research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 238-240

Crystal structure of benzyl (E)-2-(3,4-di­meth­­oxy­benzyl­­idene)hydrazine-1-carbodi­thio­ate

aCentre for Natural and Medicinal Product Research, School of Pharmacy, University of Nottingham Malaysia Campus, 43500 Semenyih, Malaysia, and bDepartment of Chemistry, Faculty of Science, Universiti Putra, Malaysia
*Correspondence e-mail: TengJin.Khoo@nottingham.edu.my

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 11 December 2014; accepted 16 January 2015; online 31 January 2015)

The title compound, C17H18N2O2S2, synthesized via a condensation reaction between S-benzyl di­thio­carbazate and 3,4-di­meth­oxy­benzaldehyde, crystallized with two independent mol­ecules (A and B) in the asymmetric unit. Both mol­ecules have an L-shape but differ in the orientation of the benzyl ring with respect to the 3,4-di­meth­oxy­benzyl­idine ring, this dihedral angle is 65.59 (8)° in mol­ecule A and 73.10 (8)° in mol­ecule B. In the crystal, the A and B mol­ecules are linked via pairs of N—H⋯S hydrogen bonds, forming dimers with an R22(8) ring motif. The dimers are linked via pairs of C—H⋯O hydrogen bonds, giving inversion dimers of dimers. These units are linked by C—H⋯π inter­actions, forming ribbons propagating in the [100] direction.

1. Chemical context

Schiff bases have been proven to possess a variety of bio­logical activities, and this has led to extensive studies on this group of compounds with particular emphasis on those derived from di­thio­carbaza­tes. Di­thio­carbazate-derived Schiff bases have generally been found to exhibit inter­esting cytotoxic and anti­microbial activities. One of the most investigated di­thio­carbaza­tes has been S-benzyl­dithio­carbazate (SBDTC) whose derivatives have shown promising biological activities (Break et al., 2013[Break, M. K. bin, Tahir, M. I. M., Crouse, K. A. & Khoo, T.-J. (2013). Bioinorganic Chemistry and Applications, Vol. 2013, Article ID 362513, 13 pages. http://dx.doi.org/10 .1155/2013/362513]). Therefore, as part of our research which is aimed at developing anti­cancer and anti­microbial drugs, we have synthesized a novel Schiff base via the condensation reaction of SBDTC and 3,4-di­meth­oxy­benzaldehyde. We report herein on the synthesis and crystal structure of the title compound.

[Scheme 1]

2. Structural commentary

The title compound, Fig. 1[link], crystallized with two independent mol­ecules (A and B) in the asymmetric unit. Both mol­ecules have an L-shape but differ in the orientation of the benzyl ring with respect to the 3,4-di­meth­oxy­benzyl­idine ring, this dihedral angle being 65.59 (8) ° in mol­ecule A and 73.10 (8) ° in mol­ecule B (Fig. 2[link]).

[Figure 1]
Figure 1
A view of the mol­ecular structure of the two independent mol­ecules (A and B) of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. N—H⋯S hydrogen bonds are shown as dashed lines (see Table 1[link] for details).
[Figure 2]
Figure 2
A view of the mol­ecular overlay (Mercury; Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) of the two independent mol­ecules (A blue and B red) of the title compound.

The C—N and N(H)—C bond lengths (C1—N1 and N2—C9 in A, and C21—N21 and N22—C29 in B) are 1.331 (2) and 1.282 (2) Å, respectively, in mol­ecule A, and 1.336 (2) and 1.280 (2) Å, respectively, in mol­ecule B. The shorter length of the C—N bond suggests the existence of a double bond which belongs to the imine group. Similarly, the shorter C—S bond length [C1—S1 = 1.681 (2) Å in A, and C21—S21 = 1.677 (2) Å in B] relative to that of [C1—S2 = 1.749 (2) Å in A, and C21—S22 = 1.749 (2) Å in B] suggests that the former possesses double-bond character, indicating that the mol­ecule exists in its thione form in the solid state. The functional group identities proposed from these bond lengths are further supported by data obtained from the IR analysis reported below. Furthermore, the bond distances in the title compound are similar to those found for other carbodi­thio­ate-derived Schiff bases (Break et al.; 2013[Break, M. K. bin, Tahir, M. I. M., Crouse, K. A. & Khoo, T.-J. (2013). Bioinorganic Chemistry and Applications, Vol. 2013, Article ID 362513, 13 pages. http://dx.doi.org/10 .1155/2013/362513]; Khoo et al., 2014[Khoo, T.-J., Break, M. K., bin, , Crouse, K. A., Tahir, M. I. M., Ali, A. M., Cowley, A. R., Watkin, D. & Tarafder, M. T. H. (2014). Inorg. Chim. Acta, 413, 68-76.]).

Both mol­ecules (A and B) crystallizes in the conformer in which the two aromatic rings of the compound are cis with respect to each other across the C=N bonds, while the thione sulfur atom is trans with respect to the same bond.

3. Supra­molecular features

In the crystal, the A and B mol­ecules are linked by pairs of N—H⋯S hydrogen bonds, forming dimers with an R22 (8) ring motif (Table 1[link] and Fig. 3[link]). The dimers are linked via pairs of C—H⋯O hydrogen bonds, giving inversion dimers of dimers. These units are linked by C—H⋯π inter­actions, forming ribbons propagating in the [100] direction (Fig. 3[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg4 are the centroids of the C3–C8, C10–C15 and C30–C35 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2⋯S21 0.92 2.52 3.418 (1) 166
N21—H1⋯S1 0.87 2.55 3.407 (1) 168
C16—H163⋯O21i 0.97 2.69 3.560 (2) 149
C17—H172⋯Cg4ii 0.97 2.74 3.5587 (18) 143
C28—H281⋯Cg1ii 0.94 2.94 3.6082 (18) 130
C36—H363⋯Cg2i 0.97 2.67 3.5023 (17) 145
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1.
[Figure 3]
Figure 3
A view approximately along the b axis of the crystal structure of the title compound. The hydrogen bonds and C—H⋯π inter­actions are shown as dashed lines (see Table 1[link] for details; for clarity only the H atoms involved in these inter­actions are shown).

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, May 2014; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for benzyl (E)-2-benzyl­idenehydrazine-1-carbodi­thio­ates gave 13 hits. One of these concerns a structure very similar to the title compound, namely benzyl (E)-2-(4-meth­oxy­benzyl­idene)hydrazine-1-carbodi­thio­ate (YAHDAO; Fan et al., 2011[Fan, Z., Huang, Y.-L., Wang, Z., Guo, H.-Q. & Shan, S. (2011). Acta Cryst. E67, o3011.]). Here the two aromatic rings are inclined to one another by ca 85.71°, compared with 65.59 (8)° in mol­ecule A and 73.10 (8)° in mol­ecule B of the title compound.

5. Synthesis and crystallization

1.98 g (0.01 mol) of S-benzyl­dithio­carbazate in 30 ml of absolute ethanol was added to an equimolar qu­antity of 3,4-di­meth­oxy­benzaldehyde in 10 ml of absolute ethanol, followed by the addition of 2–4 drops of concentrated H2SO4. The mixture was heated over a steam bath for 15 min and a precipitate started to form. The Schiff base which precipitated was filtered, washed with cold ethanol and dried in vacuo over silica gel, giving a white yellowish product. Yellow crystals of the title compound, suitable for X-ray analysis, were obtained by slow evaporation of a solution in DMSO over a period of three weeks (yield 60%; m.p. 438–439 K). IR (KBr, cm−1): 3360, 3122, 1602, 1069, 1023, 950, 788, 695. LCMS (ESI+): 347.1 [M+H]+.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms were all located in a difference Fourier map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98 Å, N—H in the range 0.86–0.89 Å), with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C17H18N2O2S2
Mr 346.45
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 9.6432 (5), 10.796 (1), 16.1673 (10)
α, β, γ (°) 90.899 (6), 97.203 (5), 91.200 (6)
V3) 1669.2 (2)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.98
Crystal size (mm) 0.15 × 0.06 × 0.04
 
Data collection
Diffractometer Oxford Diffraction Gemini
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2002[Oxford Diffraction (2002). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.74, 0.89
No. of measured, independent and observed [I > 2σ(I)] reflections 23678, 6592, 5514
Rint 0.028
(sin θ/λ)max−1) 0.622
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.106, 0.99
No. of reflections 6567
No. of parameters 415
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.44, −0.33
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2002[Oxford Diffraction (2002). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Schiff bases have been proven to possess a variety of biological activities, and this has led to extensive studies on this group of compounds with particular emphasis on those derived from di­thio­carbaza­tes. Di­thio­carbazate-derived Schiff bases have generally been found to exhibit inter­esting cytotoxic and anti­microbial activities. One of the most investigated di­thio­carbaza­tes has been S-benzyl­dithio­carbazate (SBDTC) whose derivatives have shown promising biological activities (Break et al., 2013). Therefore, as part of our research which is aimed at developing anti­cancer and anti­microbial drugs, we have synthesized a novel Schiff base via the condensation reaction of SBDTC and 3,4-di­meth­oxy­benzaldehyde. We report herein on the synthesis and crystal structure of the title compound.

Structural commentary top

The title compound, Fig. 1, crystallized with two independent molecules (A and B) in the asymmetric unit. Both molecules have an L-shape but differ in the orientation of the benzyl ring with respect to the 3,4-di­meth­oxy­benzyl­idine ring, this dihedral angle being 65.59 (8) ° in molecule A and 73.10 (8) ° in molecule B (Fig. 2).

The C—N and N(H)—C bond lengths (C1—N1 and N2—C9 in A, and C21—N21 and N22—C29 in B) are 1.331 (2) and 1.282 (2) Å, respectively, in molecule A, and 1.336 (2) and 1.280 (2) Å, respectively, in molecule B. The shorter length of the C—N bond suggests the existence of a double bond which belongs to the imine group. Similarly, the shorter C—S bond length [C1—S1 = 1.681 (2) Å in A, and C21—S21 = 1.677 (2) Å in B] relative to that of [C1—S2 = 1.749 (2) Å in A, and C21—S22 = 1.749 (2) Å in B] suggests that the former possesses double-bond character, indicating that the molecule exists in its thione form in the solid state. The functional group identities proposed from these bond lengths are further supported by data obtained from the IR analysis reported below. Furthermore, the bond distances in the title compound are similar to those found for other carbodi­thio­ate-derived Schiff bases (Break et al.; 2013; Khoo et al., 2014).

Both molecules (A and B) crystallizes in the conformer in which the two aromatic rings of the compound are cis with respect to each other across the CN bonds, while the thione sulfur atom is trans with respect to the same bond.

Supra­molecular features top

In the crystal, the A and B molecules are linked by pairs of N—H···S hydrogen bonds, forming dimers with an R22 (8) ring motif (Table 1 and Fig. 3). The dimers are linked via pairs of C—H···O hydrogen bonds, giving inversion dimers of dimers.These units are linked by C—H···π inter­actions, forming ribbons propagating in the [100] direction (Fig. 3 and Table 1).

Database survey top

A search of the Cambridge Structural Database (Version 5.35, May 2014; Groom & Allen, 2014) for benzyl (E)-2-benzyl­idenehydrazine-1-carbodi­thio­ates gave 13 hits. One of these concerns a structure very similar to the title compound, namely benzyl (E)-2-(4-meth­oxy­benzyl­idene)hydrazine-1-carbodi­thio­ate (YAHDAO; Fan et al., 2011). Here the two aromatic rings are inclined to one another by ca 85.71°, compared with 65.59 (8)° in molecule A and 73.10 (8)° in molecule B of the title compound.

Synthesis and crystallization top

1.98 g (0.01 mol) of S-benzyl­dithio­carbazate in 30 ml of absolute ethanol was added to an equimolar qu­antity of 3,4-di­meth­oxy­benzaldehyde in 10 ml of absolute ethanol, followed by the addition of 2–4 drops of concentrated H2SO4. The mixture was heated over a steam bath for 15 min and a precipitate started to form. The Schiff base which precipitated was filtered, washed with cold ethanol and dried in vacuo over silica gel, giving a white yellowish product. Yellow crystals of the title compound, suitable for X-ray analysis, were obtained by slow evaporation of a solution in DMSO over a period of three weeks (yield 60%; m.p. 438–439 K). IR (KBr, cm-1): 3360, 3122, 1602, 1069, 1023, 950, 788, 695. LCMS (ESI+): 347.1 [M+H]+.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were all located in a difference Fourier map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98 Å, N—H in the range 0.86–0.89 Å), with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Related literature top

For related literature, see: Break, bin, Tahir, Crouse & Khoo (2013); Fan et al. (2011); Groom & Allen (2014); Khoo et al. (2014).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2002); cell refinement: CrysAlis CCD (Oxford Diffraction, 2002); data reduction: CrysAlis RED (Oxford Diffraction, 2002); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the two independent molecules (A and B) of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. N—H···S hydrogen bonds are shown as dashed lines (see Table 1 for details).
[Figure 2] Fig. 2. A view of the molecular overlay (Mercury; Macrae et al., 2008) of the two independent molecules (A blue and B red) of the title compound.
[Figure 3] Fig. 3. A view approximately along the b axis of the crystal structure of the title compound. The hydrogen bonds and C—H···π interactions are shown as dashed lines (see Table 1 for details; for clarity only the H atoms involved in these interactions are shown).
Benzyl (E)-2-(3,4-dimethoxybenzylidene)hydrazine-1-carbodithioate top
Crystal data top
C17H18N2O2S2Z = 4
Mr = 346.45F(000) = 728
Triclinic, P1Dx = 1.379 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54180 Å
a = 9.6432 (5) ÅCell parameters from 8676 reflections
b = 10.796 (1) Åθ = 4–73°
c = 16.1673 (10) ŵ = 2.98 mm1
α = 90.899 (6)°T = 100 K
β = 97.203 (5)°Plate, yellow
γ = 91.200 (6)°0.15 × 0.06 × 0.04 mm
V = 1669.2 (2) Å3
Data collection top
Oxford Diffraction Gemini
diffractometer
5514 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 73.4°, θmin = 4.1°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2002)
h = 1111
Tmin = 0.74, Tmax = 0.89k = 1311
23678 measured reflectionsl = 2020
6592 independent reflections
Refinement top
Refinement on F2Primary atom site location: other
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.106 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.07P)2 + 0.48P] ,
where P = (max(Fo2,0) + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
6567 reflectionsΔρmax = 0.44 e Å3
415 parametersΔρmin = 0.33 e Å3
0 restraints
Crystal data top
C17H18N2O2S2γ = 91.200 (6)°
Mr = 346.45V = 1669.2 (2) Å3
Triclinic, P1Z = 4
a = 9.6432 (5) ÅCu Kα radiation
b = 10.796 (1) ŵ = 2.98 mm1
c = 16.1673 (10) ÅT = 100 K
α = 90.899 (6)°0.15 × 0.06 × 0.04 mm
β = 97.203 (5)°
Data collection top
Oxford Diffraction Gemini
diffractometer
6592 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2002)
5514 reflections with I > 2σ(I)
Tmin = 0.74, Tmax = 0.89Rint = 0.028
23678 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 0.99Δρmax = 0.44 e Å3
6567 reflectionsΔρmin = 0.33 e Å3
415 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1K.

Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105-107.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.67401 (4)0.61670 (4)0.39922 (2)0.0170
C10.77157 (15)0.52035 (14)0.34926 (9)0.0150
S20.78189 (4)0.51826 (4)0.24198 (2)0.0182
C20.66277 (16)0.64058 (15)0.20558 (10)0.0187
C30.68192 (15)0.66561 (15)0.11569 (9)0.0174
C80.65456 (17)0.57319 (16)0.05415 (10)0.0215
C70.67331 (17)0.59709 (17)0.02786 (10)0.0245
C60.71768 (17)0.71377 (18)0.04941 (10)0.0243
C50.74303 (17)0.80681 (17)0.01141 (10)0.0239
C40.72699 (16)0.78255 (16)0.09388 (10)0.0199
N10.85201 (13)0.43802 (12)0.39143 (8)0.0163
N20.92928 (13)0.35596 (12)0.35025 (8)0.0171
C91.01861 (16)0.29639 (15)0.39886 (10)0.0171
C101.10446 (16)0.20035 (14)0.36811 (9)0.0156
C151.20578 (16)0.14725 (15)0.42490 (10)0.0167
C141.28967 (15)0.05382 (15)0.39928 (9)0.0159
C131.27152 (15)0.01212 (14)0.31724 (10)0.0154
O21.34580 (11)0.07889 (11)0.28523 (7)0.0187
C171.44520 (17)0.14133 (16)0.34241 (10)0.0204
C121.16634 (16)0.06392 (15)0.25933 (9)0.0168
C111.08539 (16)0.15789 (15)0.28466 (10)0.0169
O11.15407 (12)0.01059 (11)0.18189 (7)0.0235
C161.03032 (18)0.03484 (18)0.12691 (10)0.0242
S210.84603 (4)0.37456 (4)0.59742 (2)0.0167
C210.74525 (15)0.46870 (14)0.64640 (9)0.0153
S220.73586 (4)0.47065 (4)0.75377 (2)0.0186
C220.84857 (16)0.34265 (15)0.78893 (10)0.0186
C230.82688 (16)0.31752 (15)0.87789 (10)0.0177
C280.92759 (17)0.35307 (16)0.94417 (10)0.0218
C270.90523 (18)0.32945 (16)1.02578 (10)0.0245
C260.78224 (19)0.27209 (16)1.04222 (10)0.0241
C250.68103 (18)0.23642 (17)0.97647 (10)0.0243
C240.70366 (17)0.25821 (16)0.89488 (10)0.0219
N210.66212 (13)0.54892 (12)0.60336 (8)0.0167
N220.58326 (14)0.63039 (12)0.64363 (8)0.0174
C290.49371 (16)0.68920 (15)0.59483 (10)0.0165
C300.40710 (15)0.78438 (14)0.62621 (10)0.0156
C310.30524 (16)0.83952 (15)0.57104 (9)0.0160
C320.22248 (15)0.93261 (15)0.59875 (9)0.0161
C330.24252 (15)0.97166 (14)0.68106 (9)0.0154
O210.17151 (11)1.06326 (10)0.71518 (7)0.0186
C360.07068 (16)1.12784 (15)0.65980 (10)0.0198
C340.34780 (16)0.91696 (15)0.73749 (9)0.0165
C350.42769 (16)0.82408 (15)0.71021 (9)0.0169
O220.36178 (12)0.96604 (11)0.81611 (7)0.0226
C370.48390 (17)0.93340 (17)0.86989 (10)0.0229
H210.68440.71640.23960.0224*
H220.56710.61080.20950.0226*
H810.62510.49260.06960.0260*
H710.65590.53600.06840.0289*
H610.73010.72800.10550.0281*
H510.77180.88660.00410.0283*
H410.74700.84390.13590.0224*
H911.03070.31320.45690.0196*
H1511.21920.17550.48140.0193*
H1411.36000.02040.43830.0195*
H1711.48870.20060.30960.0295*
H1721.51530.08490.37030.0296*
H1731.39610.18410.38350.0292*
H1111.01730.19220.24570.0203*
H1611.02750.02320.08250.0339*
H1621.03360.11880.10710.0348*
H1630.94790.02530.15520.0344*
H2210.94530.36510.78380.0209*
H2220.82120.26960.75490.0213*
H2811.01060.39230.93340.0253*
H2710.97550.35241.07040.0279*
H2610.76880.25721.09830.0275*
H2510.59580.19720.98720.0282*
H2410.63570.23340.84990.0246*
H2910.48160.67240.53760.0190*
H3110.29190.81240.51450.0188*
H3210.15330.96690.55980.0183*
H3610.02971.18690.69420.0279*
H3620.11851.17060.61930.0275*
H3630.00061.07030.63300.0275*
H3510.49580.78690.74660.0208*
H3710.48000.98310.92020.0331*
H3720.56680.95270.84390.0323*
H3730.48010.84480.88070.0322*
H10.67130.55560.55050.0500*
H20.85460.43610.44870.0500*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01948 (19)0.0154 (2)0.01721 (19)0.00548 (15)0.00564 (14)0.00046 (14)
C10.0153 (7)0.0141 (8)0.0163 (7)0.0008 (6)0.0044 (5)0.0002 (6)
S20.0203 (2)0.0195 (2)0.01605 (19)0.00695 (15)0.00537 (14)0.00125 (15)
C20.0181 (7)0.0188 (8)0.0198 (8)0.0078 (6)0.0035 (6)0.0031 (6)
C30.0130 (7)0.0213 (8)0.0180 (7)0.0056 (6)0.0012 (5)0.0007 (6)
C80.0185 (7)0.0202 (8)0.0258 (8)0.0040 (6)0.0022 (6)0.0008 (7)
C70.0236 (8)0.0294 (10)0.0202 (8)0.0079 (7)0.0010 (6)0.0066 (7)
C60.0198 (8)0.0365 (10)0.0172 (8)0.0089 (7)0.0032 (6)0.0032 (7)
C50.0206 (8)0.0258 (9)0.0258 (8)0.0035 (7)0.0042 (6)0.0048 (7)
C40.0194 (7)0.0196 (8)0.0206 (8)0.0037 (6)0.0020 (6)0.0019 (6)
N10.0182 (6)0.0142 (7)0.0177 (6)0.0033 (5)0.0064 (5)0.0000 (5)
N20.0178 (6)0.0135 (7)0.0213 (7)0.0013 (5)0.0072 (5)0.0002 (5)
C90.0187 (7)0.0147 (8)0.0189 (7)0.0001 (6)0.0059 (6)0.0008 (6)
C100.0154 (7)0.0133 (8)0.0189 (7)0.0012 (6)0.0059 (6)0.0012 (6)
C150.0174 (7)0.0161 (8)0.0167 (7)0.0015 (6)0.0034 (6)0.0004 (6)
C140.0138 (7)0.0160 (8)0.0180 (7)0.0000 (6)0.0020 (5)0.0028 (6)
C130.0142 (7)0.0128 (7)0.0201 (7)0.0009 (6)0.0059 (6)0.0015 (6)
O20.0195 (5)0.0177 (6)0.0191 (5)0.0067 (4)0.0032 (4)0.0014 (4)
C170.0189 (8)0.0195 (8)0.0238 (8)0.0068 (6)0.0049 (6)0.0032 (6)
C120.0176 (7)0.0176 (8)0.0156 (7)0.0004 (6)0.0038 (6)0.0003 (6)
C110.0159 (7)0.0160 (8)0.0190 (7)0.0018 (6)0.0027 (6)0.0040 (6)
O10.0255 (6)0.0276 (7)0.0170 (5)0.0088 (5)0.0000 (4)0.0037 (5)
C160.0241 (8)0.0318 (10)0.0162 (8)0.0025 (7)0.0003 (6)0.0013 (7)
S210.01906 (19)0.0154 (2)0.01649 (19)0.00483 (15)0.00539 (14)0.00063 (14)
C210.0168 (7)0.0135 (8)0.0163 (7)0.0011 (6)0.0058 (6)0.0015 (6)
S220.0232 (2)0.0181 (2)0.01609 (19)0.00641 (16)0.00685 (14)0.00131 (15)
C220.0188 (7)0.0184 (8)0.0194 (8)0.0056 (6)0.0048 (6)0.0033 (6)
C230.0195 (7)0.0150 (8)0.0194 (8)0.0056 (6)0.0049 (6)0.0028 (6)
C280.0182 (8)0.0207 (9)0.0265 (8)0.0040 (6)0.0021 (6)0.0019 (7)
C270.0250 (8)0.0244 (9)0.0230 (8)0.0058 (7)0.0020 (6)0.0001 (7)
C260.0309 (9)0.0240 (9)0.0181 (8)0.0073 (7)0.0048 (7)0.0044 (7)
C250.0253 (8)0.0245 (9)0.0236 (8)0.0004 (7)0.0055 (7)0.0035 (7)
C240.0215 (8)0.0234 (9)0.0208 (8)0.0004 (7)0.0023 (6)0.0009 (6)
N210.0193 (6)0.0153 (7)0.0166 (6)0.0037 (5)0.0069 (5)0.0002 (5)
N220.0189 (6)0.0134 (7)0.0217 (7)0.0019 (5)0.0090 (5)0.0001 (5)
C290.0178 (7)0.0157 (8)0.0168 (7)0.0023 (6)0.0056 (6)0.0007 (6)
C300.0152 (7)0.0124 (7)0.0202 (7)0.0007 (6)0.0067 (6)0.0014 (6)
C310.0176 (7)0.0158 (8)0.0148 (7)0.0020 (6)0.0031 (6)0.0016 (6)
C320.0142 (7)0.0169 (8)0.0172 (7)0.0010 (6)0.0014 (5)0.0027 (6)
C330.0148 (7)0.0138 (8)0.0184 (7)0.0006 (6)0.0047 (6)0.0010 (6)
O210.0193 (5)0.0178 (6)0.0190 (5)0.0068 (4)0.0031 (4)0.0009 (4)
C360.0185 (7)0.0173 (8)0.0244 (8)0.0066 (6)0.0049 (6)0.0038 (6)
C340.0185 (7)0.0172 (8)0.0146 (7)0.0001 (6)0.0047 (6)0.0007 (6)
C350.0166 (7)0.0173 (8)0.0171 (7)0.0035 (6)0.0024 (6)0.0032 (6)
O220.0262 (6)0.0276 (7)0.0139 (5)0.0110 (5)0.0005 (4)0.0025 (5)
C370.0242 (8)0.0298 (10)0.0146 (7)0.0055 (7)0.0013 (6)0.0013 (7)
Geometric parameters (Å, º) top
S1—C11.6807 (15)S21—C211.6774 (15)
C1—S21.7494 (15)C21—S221.7494 (15)
C1—N11.331 (2)C21—N211.336 (2)
S2—C21.8244 (15)S22—C221.8294 (16)
C2—C31.516 (2)C22—C231.507 (2)
C2—H210.983C22—H2210.973
C2—H220.980C22—H2220.968
C3—C81.395 (2)C23—C281.396 (2)
C3—C41.392 (2)C23—C241.397 (2)
C8—C71.388 (2)C28—C271.390 (2)
C8—H810.956C28—H2810.935
C7—C61.386 (3)C27—C261.384 (3)
C7—H710.921C27—H2710.952
C6—C51.391 (3)C26—C251.393 (2)
C6—H610.944C26—H2610.948
C5—C41.390 (2)C25—C241.387 (2)
C5—H510.947C25—H2510.953
C4—H410.941C24—H2410.947
N1—N21.3845 (18)N21—N221.3820 (18)
N1—H20.924N21—H10.874
N2—C91.282 (2)N22—C291.280 (2)
C9—C101.460 (2)C29—C301.462 (2)
C9—H910.945C29—H2910.932
C10—C151.393 (2)C30—C311.392 (2)
C10—C111.407 (2)C30—C351.406 (2)
C15—C141.396 (2)C31—C321.399 (2)
C15—H1510.951C31—H3110.948
C14—C131.383 (2)C32—C331.379 (2)
C14—H1410.948C32—H3210.944
C13—O21.3612 (18)C33—O211.3628 (18)
C13—C121.421 (2)C33—C341.422 (2)
O2—C171.4325 (18)O21—C361.4362 (18)
C17—H1710.961C36—H3610.963
C17—H1720.964C36—H3620.965
C17—H1730.979C36—H3630.965
C12—C111.381 (2)C34—C351.377 (2)
C12—O11.3603 (19)C34—O221.3592 (19)
C11—H1110.938C35—H3510.927
O1—C161.4273 (19)O22—C371.4272 (18)
C16—H1610.943C37—H3710.972
C16—H1620.968C37—H3720.969
C16—H1630.970C37—H3730.976
S1—C1—S2125.49 (9)S21—C21—S22124.90 (9)
S1—C1—N1120.52 (11)S21—C21—N21120.52 (11)
S2—C1—N1113.98 (11)S22—C21—N21114.57 (11)
C1—S2—C2102.05 (7)C21—S22—C22101.97 (7)
S2—C2—C3107.65 (10)S22—C22—C23107.26 (10)
S2—C2—H21110.3S22—C22—H221109.5
C3—C2—H21109.7C23—C22—H221112.0
S2—C2—H22107.9S22—C22—H222109.4
C3—C2—H22110.5C23—C22—H222109.2
H21—C2—H22110.7H221—C22—H222109.4
C2—C3—C8121.01 (15)C22—C23—C28121.20 (14)
C2—C3—C4119.67 (15)C22—C23—C24119.74 (15)
C8—C3—C4119.32 (15)C28—C23—C24119.05 (14)
C3—C8—C7120.44 (16)C23—C28—C27120.27 (15)
C3—C8—H81119.0C23—C28—H281119.7
C7—C8—H81120.5C27—C28—H281120.1
C8—C7—C6120.09 (16)C28—C27—C26120.38 (16)
C8—C7—H71120.5C28—C27—H271119.6
C6—C7—H71119.5C26—C27—H271120.0
C7—C6—C5119.73 (15)C27—C26—C25119.76 (15)
C7—C6—H61118.7C27—C26—H261119.1
C5—C6—H61121.5C25—C26—H261121.2
C6—C5—C4120.34 (16)C26—C25—C24120.09 (16)
C6—C5—H51119.1C26—C25—H251120.4
C4—C5—H51120.6C24—C25—H251119.5
C3—C4—C5120.06 (16)C23—C24—C25120.44 (16)
C3—C4—H41118.9C23—C24—H241119.1
C5—C4—H41121.1C25—C24—H241120.4
C1—N1—N2120.71 (13)C21—N21—N22120.85 (12)
C1—N1—H2118.7C21—N21—H1116.4
N2—N1—H2120.6N22—N21—H1121.9
N1—N2—C9113.83 (13)N21—N22—C29114.27 (13)
N2—C9—C10122.28 (14)N22—C29—C30121.69 (14)
N2—C9—H91120.4N22—C29—H291120.7
C10—C9—H91117.3C30—C29—H291117.6
C9—C10—C15117.98 (14)C29—C30—C31119.12 (14)
C9—C10—C11122.42 (14)C29—C30—C35121.40 (14)
C15—C10—C11119.58 (14)C31—C30—C35119.45 (14)
C10—C15—C14120.50 (14)C30—C31—C32120.54 (14)
C10—C15—H151120.0C30—C31—H311119.1
C14—C15—H151119.5C32—C31—H311120.4
C15—C14—C13120.08 (14)C31—C32—C33120.09 (14)
C15—C14—H141119.4C31—C32—H321118.2
C13—C14—H141120.5C33—C32—H321121.7
C14—C13—O2125.39 (14)C32—C33—O21125.73 (13)
C14—C13—C12119.77 (14)C32—C33—C34119.65 (14)
O2—C13—C12114.83 (13)O21—C33—C34114.59 (13)
C13—O2—C17117.10 (12)C33—O21—C36117.04 (12)
O2—C17—H171106.1O21—C36—H361105.8
O2—C17—H172111.9O21—C36—H362108.9
H171—C17—H172109.6H361—C36—H362109.9
O2—C17—H173109.3O21—C36—H363110.1
H171—C17—H173109.9H361—C36—H363110.9
H172—C17—H173110.0H362—C36—H363111.1
C13—C12—C11119.89 (14)C33—C34—C35120.06 (14)
C13—C12—O1114.08 (14)C33—C34—O22114.49 (13)
C11—C12—O1126.01 (14)C35—C34—O22125.43 (14)
C10—C11—C12120.16 (14)C30—C35—C34120.20 (14)
C10—C11—H111120.7C30—C35—H351119.0
C12—C11—H111119.1C34—C35—H351120.8
C12—O1—C16117.16 (12)C34—O22—C37116.40 (12)
O1—C16—H161106.2O22—C37—H371104.2
O1—C16—H162110.2O22—C37—H372110.0
H161—C16—H162111.1H371—C37—H372111.9
O1—C16—H163110.8O22—C37—H373109.3
H161—C16—H163110.4H371—C37—H373112.0
H162—C16—H163108.1H372—C37—H373109.2
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg4 are the centroids of the C3–C8, C10–C15 and C30–C35 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H2···S210.922.523.418 (1)166
N21—H1···S10.872.553.407 (1)168
C16—H163···O21i0.972.693.560 (2)149
C17—H172···Cg4ii0.972.743.5587 (18)143
C28—H281···Cg1ii0.942.943.6082 (18)130
C36—H363···Cg2i0.972.673.5023 (17)145
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg4 are the centroids of the C3–C8, C10–C15 and C30–C35 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H2···S210.922.523.418 (1)166
N21—H1···S10.872.553.407 (1)168
C16—H163···O21i0.972.693.560 (2)149
C17—H172···Cg4ii0.972.743.5587 (18)143
C28—H281···Cg1ii0.942.943.6082 (18)130
C36—H363···Cg2i0.972.673.5023 (17)145
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H18N2O2S2
Mr346.45
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.6432 (5), 10.796 (1), 16.1673 (10)
α, β, γ (°)90.899 (6), 97.203 (5), 91.200 (6)
V3)1669.2 (2)
Z4
Radiation typeCu Kα
µ (mm1)2.98
Crystal size (mm)0.15 × 0.06 × 0.04
Data collection
DiffractometerOxford Diffraction Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2002)
Tmin, Tmax0.74, 0.89
No. of measured, independent and
observed [I > 2σ(I)] reflections
23678, 6592, 5514
Rint0.028
(sin θ/λ)max1)0.622
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.106, 0.99
No. of reflections6567
No. of parameters415
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.33

Computer programs: CrysAlis CCD (Oxford Diffraction, 2002), CrysAlis RED (Oxford Diffraction, 2002), SUPERFLIP (Palatinus & Chapuis, 2007), CRYSTALS (Betteridge et al., 2003), Mercury (Macrae et al., 2008), publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank the Ministry of Higher Education Malaysia (MOHE) under FRGS (F0010.54.02) for providing a grant for this study.

References

First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBreak, M. K. bin, Tahir, M. I. M., Crouse, K. A. & Khoo, T.-J. (2013). Bioinorganic Chemistry and Applications, Vol. 2013, Article ID 362513, 13 pages. http://dx.doi.org/10 .1155/2013/362513  Google Scholar
First citationFan, Z., Huang, Y.-L., Wang, Z., Guo, H.-Q. & Shan, S. (2011). Acta Cryst. E67, o3011.  Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationKhoo, T.-J., Break, M. K., bin, , Crouse, K. A., Tahir, M. I. M., Ali, A. M., Cowley, A. R., Watkin, D. & Tarafder, M. T. H. (2014). Inorg. Chim. Acta, 413, 68–76.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2002). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 238-240
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds