research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 117-120

Crystal structure and thermal behaviour of pyridinium styphnate

aPG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Tiruchirappalli 620 002, Tamil Nadu, India
*Correspondence e-mail: kalaivbalaj@yahoo.co.in

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 15 December 2014; accepted 19 December 2014; online 3 January 2015)

In the crystal structure of the title mol­ecular salt, C5H6N+·C6H2N3O8 (systematic name: pyridinium 3-hy­droxy-2,4,6-tri­nitro­phenolate), the pyridin­ium cation and the 3-hy­droxy-2,4,6-tri­nitro­phenolate anion are linked through bifurcated N—H⋯(O,O) hydrogen bonds, forming an R12(6) ring motif. The nitro group para with respect to phenolate ion forms an intra­molecular hydrogen bond with the adjacent phenolic –OH group, which results in an S(6) ring motif. The nitro group flanked by the phenolate ion and the phenolic –OH group deviates noticeably from the benzene ring, subtending a dihedral angle of 89.2 (4)°. The other two nitro groups deviate only slightly from the plane of the benzene ring, making dihedral angles of 2.8 (4) and 3.4 (3)°. In the crystal, the 3-hy­droxy-2,4,6-tri­nitro­phenolate anions are linked through O—H⋯O hydrogen bonds, forming chains along [100]. These anionic chains, to which the cations are attached, are linked via C—H⋯O hydrogen bonds, forming a three-dimensional structure. Impact friction sensitivity tests and TGA/DTA studies on the title mol­ecular salt imply that it is an insensitive high-energy-density material.

1. Chemical context

A number of crystalline styphnate salts with inorganic metal cations have been reported in recent years (Cui et al., 2008a[Cui, Y., Zhang, T. L., Zhang, J. G. & Yang, L. (2008a). Chin. J. Chem. 26, 2021-2028.],b[Cui, Y., Zhang, T. L., Zhang, J. G., Yang, L., Hu, X. C. & Zhang, J. (2008b). J. Mol. Struct. 889, 177-185.]; Hu et al., 2005[Hu, R., Chen, S., Gao, S., Zhao, F., Luo, Y., Gao, H., Shi, Q., Zhao, H., Yao, P. & Li, J. (2005). J. Hazard. Mater. 117, 346-350.]; Liu et al., 2009[Liu, J. W., Zhang, J. G., Zhang, T. L., Zheng, H., Yang, L. & Yu, K. B. (2009). Struct. Chem. 20, 387-392.]; Orbovic & Codoceo, 2008[Orbovic, N. & Codoceo, C. L. (2008). Prop. Explos. Pyrotech. 33, 459-466.]; Zhang et al., 2011a[Zhang, J. G., Wang, K., Li, Z. M., Zheng, H., Zhang, T. L. & Yang, L. (2011a). Main Group Chem. 10, 205-213.],b[Zhang, J., Wei, L., Cui, Y., Zhang, T., Zhou, Z. & Yong, L. (2011b). Z. Anorg. Allg. Chem. 637, 1527-1532.]; Zheng et al., 2006a[Zheng, H., Zhang, T. L., Zhang, J. G., Qiao, X. L., Yang, L. & Yu, K. B. (2006a). Wuji Huaxue Xuebao 22, 346-350.],b[Zheng, H., Zhang, T. L., Zhang, J. G., Qiao, X. L., Yang, L. & Yu, K. B. (2006b). Chin. J. Chem. 24, 845-848.]; Zhu & Xiao, 2009[Zhu, W. & Xiao, H. (2009). J. Phys. Chem. B, 113, 10315-10321.]). In spite of the fact that styphnates with protonated organic amine cations crystallize with difficulty (Vogel, 1978[Vogel, A. I. (1978). Textbook of Practical Organic Chemistry, 4th ed., p. 1093. London: Longman.]), they have received attention because of their high thermal stability (Abashev et al., 2001a[Abashev, G. G., Kazheva, O. N., Dyachenk, O. A., Gritsenko, V. V., Tenishev, A. G., Nishimura, K. & Saito, G. (2001a). Mendeleev Commun. 4, 125-127.],b[Abashev, G. G., Gritsenko, V. V., Kazheva, O. N., Tenishev, A. G., Canadell, E. & Dyachenk, O. A. (2001b). Z. Kristallogr. 216, 623-628.]; Deblitz et al., 2012[Deblitz, R., Hrib, C. G., Plenikowski, G. & Edelmann, F. T. (2012). Crystals, 2, 34-42.]; Kalaivani & Malarvizhi, 2010[Kalaivani, D. & Malarvizhi, R. (2010). Acta Cryst. E66, o2698.]; Kalaivani et al., 2011[Kalaivani, D., Malarvizhi, R., Thanigaimani, K. & Muthiah, P. T. (2011). Acta Cryst. E67, o686.]; Kazheva et al., 2002[Kazheva, O. N., Canadell, E., Shilov, G. V., Abashev, G. G., Tenishev, A. G. & Dyachenk, O. A. (2002). Phys. E Low Dimens. Syst. Nanostruct. 13, 1268-1270.]; Liu et al., 2008[Liu, Z. H., Ao, G. J., Zhang, T. L., Yang, L., Zhang, J. G. & Zhang, Y. (2008). Wuji Huaxue Xuebao, 24, 1155-1159.]; Refat et al., 2013[Refat, M. S., Saad, H. A., EI-Sayed, M. Y., Adam, A. M. A., Yeşilel, O. Z. & Taş, M. (2013). J. Chem. 2013, article ID 107515, 8 pages. doi: 10.1155/2013/107515.]; Tang et al., 2012[Tang, Z., Yang, L., Qiao, X. J., Wu, B. D., Zhang, T. L., Zhou, Z. N. & Yu, K. B. (2012). Chem. Res. Chin. Univ. 28, 4-8.]; Zhang et al., 2012[Zhang, J. G., Liang, Y. H., Feng, J. L., Wang, K., Zhang, T. L., Zhou, Z. N. & Yang, L. (2012). Z. Anorg. Allg. Chem. 638, 1212-1218.]; Wu et al., 2013a[Wu, J. T., Zhang, J. G., Yin, X., Sun, M. & Zhang, T. L. (2013a). Z. Anorg. Allg. Chem. 639, 2354-2358.],b[Wu, J. T., Zhang, J. G., Sun, M., Yin, X. & Zhang, T. L. (2013b). New Trends Res. Energ. Mater. pp. 433-440.],c[Wu, J. T., Zhang, J. G., Sun, M., Yin, X. & Zhang, T. L. (2013c). Cent. Eur. J. Energ. Mater. 10, 481-493.]). Amorphous pyridinium styphnate has found applications in the preparation of chloro­picryl chloride (Feuer & Harban, 1954[Feuer, H. & Harban, A. A. (1954). US Patent 2679538 A.]). We report herein on the crystal structure of the title mol­ecular salt.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title mol­ecular salt is depicted in Fig. 1[link]. The asymmetric unit is comprised of one phenolate anion and a pyridinium cation. The loss of a single proton of the styphnate anion is confirmed by the increase in the bond lengths of the C—C bonds adjacent to the phenolate ion (C1—C2 and C2—C3), which are 1.439 (4) and 1.420 (4) Å, respectively. There is an increase of the value of the bond angles C2—C1—C6 and C2—C3—C4 in the benzene ring to 122.4 (3) and 126.3 (3)°, respectively, and a decrease of the C4—C5—C6 bond angle to 120.5 (2)° compared to the values observed for free styphic acid (Pierce-Butler, 1982[Pierce-Butler, M. A. (1982). Acta Cryst. B38, 3097-3100.]). The nitro group (N3/O5/O6) flanked by the phenolate ion and the phenolic –OH group deviates noticeably from the benzene ring plane, subtending a dihedral angle of 89.2 (4)°. The other two nitro groups, O1/N1/O2 and O3/N2/O4, lie close to the plane of the attached benzene ring, making dihedral angles of 2.8 (4) and 3.4 (3) °, respectively. The nitro group (N2/O3/O4) para with respect to the phenolate O atom, O7, forms an intra­molecular hydrogen bond with the adjacent phenolic –OH group (O8—H8), which results in an S(6) ring motif (Fig. 1[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O1 0.90 (2) 2.22 (4) 2.946 (4) 137 (4)
N4—H4A⋯O7 0.90 (2) 1.88 (4) 2.625 (3) 138 (5)
O8—H8A⋯N2 0.82 2.48 2.905 (3) 113
O8—H8A⋯O4 0.82 1.87 2.563 (3) 141
O8—H8A⋯O6i 0.82 2.63 3.110 (4) 119
C8—H8⋯O6ii 0.93 2.58 3.352 (5) 141
C8—H8⋯O8iii 0.93 2.63 3.405 (4) 141
C10—H10⋯O2iv 0.93 2.43 3.139 (4) 133
Symmetry codes: (i) x-1, y, z; (ii) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+2, -y+1, -z.
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title mol­ecular salt, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines (see Table 1[link] for details).

3. Supra­molecular features

In the crystal, the cation and anion are linked via bifurcated N—H⋯(O,O) hydrogen bonds forming an [R_{1}^{2}](6) ring motif (Table 1[link] and Figs. 1[link] and 2[link]). Inversion-related anions are connected through pairs of C—H⋯O hydrogen bonds, forming dimers enclosing an R22(10) ring motif. The phenolate oxygen, O7, is also bifurcated and forms hydrogen bonds with the protonated nitro­gen atom, N4, of the pyridinium moiety and the C—H H atom adjacent to the protonated nitro­gen atom, forming an R21(5) ring motif. The combination of these various N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds leads to the formation of a three-dimensional structure (Table 1[link] and Figs. 2[link] and 3[link]).

[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title mol­ecular salt. Hydrogen bonds are shown as dashed lines (see Table 1[link] for details).
[Figure 3]
Figure 3
A view along the b axis of the crystal packing of the title mol­ecular salt. Hydrogen bonds are shown as dashed lines (see Table 1[link] for details).

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, May 214; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for 3-hy­droxy-2,4,6-tri­nitro­phenolates gave 14 hits. Six concern metal-complex cations, and the remaining eight concern organic cations. Amongst the latter are two compounds, referred to above in §1 for their high thermal stability, viz. 2-meth­oxy­anilinium 3-hy­droxy-2,4,6-tri­nitro­phenolate (Kalaivani et al., 2011[Kalaivani, D., Malarvizhi, R., Thanigaimani, K. & Muthiah, P. T. (2011). Acta Cryst. E67, o686.]) and morpho­linium 3-hy­droxy-2,4,6-tri­nitro­phenolate (Kalaivani & Malarvizhi, 2010[Kalaivani, D. & Malarvizhi, R. (2010). Acta Cryst. E66, o2698.]).

5. Thermal behaviour and friction sensitivity

As styphnic acid derivatives are energetic salts, the thermal behaviour of the title mol­ecular salt has also been examined. The exothermic decomposition has been observed at four different heating rates (5 K/min, 10 K/min, 20 K/min and 40 K/min). The title mol­ecular salt decomposes (70–80%) in two stages. For each stage, the energy of activation was determined employing Kissinger (1957[Kissinger, H. E. (1957). Anal. Chem. 29, 1702-1706.]) [stage I: 27.2 kcal/mol; stage II: 50.5 kcal/mol] and Ozawa (1965[Ozawa, T. (1965). Bull. Chem. Soc. Jpn, 38, 1881-1886.]) methods [stage I: 28.5 kcal/mol; stage II: 51.8 kcal/mol]. The title mol­ecular salt was observed to be insensitive towards the impact of a 2 kg mass hammer up to the height limit (160 cm) of the instrument, even at the maximum energy level of 31.392 J (Meyer & Kohler, 1993a[Meyer, R. & Kohler, J. (1993a). Editors. Explosives, 4th ed., revised and extended, p. 149. New York: VCH Publishers.]). The friction sensitivity was determined under defined conditions according to the BAM method (Meyer & Kohler, 1993b[Meyer, R. & Kohler, J. (1993b). Editors. Explosives, 4th ed., revised and extended, p. 197. New York: VCH Publishers.]). The title mol­ecular salt was insensitive at the maximum force of 360 Newton. The title mol­ecular salt is an insensitive high-energy-density material, confirmed through the impact, friction-sensitivity test, and the energy of activation from TGA/DTA curves.

6. Synthesis and crystallization

Styphnic acid (2.45 g, 0.01 mol) dissolved in 25 mL of absolute alcohol was mixed with pyridine (0.79 g, 0.01 mol) and stirred continuously for 6 hrs and then kept aside for 2 h. The yellow-coloured amorphous solid obtained was filtered, washed with 30 ml of dry ether and recrystallized from ethyl­ene glycol. Yellow crystals formed in an ethyl­ene glycol solution after slow evaporation at 298 K over a period of 2 weeks (m.p: 455 K; yield: 80%).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The NH H atom was located from a difference Fourier map and freely refined. The OH and C-bound H atoms were included in calculated positions and treated as riding atoms: O—H = 0.82, C—H = 0.93 Å, with Uiso(H) = 1.5Ueq(O) for the hydroxyl H atom and = 1.2Ueq(C) for the other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C5H6N+·C6H2N3O8
Mr 324.21
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 5.9506 (2), 8.1608 (3), 27.0175 (10)
β (°) 90.379 (5)
V3) 1311.99 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.14
Crystal size (mm) 0.35 × 0.35 × 0.30
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.951, 0.959
No. of measured, independent and observed [I > 2σ(I)] reflections 14733, 2296, 1771
Rint 0.047
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.198, 1.14
No. of reflections 2296
No. of parameters 212
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.34
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Chemical context top

A number of crystalline styphnate salts with inorganic metal cations have been reported in recent years (Cui et al., 2008a,b; Hu et al., 2005; Liu et al., 2009; Orbovic & Codoceo, 2008; Zhang et al., 2011a,b; Zheng et al., 2006a,b; Zhu & Xiao, 2009). In spite of the fact that styphnates with protonated organic amine cations crystallize with difficulty (Vogel, 1978), they have received attention because of their high thermal stability (Abashev et al., 2001a,b; Deblitz et al., 2012; Kalaivani & Malarvizhi, 2010; Kalaivani et al., 2011; Kazheva et al., 2002; Liu et al., 2008; Refat et al., 2013; Tang et al., 2012; Zhang et al., 2012; Wu et al., 2013a,b,c). Amorphous pyridinium styphnate has found applications in the preparation of chloro­picryl chloride (Feuer & Harban, 1954). We report herein on the crystal structure of the title molecular salt.

Structural commentary top

The molecular structure of the title molecular salt is depicted in Fig 1. The asymmetric unit is comprised of one phenolate anion and a pyridinium cation. The loss of a single proton of the styphnate anion is confirmed by the increase in the bond lengths of the C—C bonds adjacent to the phenolate ion (C1—C2 and C2—C3) which are 1.439 (4) and 1.420 (4) Å, respectively. There is an increase of the value of the bond angles C2—C1—C6 and C2—C3—C4 in the benzene ring to 122.4 (3) and 126.3 (3)°, respectively, and a decrease of the C4—C5—C6 bond angle to 120.5 (2)° compared to the values observed for free styphic acid (Pierce-Butler, 1982). The nitro group (N3/O5/O6) flanked by the phenolate ion and the phenolic –OH group deviates noticeably from the benzene ring plane, subtending a dihedral angle of 89.2 (4)°. The other two nitro groups, O1/N1/O2 and O3/N2/O4, lie close to the plane of the attached benzene ring, making dihedral angles of 2.8 (4) and 3.4 (3) °, respectively. The nitro group (N2/O3/O4) para with respect to the phenolate O atom, O7, forms an intra­molecular hydrogen bond with the adjacent phenolic –OH group (O8—H8), which results in an S(6) ring motif (Fig. 1 and Table 1).

Supra­molecular features top

In the crystal, the cation and anion are linked via bifurcated N—H···(O,O) hydrogen bonds forming an R12(6) ring motif (Table 1 and Figs. 1 and 2). Inversion-related anions are connected through pairs of C—H···O hydrogen bonds, forming dimers enclosing an R22(10) ring motif. The phenolate oxygen, O7, is also bifurcated and forms hydrogen bonds with the protonated nitro­gen atom, N4, of the pyridinium moiety and the C—H H atom adjacent to the protonated nitro­gen atom, forming an R21(5) ring motif. The combination of these various N—H···O, O—H···O and C—H···O hydrogen bonds leads to the formation of a three-dimensional structure (Table 1 and Figs. 2 and 3).

Database survey top

A search of the Cambridge Structural Database (Version 5.35, May 214; Groom & Allen, 2014) for 3-hy­droxy-2,4,6-tri­nitro­phenolates gave 14 hits. Six concern metal-complex cations, and eight organic cations. Amongst the latter are two compounds, referred to above in §1 for their high thermal stability, viz. 2-meth­oxy­anilinium 3-hy­droxy-2,4,6-tri­nitro­phenolate (Kalaivani et al., 2011) and morpholinium 3-hy­droxy-2,4,6-tri­nitro­phenolate (Kalaivani & Malarvizhi, 2010).

Thermal behaviour and friction sensitivity top

As styphnic acid derivatives are energetic salts, the thermal behaviour of the title molecular salt has also been examined. The exothermic decomposition has been observed at four different heating rates (5 K/min, 10 K/min, 20 K/min and 40 K/min). The title molecular salt decomposes (70–80 %) in two stages. For each stage, the energy of activation was determined employing Kissinger (1957) [stage I: 27.2 kcal/mol; stage II: 50.5 kcal/mol] and Ozawa (1965) methods [stage I: 28.5 kcal/mol; stage II: 51.8 kcal/mol]. The title molecular salt was observed to be insensitive towards the impact of a 2 kg mass hammer up to the height limit (160 cm) of the instrument, even at the maximum energy level of 31.392 J (Meyer & Kohler, 1993a). The friction sensitivity was determined under defined conditions according to the BAM method (Meyer & Kohler, 1993b). The title molecular salt was insensitive at the maximum force of 360 Newton. The title molecular salt is an insensitive high-energy-density material, confirmed through the impact, friction-sensitivity test, and the energy of activation from TGA/DTA curves.

Synthesis and crystallization top

Styphnic acid (2.45 g, 0.01 mol) dissolved in 25 mL of absolute alcohol was mixed with pyridine (0.79 g, 0.01 mol) and stirred continuously for 6 hrs and then kept aside for 2 h. The yellow-coloured amorphous solid obtained was filtered, washed with 30 ml of dry ether and recrystallized from ethyl­ene glycol. Yellow crystals formed in an ethyl­ene glycol solution after slow evaporation at 298 K over a period of 2 weeks (m.p: 455 K; yield: 80%).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH H atom was located from a difference Fourier map and freely refined. The OH and C-bound H atoms were included in calculated positions and treated as riding atoms: O—H = 0.82, C—H = 0.93 Å, with Uiso(H) = 1.5Ueq(O) for the hydroxyl H atom and = 1.2Ueq(C) for the other H atoms.

Related literature top

For related literature, see: Abashev et al. (2001a, 2001b); Cui et al. (2008a, 2008b); Deblitz et al. (2012); Feuer & Harban (1954); Groom & Allen (2014); Hu et al. (2005); Kalaivani & Malarvizhi (2010); Kalaivani et al. (2011); Kazheva et al. (2002); Kissinger (1957); Liu et al. (2008, 2009); Meyer & Kohler (1993a, 1993b); Orbovic & Codoceo (2008); Ozawa (1965); Pierce-Butler (1982); Refat et al. (2013); Tang et al. (2012); Vogel (1978); Wu et al. (2013a, 2013b, 2013c); Zhang et al. (2011a, 2011b, 2012); Zheng et al. (2006a, 2006b); Zhu & Xiao (2009).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecular salt, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines (see Table 1 for details).
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title molecular salt. Hydrogen bonds are shown as dashed lines (see Table 1 for details).
[Figure 3] Fig. 3. A view along the b axis of the crystal packing of the title molecular salt. Hydrogen bonds are shown as dashed lines (see Table 1 for details).
Pyridinium 3-hydroxy-2,4,6-trinitrophenolate top
Crystal data top
C5H6N+·C6H2N3O8F(000) = 664
Mr = 324.21Dx = 1.641 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5354 reflections
a = 5.9506 (2) Åθ = 2.6–26.1°
b = 8.1608 (3) ŵ = 0.14 mm1
c = 27.0175 (10) ÅT = 296 K
β = 90.379 (5)°Block, yellow
V = 1311.99 (8) Å30.35 × 0.35 × 0.30 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2296 independent reflections
Radiation source: fine-focus sealed tube1771 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω and ϕ scanθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 57
Tmin = 0.951, Tmax = 0.959k = 99
14733 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.198H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.1017P)2 + 0.9268P]
where P = (Fo2 + 2Fc2)/3
2296 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.32 e Å3
1 restraintΔρmin = 0.34 e Å3
Crystal data top
C5H6N+·C6H2N3O8V = 1311.99 (8) Å3
Mr = 324.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.9506 (2) ŵ = 0.14 mm1
b = 8.1608 (3) ÅT = 296 K
c = 27.0175 (10) Å0.35 × 0.35 × 0.30 mm
β = 90.379 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2296 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1771 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.959Rint = 0.047
14733 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0591 restraint
wR(F2) = 0.198H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.32 e Å3
2296 reflectionsΔρmin = 0.34 e Å3
212 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5386 (5)0.1613 (3)0.08054 (10)0.0338 (6)
C20.6344 (5)0.1587 (3)0.12957 (10)0.0335 (6)
C30.5003 (5)0.0711 (3)0.16385 (10)0.0330 (6)
C40.3031 (4)0.0084 (3)0.15364 (10)0.0331 (6)
C50.2257 (4)0.0036 (3)0.10427 (10)0.0342 (7)
C60.3424 (5)0.0820 (4)0.06890 (10)0.0372 (7)
H60.28730.08620.03660.045*
C71.2035 (5)0.4297 (4)0.17352 (12)0.0451 (8)
H71.12000.37090.19640.054*
C81.3941 (6)0.5094 (4)0.18837 (12)0.0485 (8)
H81.44070.50630.22130.058*
C91.5148 (6)0.5936 (4)0.15407 (12)0.0476 (8)
H91.64610.64740.16350.057*
C101.4438 (6)0.5993 (4)0.10590 (12)0.0488 (8)
H101.52500.65770.08250.059*
C111.2528 (6)0.5186 (4)0.09267 (12)0.0471 (8)
H111.20270.52090.06000.057*
N10.6481 (5)0.2501 (3)0.04118 (9)0.0477 (7)
N20.0254 (4)0.0877 (3)0.09001 (10)0.0445 (7)
N30.5834 (4)0.0636 (3)0.21455 (9)0.0436 (7)
N41.1371 (4)0.4356 (3)0.12684 (10)0.0419 (6)
O10.8179 (5)0.3281 (4)0.04960 (9)0.0730 (9)
O20.5667 (5)0.2440 (5)0.00022 (10)0.0953 (12)
O30.0431 (5)0.0774 (4)0.04783 (9)0.0732 (8)
O40.0736 (4)0.1705 (3)0.12168 (9)0.0589 (7)
O50.5195 (6)0.1641 (3)0.24370 (9)0.0800 (10)
O60.7049 (5)0.0493 (5)0.22574 (10)0.0913 (11)
O70.8146 (3)0.2234 (3)0.14326 (8)0.0493 (6)
O80.1994 (4)0.0845 (3)0.19071 (8)0.0478 (6)
H8A0.08160.12470.18050.072*
H4A1.006 (6)0.388 (7)0.1186 (18)0.118 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0332 (15)0.0309 (14)0.0374 (15)0.0026 (12)0.0065 (12)0.0001 (11)
C20.0283 (14)0.0298 (13)0.0424 (15)0.0001 (11)0.0028 (12)0.0035 (11)
C30.0324 (15)0.0339 (14)0.0327 (14)0.0014 (12)0.0003 (11)0.0011 (11)
C40.0317 (15)0.0281 (13)0.0397 (15)0.0009 (11)0.0066 (12)0.0007 (11)
C50.0261 (14)0.0323 (14)0.0441 (16)0.0023 (11)0.0006 (12)0.0039 (12)
C60.0367 (16)0.0374 (15)0.0374 (15)0.0010 (12)0.0014 (12)0.0043 (12)
C70.0468 (19)0.0385 (16)0.0503 (18)0.0043 (14)0.0104 (14)0.0022 (13)
C80.053 (2)0.0475 (18)0.0455 (17)0.0064 (16)0.0028 (15)0.0011 (14)
C90.0424 (18)0.0414 (17)0.059 (2)0.0093 (14)0.0024 (15)0.0018 (15)
C100.0491 (19)0.0419 (17)0.055 (2)0.0082 (15)0.0100 (15)0.0081 (14)
C110.053 (2)0.0450 (17)0.0432 (17)0.0018 (15)0.0018 (15)0.0019 (14)
N10.0497 (16)0.0525 (16)0.0408 (15)0.0080 (13)0.0037 (12)0.0065 (12)
N20.0343 (14)0.0446 (14)0.0544 (16)0.0056 (12)0.0010 (12)0.0080 (12)
N30.0395 (15)0.0515 (16)0.0398 (14)0.0069 (12)0.0005 (11)0.0036 (12)
N40.0349 (14)0.0362 (13)0.0547 (16)0.0041 (11)0.0008 (12)0.0050 (11)
O10.0702 (18)0.091 (2)0.0575 (15)0.0443 (16)0.0055 (13)0.0103 (14)
O20.092 (2)0.147 (3)0.0465 (15)0.054 (2)0.0129 (15)0.0350 (17)
O30.0594 (17)0.102 (2)0.0584 (16)0.0280 (15)0.0190 (13)0.0023 (15)
O40.0472 (14)0.0603 (15)0.0692 (16)0.0234 (12)0.0075 (12)0.0048 (12)
O50.133 (3)0.0616 (16)0.0453 (14)0.0037 (17)0.0071 (15)0.0118 (13)
O60.089 (2)0.124 (3)0.0600 (17)0.052 (2)0.0210 (15)0.0014 (17)
O70.0364 (12)0.0594 (14)0.0521 (13)0.0177 (10)0.0026 (10)0.0031 (10)
O80.0440 (13)0.0533 (13)0.0464 (12)0.0163 (10)0.0059 (10)0.0059 (10)
Geometric parameters (Å, º) top
C1—C61.369 (4)C8—H80.9300
C1—C21.439 (4)C9—C101.366 (4)
C1—N11.445 (4)C9—H90.9300
C2—O71.249 (3)C10—C111.359 (5)
C2—C31.420 (4)C10—H100.9300
C3—C41.367 (4)C11—N41.339 (4)
C3—N31.454 (4)C11—H110.9300
C4—O81.333 (3)N1—O21.206 (4)
C4—C51.409 (4)N1—O11.215 (4)
C5—C61.376 (4)N2—O31.211 (3)
C5—N21.426 (4)N2—O41.242 (3)
C6—H60.9300N3—O51.200 (4)
C7—N41.320 (4)N3—O61.208 (4)
C7—C81.366 (5)N4—H4A0.90 (2)
C7—H70.9300O8—H8A0.8200
C8—C91.362 (5)
C6—C1—C2122.4 (3)C7—C8—H8120.6
C6—C1—N1117.1 (3)C8—C9—C10120.3 (3)
C2—C1—N1120.5 (2)C8—C9—H9119.9
O7—C2—C3120.3 (3)C10—C9—H9119.9
O7—C2—C1126.9 (3)C11—C10—C9119.1 (3)
C3—C2—C1112.8 (2)C11—C10—H10120.4
C4—C3—C2126.3 (3)C9—C10—H10120.4
C4—C3—N3117.1 (2)N4—C11—C10119.8 (3)
C2—C3—N3116.5 (2)N4—C11—H11120.1
O8—C4—C3118.1 (2)C10—C11—H11120.1
O8—C4—C5125.0 (2)O2—N1—O1121.5 (3)
C3—C4—C5116.9 (2)O2—N1—C1118.3 (3)
C6—C5—C4120.5 (2)O1—N1—C1120.2 (3)
C6—C5—N2118.8 (3)O3—N2—O4121.9 (3)
C4—C5—N2120.7 (3)O3—N2—C5119.8 (3)
C1—C6—C5120.9 (3)O4—N2—C5118.4 (3)
C1—C6—H6119.5O5—N3—O6123.2 (3)
C5—C6—H6119.5O5—N3—C3118.8 (3)
N4—C7—C8120.4 (3)O6—N3—C3117.8 (3)
N4—C7—H7119.8C7—N4—C11121.7 (3)
C8—C7—H7119.8C7—N4—H4A118 (3)
C9—C8—C7118.7 (3)C11—N4—H4A120 (3)
C9—C8—H8120.6C4—O8—H8A109.5
C6—C1—C2—O7178.0 (3)N2—C5—C6—C1178.3 (3)
N1—C1—C2—O72.3 (4)N4—C7—C8—C90.6 (5)
C6—C1—C2—C32.0 (4)C7—C8—C9—C100.8 (5)
N1—C1—C2—C3177.7 (2)C8—C9—C10—C110.7 (5)
O7—C2—C3—C4178.4 (3)C9—C10—C11—N40.3 (5)
C1—C2—C3—C41.6 (4)C6—C1—N1—O23.0 (5)
O7—C2—C3—N30.6 (4)C2—C1—N1—O2177.3 (3)
C1—C2—C3—N3179.4 (2)C6—C1—N1—O1177.1 (3)
C2—C3—C4—O8179.9 (3)C2—C1—N1—O12.6 (4)
N3—C3—C4—O81.1 (4)C6—C5—N2—O32.8 (4)
C2—C3—C4—C50.3 (4)C4—C5—N2—O3177.3 (3)
N3—C3—C4—C5178.7 (2)C6—C5—N2—O4177.0 (3)
O8—C4—C5—C6178.3 (3)C4—C5—N2—O42.9 (4)
C3—C4—C5—C61.9 (4)C4—C3—N3—O587.2 (4)
O8—C4—C5—N21.8 (4)C2—C3—N3—O593.7 (3)
C3—C4—C5—N2178.0 (2)C4—C3—N3—O689.1 (4)
C2—C1—C6—C50.6 (4)C2—C3—N3—O690.0 (4)
N1—C1—C6—C5179.2 (3)C8—C7—N4—C110.2 (5)
C4—C5—C6—C11.5 (4)C10—C11—N4—C70.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O10.90 (2)2.22 (4)2.946 (4)137 (4)
N4—H4A···O70.90 (2)1.88 (4)2.625 (3)138 (5)
O8—H8A···N20.822.482.905 (3)113
O8—H8A···O40.821.872.563 (3)141
O8—H8A···O6i0.822.633.110 (4)119
C8—H8···O6ii0.932.583.352 (5)141
C8—H8···O8iii0.932.633.405 (4)141
C10—H10···O2iv0.932.433.139 (4)133
Symmetry codes: (i) x1, y, z; (ii) x+5/2, y+1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2; (iv) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O10.90 (2)2.22 (4)2.946 (4)137 (4)
N4—H4A···O70.90 (2)1.88 (4)2.625 (3)138 (5)
O8—H8A···N20.822.482.905 (3)113
O8—H8A···O40.821.872.563 (3)141
O8—H8A···O6i0.822.633.110 (4)119
C8—H8···O6ii0.932.583.352 (5)141
C8—H8···O8iii0.932.633.405 (4)141
C10—H10···O2iv0.932.433.139 (4)133
Symmetry codes: (i) x1, y, z; (ii) x+5/2, y+1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2; (iv) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC5H6N+·C6H2N3O8
Mr324.21
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)5.9506 (2), 8.1608 (3), 27.0175 (10)
β (°) 90.379 (5)
V3)1311.99 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.35 × 0.35 × 0.30
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.951, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
14733, 2296, 1771
Rint0.047
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.198, 1.14
No. of reflections2296
No. of parameters212
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.34

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008).

 

Acknowledgements

The authors are grateful to the UGC for financial support and the SAIF, IIT Madras, for the data collection.

References

First citationAbashev, G. G., Gritsenko, V. V., Kazheva, O. N., Tenishev, A. G., Canadell, E. & Dyachenk, O. A. (2001b). Z. Kristallogr. 216, 623–628.  CSD CrossRef CAS Google Scholar
First citationAbashev, G. G., Kazheva, O. N., Dyachenk, O. A., Gritsenko, V. V., Tenishev, A. G., Nishimura, K. & Saito, G. (2001a). Mendeleev Commun. 4, 125–127.  CSD CrossRef Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCui, Y., Zhang, T. L., Zhang, J. G. & Yang, L. (2008a). Chin. J. Chem. 26, 2021–2028.  Web of Science CSD CrossRef CAS Google Scholar
First citationCui, Y., Zhang, T. L., Zhang, J. G., Yang, L., Hu, X. C. & Zhang, J. (2008b). J. Mol. Struct. 889, 177–185.  Web of Science CSD CrossRef CAS Google Scholar
First citationDeblitz, R., Hrib, C. G., Plenikowski, G. & Edelmann, F. T. (2012). Crystals, 2, 34–42.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFeuer, H. & Harban, A. A. (1954). US Patent 2679538 A.  Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationHu, R., Chen, S., Gao, S., Zhao, F., Luo, Y., Gao, H., Shi, Q., Zhao, H., Yao, P. & Li, J. (2005). J. Hazard. Mater. 117, 346–350.  CrossRef Google Scholar
First citationKalaivani, D. & Malarvizhi, R. (2010). Acta Cryst. E66, o2698.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKalaivani, D., Malarvizhi, R., Thanigaimani, K. & Muthiah, P. T. (2011). Acta Cryst. E67, o686.  CSD CrossRef IUCr Journals Google Scholar
First citationKazheva, O. N., Canadell, E., Shilov, G. V., Abashev, G. G., Tenishev, A. G. & Dyachenk, O. A. (2002). Phys. E Low Dimens. Syst. Nanostruct. 13, 1268–1270.  CSD CrossRef CAS Google Scholar
First citationKissinger, H. E. (1957). Anal. Chem. 29, 1702–1706.  CrossRef CAS Google Scholar
First citationLiu, Z. H., Ao, G. J., Zhang, T. L., Yang, L., Zhang, J. G. & Zhang, Y. (2008). Wuji Huaxue Xuebao, 24, 1155–1159.  CAS Google Scholar
First citationLiu, J. W., Zhang, J. G., Zhang, T. L., Zheng, H., Yang, L. & Yu, K. B. (2009). Struct. Chem. 20, 387–392.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMeyer, R. & Kohler, J. (1993a). Editors. Explosives, 4th ed., revised and extended, p. 149. New York: VCH Publishers.  Google Scholar
First citationMeyer, R. & Kohler, J. (1993b). Editors. Explosives, 4th ed., revised and extended, p. 197. New York: VCH Publishers.  Google Scholar
First citationOrbovic, N. & Codoceo, C. L. (2008). Prop. Explos. Pyrotech. 33, 459–466.  Web of Science CrossRef CAS Google Scholar
First citationOzawa, T. (1965). Bull. Chem. Soc. Jpn, 38, 1881–1886.  CrossRef CAS Google Scholar
First citationPierce-Butler, M. A. (1982). Acta Cryst. B38, 3097–3100.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRefat, M. S., Saad, H. A., EI-Sayed, M. Y., Adam, A. M. A., Yeşilel, O. Z. & Taş, M. (2013). J. Chem. 2013, article ID 107515, 8 pages. doi: 10.1155/2013/107515.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, Z., Yang, L., Qiao, X. J., Wu, B. D., Zhang, T. L., Zhou, Z. N. & Yu, K. B. (2012). Chem. Res. Chin. Univ. 28, 4-8.  CAS Google Scholar
First citationVogel, A. I. (1978). Textbook of Practical Organic Chemistry, 4th ed., p. 1093. London: Longman.  Google Scholar
First citationWu, J. T., Zhang, J. G., Sun, M., Yin, X. & Zhang, T. L. (2013b). New Trends Res. Energ. Mater. pp. 433–440.  Google Scholar
First citationWu, J. T., Zhang, J. G., Sun, M., Yin, X. & Zhang, T. L. (2013c). Cent. Eur. J. Energ. Mater. 10, 481–493.  CAS Google Scholar
First citationWu, J. T., Zhang, J. G., Yin, X., Sun, M. & Zhang, T. L. (2013a). Z. Anorg. Allg. Chem. 639, 2354–2358.  CrossRef CAS Google Scholar
First citationZhang, J. G., Liang, Y. H., Feng, J. L., Wang, K., Zhang, T. L., Zhou, Z. N. & Yang, L. (2012). Z. Anorg. Allg. Chem. 638, 1212–1218.  CSD CrossRef CAS Google Scholar
First citationZhang, J. G., Wang, K., Li, Z. M., Zheng, H., Zhang, T. L. & Yang, L. (2011a). Main Group Chem. 10, 205–213.  CAS Google Scholar
First citationZhang, J., Wei, L., Cui, Y., Zhang, T., Zhou, Z. & Yong, L. (2011b). Z. Anorg. Allg. Chem. 637, 1527–1532.  CSD CrossRef CAS Google Scholar
First citationZheng, H., Zhang, T. L., Zhang, J. G., Qiao, X. L., Yang, L. & Yu, K. B. (2006a). Wuji Huaxue Xuebao 22, 346–350.  CAS Google Scholar
First citationZheng, H., Zhang, T. L., Zhang, J. G., Qiao, X. L., Yang, L. & Yu, K. B. (2006b). Chin. J. Chem. 24, 845–848.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, W. & Xiao, H. (2009). J. Phys. Chem. B, 113, 10315–10321.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 117-120
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds