H40.421300.195400.576900.0300*
H60.373400.418000.438600.0220*
H90.330800.862600.511300.0230*
H15A0.272600.944300.355200.0310*
H15B0.281300.788900.338700.0310*
H16A0.438900.963900.350000.0460*
H16B0.395600.921400.292400.0460*
H16C0.444400.810900.330200.0460*
H170.329000.958000.604300.0250*
H180.385800.789200.688700.0250*
H200.291701.125900.666100.0280*
H210.310601.312800.723800.0300*
H220.399201.294900.804300.0290*
H230.466501.085900.829100.0300*
H240.448500.898600.771400.0260*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br110.0262 (3)0.0137 (3)0.0382 (3)0.0007 (1)0.0011 (2)0.0051 (1)
O130.0497 (17)0.0187 (12)0.0212 (14)0.0009 (11)0.0006 (12)0.0020 (10)
O140.0314 (13)0.0173 (11)0.0189 (12)0.0030 (10)0.0002 (10)0.0021 (10)
N10.0182 (14)0.0181 (15)0.0218 (16)0.0046 (10)0.0005 (12)0.0002 (11)
C20.0163 (15)0.0166 (16)0.0229 (18)0.0042 (13)0.0002 (14)0.0001 (14)
C30.026 (2)0.0204 (18)0.024 (2)0.0024 (13)0.0019 (14)0.0032 (15)
C40.0229 (19)0.0166 (18)0.036 (2)0.0019 (13)0.0029 (15)0.0059 (16)
C50.0158 (17)0.0159 (17)0.032 (2)0.0005 (12)0.0000 (13)0.0022 (15)
C60.0162 (16)0.0160 (16)0.0236 (18)0.0038 (13)0.0008 (14)0.0003 (14)
C70.0136 (15)0.0133 (16)0.0239 (18)0.0019 (13)0.0010 (13)0.0003 (13)
C80.0140 (15)0.0157 (15)0.0213 (18)0.0035 (13)0.0005 (13)0.0023 (13)
C90.0208 (17)0.0154 (16)0.0220 (18)0.0019 (13)0.0015 (14)0.0006 (13)
C100.0157 (16)0.0182 (16)0.0211 (17)0.0029 (13)0.0004 (13)0.0018 (13)
C120.0202 (17)0.0158 (15)0.0212 (18)0.0003 (13)0.0009 (13)0.0006 (14)
C150.032 (2)0.0246 (18)0.0201 (19)0.0066 (14)0.0022 (15)0.0029 (14)
C160.043 (2)0.0216 (18)0.027 (2)0.0002 (15)0.0061 (16)0.0010 (16)
C170.0218 (17)0.0154 (16)0.0253 (19)0.0014 (13)0.0009 (14)0.0010 (13)
C180.0209 (18)0.0174 (17)0.024 (2)0.0010 (13)0.0021 (14)0.0001 (13)
C190.0180 (15)0.0179 (15)0.0207 (17)0.0031 (13)0.0030 (14)0.0007 (14)
C200.0236 (19)0.0276 (18)0.0200 (19)0.0020 (14)0.0020 (14)0.0011 (14)
C210.0296 (19)0.0190 (16)0.0267 (19)0.0063 (14)0.0016 (15)0.0004 (15)
C220.0267 (19)0.0232 (17)0.0213 (19)0.0062 (14)0.0043 (14)0.0063 (14)
C230.0257 (18)0.0279 (17)0.0203 (18)0.0015 (15)0.0031 (15)0.0007 (15)
C240.0264 (18)0.0189 (16)0.0194 (17)0.0016 (14)0.0007 (14)0.0039 (14)
Geometric parameters (Å, º) top
Br11—C51.902 (3)C19—C241.401 (5)
O13—C121.198 (4)C20—C211.382 (5)
O14—C121.346 (4)C21—C221.384 (5)
O14—C151.466 (4)C22—C231.391 (5)
N1—C21.365 (4)C23—C241.383 (5)
N1—C101.324 (4)C3—H30.9300
C2—C31.416 (5)C4—H40.9300
C2—C71.423 (5)C6—H60.9300
C3—C41.361 (6)C9—H90.9300
C4—C51.400 (6)C15—H15A0.9700
C5—C61.368 (4)C15—H15B0.9700
C6—C71.417 (4)C16—H16A0.9600
C7—C81.435 (4)C16—H16B0.9600
C8—C91.370 (4)C16—H16C0.9600
C8—C121.495 (5)C17—H170.9300
C9—C101.414 (5)C18—H180.9300
C10—C171.476 (4)C20—H200.9300
C15—C161.501 (6)C21—H210.9300
C17—C181.324 (5)C22—H220.9300
C18—C191.469 (4)C23—H230.9300
C19—C201.404 (4)C24—H240.9300
C12—O14—C15115.8 (2)C19—C24—C23121.4 (3)
C2—N1—C10118.0 (3)C2—C3—H3120.00
N1—C2—C3116.8 (3)C4—C3—H3119.00
N1—C2—C7124.0 (3)C3—C4—H4121.00
C3—C2—C7119.3 (3)C5—C4—H4120.00
C2—C3—C4121.0 (4)C5—C6—H6121.00
C3—C4—C5119.0 (3)C7—C6—H6121.00
Br11—C5—C4118.5 (2)C8—C9—H9119.00
Br11—C5—C6118.6 (3)C10—C9—H9119.00
C4—C5—C6122.8 (3)O14—C15—H15A109.00
C5—C6—C7118.9 (3)O14—C15—H15B109.00
C2—C7—C6119.0 (3)C16—C15—H15A109.00
C2—C7—C8116.5 (3)C16—C15—H15B110.00
C6—C7—C8124.5 (3)H15A—C15—H15B108.00
C7—C8—C9118.1 (3)C15—C16—H16A109.00
C7—C8—C12121.9 (3)C15—C16—H16B109.00
C9—C8—C12120.0 (3)C15—C16—H16C109.00
C8—C9—C10121.3 (3)H16A—C16—H16B110.00
N1—C10—C9122.1 (3)H16A—C16—H16C110.00
N1—C10—C17119.3 (3)H16B—C16—H16C109.00
C9—C10—C17118.6 (3)C10—C17—H17118.00
O13—C12—O14122.9 (3)C18—C17—H17118.00
O13—C12—C8126.0 (3)C17—C18—H18117.00
O14—C12—C8111.0 (3)C19—C18—H18117.00
O14—C15—C16110.9 (3)C19—C20—H20120.00
C10—C17—C18124.6 (3)C21—C20—H20120.00
C17—C18—C19126.6 (3)C20—C21—H21120.00
C18—C19—C20122.9 (3)C22—C21—H21120.00
C18—C19—C24118.9 (3)C21—C22—H22120.00
C20—C19—C24118.1 (3)C23—C22—H22120.00
C19—C20—C21120.4 (3)C22—C23—H23120.00
C20—C21—C22120.6 (3)C24—C23—H23120.00
C21—C22—C23120.2 (3)C19—C24—H24119.00
C22—C23—C24119.3 (3)C23—C24—H24119.00
C15—O14—C12—O132.1 (4)C2—C7—C8—C12178.8 (3)
C15—O14—C12—C8178.5 (3)C7—C8—C9—C101.9 (4)
C12—O14—C15—C1686.7 (3)C12—C8—C9—C10178.6 (3)
C2—N1—C10—C17178.4 (3)C7—C8—C12—O130.6 (5)
C2—N1—C10—C90.1 (4)C9—C8—C12—O140.4 (4)
C10—N1—C2—C3179.6 (3)C7—C8—C12—O14179.9 (3)
C10—N1—C2—C70.2 (4)C9—C8—C12—O13179.9 (3)
C7—C2—C3—C40.8 (4)C8—C9—C10—N11.0 (4)
C3—C2—C7—C61.0 (4)C8—C9—C10—C17177.3 (3)
N1—C2—C7—C6178.8 (3)N1—C10—C17—C187.5 (5)
N1—C2—C7—C80.7 (4)C9—C10—C17—C18170.9 (3)
N1—C2—C3—C4179.0 (3)C10—C17—C18—C19175.3 (3)
C3—C2—C7—C8179.5 (3)C17—C18—C19—C2016.4 (6)
C2—C3—C4—C50.2 (4)C17—C18—C19—C24161.1 (4)
C3—C4—C5—C61.1 (4)C18—C19—C20—C21174.2 (4)
C3—C4—C5—Br11177.2 (2)C24—C19—C20—C213.4 (5)
Br11—C5—C6—C7177.4 (2)C18—C19—C24—C23174.4 (4)
C4—C5—C6—C70.9 (4)C20—C19—C24—C233.3 (5)
C5—C6—C7—C20.2 (4)C19—C20—C21—C221.3 (6)
C5—C6—C7—C8179.6 (3)C20—C21—C22—C231.1 (6)
C6—C7—C8—C9177.8 (3)C21—C22—C23—C241.2 (6)
C6—C7—C8—C121.8 (4)C22—C23—C24—C191.0 (6)
C2—C7—C8—C91.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O130.932.222.848 (4)124
C15—H15A···O13i0.972.513.413 (4)154
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O130.932.222.848 (4)124
C15—H15A···O13i0.972.513.413 (4)154
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

The authors are grateful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, Mysuru, for providing the single-crystal X-ray diffractometer facility.

References

First citationBeagley, P., Blackie, M. A., Chibale, K., Clarkson, C., Moss, J. R., Smith, P. & Su, H. (2003). J. Chem. Soc. Dalton Trans. pp. 3046–3051.  Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPradeep, P. S., Naveen, S., Kumara, M. N., Mahadevan, K. M. & Lokanath, N. K. (2014). Acta Cryst. E70, o981–o982.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds