research communications
and thermal behaviour of pyridinium styphnate
aPG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Tiruchirappalli 620 002, Tamil Nadu, India
*Correspondence e-mail: kalaivbalaj@yahoo.co.in
In the 5H6N+·C6H2N3O8− (systematic name: pyridinium 3-hydroxy-2,4,6-trinitrophenolate), the pyridinium cation and the 3-hydroxy-2,4,6-trinitrophenolate anion are linked through bifurcated N—H⋯(O,O) hydrogen bonds, forming an R12(6) ring motif. The nitro group para with respect to phenolate ion forms an intramolecular hydrogen bond with the adjacent phenolic –OH group, which results in an S(6) ring motif. The nitro group flanked by the phenolate ion and the phenolic –OH group deviates noticeably from the benzene ring, subtending a dihedral angle of 89.2 (4)°. The other two nitro groups deviate only slightly from the plane of the benzene ring, making dihedral angles of 2.8 (4) and 3.4 (3)°. In the crystal, the 3-hydroxy-2,4,6-trinitrophenolate anions are linked through O—H⋯O hydrogen bonds, forming chains along [100]. These anionic chains, to which the cations are attached, are linked via C—H⋯O hydrogen bonds, forming a three-dimensional structure. Impact friction sensitivity tests and TGA/DTA studies on the title molecular salt imply that it is an insensitive high-energy-density material.
of the title molecular salt, CKeywords: crystal structure; pyridinium; styphnate; TGA/DTA studies; hydrogen bonding.
CCDC reference: 1006492
1. Chemical context
A number of crystalline styphnate salts with inorganic metal cations have been reported in recent years (Cui et al., 2008a,b; Hu et al., 2005; Liu et al., 2009; Orbovic & Codoceo, 2008; Zhang et al., 2011a,b; Zheng et al., 2006a,b; Zhu & Xiao, 2009). In spite of the fact that with protonated organic amine cations crystallize with difficulty (Vogel, 1978), they have received attention because of their high thermal stability (Abashev et al., 2001a,b; Deblitz et al., 2012; Kalaivani & Malarvizhi, 2010; Kalaivani et al., 2011; Kazheva et al., 2002; Liu et al., 2008; Refat et al., 2013; Tang et al., 2012; Zhang et al., 2012; Wu et al., 2013a,b,c). Amorphous pyridinium styphnate has found applications in the preparation of chloropicryl chloride (Feuer & Harban, 1954). We report herein on the of the title molecular salt.
2. Structural commentary
The molecular structure of the title molecular salt is depicted in Fig. 1. The is comprised of one phenolate anion and a pyridinium cation. The loss of a single proton of the styphnate anion is confirmed by the increase in the bond lengths of the C—C bonds adjacent to the phenolate ion (C1—C2 and C2—C3), which are 1.439 (4) and 1.420 (4) Å, respectively. There is an increase of the value of the bond angles C2—C1—C6 and C2—C3—C4 in the benzene ring to 122.4 (3) and 126.3 (3)°, respectively, and a decrease of the C4—C5—C6 bond angle to 120.5 (2)° compared to the values observed for free styphic acid (Pierce-Butler, 1982). The nitro group (N3/O5/O6) flanked by the phenolate ion and the phenolic –OH group deviates noticeably from the benzene ring plane, subtending a dihedral angle of 89.2 (4)°. The other two nitro groups, O1/N1/O2 and O3/N2/O4, lie close to the plane of the attached benzene ring, making dihedral angles of 2.8 (4) and 3.4 (3) °, respectively. The nitro group (N2/O3/O4) para with respect to the phenolate O atom, O7, forms an intramolecular hydrogen bond with the adjacent phenolic –OH group (O8—H8), which results in an S(6) ring motif (Fig. 1 and Table 1).
3. Supramolecular features
In the crystal, the cation and anion are linked via bifurcated N—H⋯(O,O) hydrogen bonds forming an (6) ring motif (Table 1 and Figs. 1 and 2). Inversion-related anions are connected through pairs of C—H⋯O hydrogen bonds, forming dimers enclosing an R22(10) ring motif. The phenolate oxygen, O7, is also bifurcated and forms hydrogen bonds with the protonated nitrogen atom, N4, of the pyridinium moiety and the C—H H atom adjacent to the protonated nitrogen atom, forming an R21(5) ring motif. The combination of these various N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds leads to the formation of a three-dimensional structure (Table 1 and Figs. 2 and 3).
4. Database survey
A search of the Cambridge Structural Database (Version 5.35, May 214; Groom & Allen, 2014) for 3-hydroxy-2,4,6-trinitrophenolates gave 14 hits. Six concern metal-complex cations, and the remaining eight concern organic cations. Amongst the latter are two compounds, referred to above in §1 for their high thermal stability, viz. 2-methoxyanilinium 3-hydroxy-2,4,6-trinitrophenolate (Kalaivani et al., 2011) and morpholinium 3-hydroxy-2,4,6-trinitrophenolate (Kalaivani & Malarvizhi, 2010).
5. Thermal behaviour and friction sensitivity
As styphnic acid derivatives are energetic salts, the thermal behaviour of the title molecular salt has also been examined. The exothermic decomposition has been observed at four different heating rates (5 K/min, 10 K/min, 20 K/min and 40 K/min). The title molecular salt decomposes (70–80%) in two stages. For each stage, the ) [stage I: 27.2 kcal/mol; stage II: 50.5 kcal/mol] and Ozawa (1965) methods [stage I: 28.5 kcal/mol; stage II: 51.8 kcal/mol]. The title molecular salt was observed to be insensitive towards the impact of a 2 kg mass hammer up to the height limit (160 cm) of the instrument, even at the maximum energy level of 31.392 J (Meyer & Kohler, 1993a). The friction sensitivity was determined under defined conditions according to the BAM method (Meyer & Kohler, 1993b). The title molecular salt was insensitive at the maximum force of 360 Newton. The title molecular salt is an insensitive high-energy-density material, confirmed through the impact, friction-sensitivity test, and the from TGA/DTA curves.
was determined employing Kissinger (19576. Synthesis and crystallization
Styphnic acid (2.45 g, 0.01 mol) dissolved in 25 mL of absolute alcohol was mixed with pyridine (0.79 g, 0.01 mol) and stirred continuously for 6 hrs and then kept aside for 2 h. The yellow-coloured amorphous solid obtained was filtered, washed with 30 ml of dry ether and recrystallized from ethylene glycol. Yellow crystals formed in an ethylene glycol solution after slow evaporation at 298 K over a period of 2 weeks (m.p: 455 K; yield: 80%).
7. Refinement
Crystal data, data collection and structure . The NH H atom was located from a difference Fourier map and freely refined. The OH and C-bound H atoms were included in calculated positions and treated as riding atoms: O—H = 0.82, C—H = 0.93 Å, with Uiso(H) = 1.5Ueq(O) for the hydroxyl H atom and = 1.2Ueq(C) for the other H atoms.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1006492
10.1107/S2056989014027704/su5046sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989014027704/su5046Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989014027704/su5046Isup3.cml
A number of crystalline styphnate salts with inorganic metal cations have been reported in recent years (Cui et al., 2008a,b; Hu et al., 2005; Liu et al., 2009; Orbovic & Codoceo, 2008; Zhang et al., 2011a,b; Zheng et al., 2006a,b; Zhu & Xiao, 2009). In spite of the fact that
with protonated organic amine cations crystallize with difficulty (Vogel, 1978), they have received attention because of their high thermal stability (Abashev et al., 2001a,b; Deblitz et al., 2012; Kalaivani & Malarvizhi, 2010; Kalaivani et al., 2011; Kazheva et al., 2002; Liu et al., 2008; Refat et al., 2013; Tang et al., 2012; Zhang et al., 2012; Wu et al., 2013a,b,c). Amorphous pyridinium styphnate has found applications in the preparation of chloropicryl chloride (Feuer & Harban, 1954). We report herein on the of the title molecular salt.The molecular structure of the title molecular salt is depicted in Fig 1. The
is comprised of one phenolate anion and a pyridinium cation. The loss of a single proton of the styphnate anion is confirmed by the increase in the bond lengths of the C—C bonds adjacent to the phenolate ion (C1—C2 and C2—C3) which are 1.439 (4) and 1.420 (4) Å, respectively. There is an increase of the value of the bond angles C2—C1—C6 and C2—C3—C4 in the benzene ring to 122.4 (3) and 126.3 (3)°, respectively, and a decrease of the C4—C5—C6 bond angle to 120.5 (2)° compared to the values observed for free styphic acid (Pierce-Butler, 1982). The nitro group (N3/O5/O6) flanked by the phenolate ion and the phenolic –OH group deviates noticeably from the benzene ring plane, subtending a dihedral angle of 89.2 (4)°. The other two nitro groups, O1/N1/O2 and O3/N2/O4, lie close to the plane of the attached benzene ring, making dihedral angles of 2.8 (4) and 3.4 (3) °, respectively. The nitro group (N2/O3/O4) para with respect to the phenolate O atom, O7, forms an intramolecular hydrogen bond with the adjacent phenolic –OH group (O8—H8), which results in an S(6) ring motif (Fig. 1 and Table 1).In the crystal, the cation and anion are linked via bifurcated N—H···(O,O) hydrogen bonds forming an R12(6) ring motif (Table 1 and Figs. 1 and 2). Inversion-related anions are connected through pairs of C—H···O hydrogen bonds, forming dimers enclosing an R22(10) ring motif. The phenolate oxygen, O7, is also bifurcated and forms hydrogen bonds with the protonated nitrogen atom, N4, of the pyridinium moiety and the C—H H atom adjacent to the protonated nitrogen atom, forming an R21(5) ring motif. The combination of these various N—H···O, O—H···O and C—H···O hydrogen bonds leads to the formation of a three-dimensional structure (Table 1 and Figs. 2 and 3).
A search of the Cambridge Structural Database (Version 5.35, May 214; Groom & Allen, 2014) for 3-hydroxy-2,4,6-trinitrophenolates gave 14 hits. Six concern metal-complex cations, and eight organic cations. Amongst the latter are two compounds, referred to above in §1 for their high thermal stability, viz. 2-methoxyanilinium 3-hydroxy-2,4,6-trinitrophenolate (Kalaivani et al., 2011) and morpholinium 3-hydroxy-2,4,6-trinitrophenolate (Kalaivani & Malarvizhi, 2010).
As styphnic acid derivatives are energetic salts, the thermal behaviour of the title molecular salt has also been examined. The exothermic decomposition has been observed at four different heating rates (5 K/min, 10 K/min, 20 K/min and 40 K/min). The title molecular salt decomposes (70–80 %) in two stages. For each stage, the
was determined employing Kissinger (1957) [stage I: 27.2 kcal/mol; stage II: 50.5 kcal/mol] and Ozawa (1965) methods [stage I: 28.5 kcal/mol; stage II: 51.8 kcal/mol]. The title molecular salt was observed to be insensitive towards the impact of a 2 kg mass hammer up to the height limit (160 cm) of the instrument, even at the maximum energy level of 31.392 J (Meyer & Kohler, 1993a). The friction sensitivity was determined under defined conditions according to the BAM method (Meyer & Kohler, 1993b). The title molecular salt was insensitive at the maximum force of 360 Newton. The title molecular salt is an insensitive high-energy-density material, confirmed through the impact, friction-sensitivity test, and the from TGA/DTA curves.Styphnic acid (2.45 g, 0.01 mol) dissolved in 25 mL of absolute alcohol was mixed with pyridine (0.79 g, 0.01 mol) and stirred continuously for 6 hrs and then kept aside for 2 h. The yellow-coloured amorphous solid obtained was filtered, washed with 30 ml of dry ether and recrystallized from ethylene glycol. Yellow crystals formed in an ethylene glycol solution after slow evaporation at 298 K over a period of 2 weeks (m.p: 455 K; yield: 80%).
Crystal data, data collection and structure
details are summarized in Table 2. The NH H atom was located from a difference Fourier map and freely refined. The OH and C-bound H atoms were included in calculated positions and treated as riding atoms: O—H = 0.82, C—H = 0.93 Å, with Uiso(H) = 1.5Ueq(O) for the hydroxyl H atom and = 1.2Ueq(C) for the other H atoms.Data collection: APEX2 (Bruker, 2004); cell
APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. A view of the molecular structure of the title molecular salt, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines (see Table 1 for details). | |
Fig. 2. A view along the a axis of the crystal packing of the title molecular salt. Hydrogen bonds are shown as dashed lines (see Table 1 for details). | |
Fig. 3. A view along the b axis of the crystal packing of the title molecular salt. Hydrogen bonds are shown as dashed lines (see Table 1 for details). |
C5H6N+·C6H2N3O8− | F(000) = 664 |
Mr = 324.21 | Dx = 1.641 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 5354 reflections |
a = 5.9506 (2) Å | θ = 2.6–26.1° |
b = 8.1608 (3) Å | µ = 0.14 mm−1 |
c = 27.0175 (10) Å | T = 296 K |
β = 90.379 (5)° | Block, yellow |
V = 1311.99 (8) Å3 | 0.35 × 0.35 × 0.30 mm |
Z = 4 |
Bruker Kappa APEXII CCD diffractometer | 2296 independent reflections |
Radiation source: fine-focus sealed tube | 1771 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.047 |
ω and ϕ scan | θmax = 25.0°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −5→7 |
Tmin = 0.951, Tmax = 0.959 | k = −9→9 |
14733 measured reflections | l = −32→32 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.059 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.198 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.14 | w = 1/[σ2(Fo2) + (0.1017P)2 + 0.9268P] where P = (Fo2 + 2Fc2)/3 |
2296 reflections | (Δ/σ)max < 0.001 |
212 parameters | Δρmax = 0.32 e Å−3 |
1 restraint | Δρmin = −0.34 e Å−3 |
C5H6N+·C6H2N3O8− | V = 1311.99 (8) Å3 |
Mr = 324.21 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 5.9506 (2) Å | µ = 0.14 mm−1 |
b = 8.1608 (3) Å | T = 296 K |
c = 27.0175 (10) Å | 0.35 × 0.35 × 0.30 mm |
β = 90.379 (5)° |
Bruker Kappa APEXII CCD diffractometer | 2296 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 1771 reflections with I > 2σ(I) |
Tmin = 0.951, Tmax = 0.959 | Rint = 0.047 |
14733 measured reflections |
R[F2 > 2σ(F2)] = 0.059 | 1 restraint |
wR(F2) = 0.198 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.14 | Δρmax = 0.32 e Å−3 |
2296 reflections | Δρmin = −0.34 e Å−3 |
212 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5386 (5) | 0.1613 (3) | 0.08054 (10) | 0.0338 (6) | |
C2 | 0.6344 (5) | 0.1587 (3) | 0.12957 (10) | 0.0335 (6) | |
C3 | 0.5003 (5) | 0.0711 (3) | 0.16385 (10) | 0.0330 (6) | |
C4 | 0.3031 (4) | −0.0084 (3) | 0.15364 (10) | 0.0331 (6) | |
C5 | 0.2257 (4) | −0.0036 (3) | 0.10427 (10) | 0.0342 (7) | |
C6 | 0.3424 (5) | 0.0820 (4) | 0.06890 (10) | 0.0372 (7) | |
H6 | 0.2873 | 0.0862 | 0.0366 | 0.045* | |
C7 | 1.2035 (5) | 0.4297 (4) | 0.17352 (12) | 0.0451 (8) | |
H7 | 1.1200 | 0.3709 | 0.1964 | 0.054* | |
C8 | 1.3941 (6) | 0.5094 (4) | 0.18837 (12) | 0.0485 (8) | |
H8 | 1.4407 | 0.5063 | 0.2213 | 0.058* | |
C9 | 1.5148 (6) | 0.5936 (4) | 0.15407 (12) | 0.0476 (8) | |
H9 | 1.6461 | 0.6474 | 0.1635 | 0.057* | |
C10 | 1.4438 (6) | 0.5993 (4) | 0.10590 (12) | 0.0488 (8) | |
H10 | 1.5250 | 0.6577 | 0.0825 | 0.059* | |
C11 | 1.2528 (6) | 0.5186 (4) | 0.09267 (12) | 0.0471 (8) | |
H11 | 1.2027 | 0.5209 | 0.0600 | 0.057* | |
N1 | 0.6481 (5) | 0.2501 (3) | 0.04118 (9) | 0.0477 (7) | |
N2 | 0.0254 (4) | −0.0877 (3) | 0.09001 (10) | 0.0445 (7) | |
N3 | 0.5834 (4) | 0.0636 (3) | 0.21455 (9) | 0.0436 (7) | |
N4 | 1.1371 (4) | 0.4356 (3) | 0.12684 (10) | 0.0419 (6) | |
O1 | 0.8179 (5) | 0.3281 (4) | 0.04960 (9) | 0.0730 (9) | |
O2 | 0.5667 (5) | 0.2440 (5) | 0.00022 (10) | 0.0953 (12) | |
O3 | −0.0431 (5) | −0.0774 (4) | 0.04783 (9) | 0.0732 (8) | |
O4 | −0.0736 (4) | −0.1705 (3) | 0.12168 (9) | 0.0589 (7) | |
O5 | 0.5195 (6) | 0.1641 (3) | 0.24370 (9) | 0.0800 (10) | |
O6 | 0.7049 (5) | −0.0493 (5) | 0.22574 (10) | 0.0913 (11) | |
O7 | 0.8146 (3) | 0.2234 (3) | 0.14326 (8) | 0.0493 (6) | |
O8 | 0.1994 (4) | −0.0845 (3) | 0.19071 (8) | 0.0478 (6) | |
H8A | 0.0816 | −0.1247 | 0.1805 | 0.072* | |
H4A | 1.006 (6) | 0.388 (7) | 0.1186 (18) | 0.118 (19)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0332 (15) | 0.0309 (14) | 0.0374 (15) | −0.0026 (12) | 0.0065 (12) | −0.0001 (11) |
C2 | 0.0283 (14) | 0.0298 (13) | 0.0424 (15) | 0.0001 (11) | 0.0028 (12) | −0.0035 (11) |
C3 | 0.0324 (15) | 0.0339 (14) | 0.0327 (14) | −0.0014 (12) | −0.0003 (11) | −0.0011 (11) |
C4 | 0.0317 (15) | 0.0281 (13) | 0.0397 (15) | −0.0009 (11) | 0.0066 (12) | −0.0007 (11) |
C5 | 0.0261 (14) | 0.0323 (14) | 0.0441 (16) | −0.0023 (11) | −0.0006 (12) | −0.0039 (12) |
C6 | 0.0367 (16) | 0.0374 (15) | 0.0374 (15) | 0.0010 (12) | −0.0014 (12) | −0.0043 (12) |
C7 | 0.0468 (19) | 0.0385 (16) | 0.0503 (18) | −0.0043 (14) | 0.0104 (14) | 0.0022 (13) |
C8 | 0.053 (2) | 0.0475 (18) | 0.0455 (17) | −0.0064 (16) | −0.0028 (15) | 0.0011 (14) |
C9 | 0.0424 (18) | 0.0414 (17) | 0.059 (2) | −0.0093 (14) | −0.0024 (15) | −0.0018 (15) |
C10 | 0.0491 (19) | 0.0419 (17) | 0.055 (2) | −0.0082 (15) | 0.0100 (15) | 0.0081 (14) |
C11 | 0.053 (2) | 0.0450 (17) | 0.0432 (17) | −0.0018 (15) | −0.0018 (15) | 0.0019 (14) |
N1 | 0.0497 (16) | 0.0525 (16) | 0.0408 (15) | −0.0080 (13) | 0.0037 (12) | 0.0065 (12) |
N2 | 0.0343 (14) | 0.0446 (14) | 0.0544 (16) | −0.0056 (12) | 0.0010 (12) | −0.0080 (12) |
N3 | 0.0395 (15) | 0.0515 (16) | 0.0398 (14) | −0.0069 (12) | 0.0005 (11) | 0.0036 (12) |
N4 | 0.0349 (14) | 0.0362 (13) | 0.0547 (16) | −0.0041 (11) | 0.0008 (12) | −0.0050 (11) |
O1 | 0.0702 (18) | 0.091 (2) | 0.0575 (15) | −0.0443 (16) | 0.0055 (13) | 0.0103 (14) |
O2 | 0.092 (2) | 0.147 (3) | 0.0465 (15) | −0.054 (2) | −0.0129 (15) | 0.0350 (17) |
O3 | 0.0594 (17) | 0.102 (2) | 0.0584 (16) | −0.0280 (15) | −0.0190 (13) | −0.0023 (15) |
O4 | 0.0472 (14) | 0.0603 (15) | 0.0692 (16) | −0.0234 (12) | 0.0075 (12) | −0.0048 (12) |
O5 | 0.133 (3) | 0.0616 (16) | 0.0453 (14) | 0.0037 (17) | −0.0071 (15) | −0.0118 (13) |
O6 | 0.089 (2) | 0.124 (3) | 0.0600 (17) | 0.052 (2) | −0.0210 (15) | 0.0014 (17) |
O7 | 0.0364 (12) | 0.0594 (14) | 0.0521 (13) | −0.0177 (10) | −0.0026 (10) | 0.0031 (10) |
O8 | 0.0440 (13) | 0.0533 (13) | 0.0464 (12) | −0.0163 (10) | 0.0059 (10) | 0.0059 (10) |
C1—C6 | 1.369 (4) | C8—H8 | 0.9300 |
C1—C2 | 1.439 (4) | C9—C10 | 1.366 (4) |
C1—N1 | 1.445 (4) | C9—H9 | 0.9300 |
C2—O7 | 1.249 (3) | C10—C11 | 1.359 (5) |
C2—C3 | 1.420 (4) | C10—H10 | 0.9300 |
C3—C4 | 1.367 (4) | C11—N4 | 1.339 (4) |
C3—N3 | 1.454 (4) | C11—H11 | 0.9300 |
C4—O8 | 1.333 (3) | N1—O2 | 1.206 (4) |
C4—C5 | 1.409 (4) | N1—O1 | 1.215 (4) |
C5—C6 | 1.376 (4) | N2—O3 | 1.211 (3) |
C5—N2 | 1.426 (4) | N2—O4 | 1.242 (3) |
C6—H6 | 0.9300 | N3—O5 | 1.200 (4) |
C7—N4 | 1.320 (4) | N3—O6 | 1.208 (4) |
C7—C8 | 1.366 (5) | N4—H4A | 0.90 (2) |
C7—H7 | 0.9300 | O8—H8A | 0.8200 |
C8—C9 | 1.362 (5) | ||
C6—C1—C2 | 122.4 (3) | C7—C8—H8 | 120.6 |
C6—C1—N1 | 117.1 (3) | C8—C9—C10 | 120.3 (3) |
C2—C1—N1 | 120.5 (2) | C8—C9—H9 | 119.9 |
O7—C2—C3 | 120.3 (3) | C10—C9—H9 | 119.9 |
O7—C2—C1 | 126.9 (3) | C11—C10—C9 | 119.1 (3) |
C3—C2—C1 | 112.8 (2) | C11—C10—H10 | 120.4 |
C4—C3—C2 | 126.3 (3) | C9—C10—H10 | 120.4 |
C4—C3—N3 | 117.1 (2) | N4—C11—C10 | 119.8 (3) |
C2—C3—N3 | 116.5 (2) | N4—C11—H11 | 120.1 |
O8—C4—C3 | 118.1 (2) | C10—C11—H11 | 120.1 |
O8—C4—C5 | 125.0 (2) | O2—N1—O1 | 121.5 (3) |
C3—C4—C5 | 116.9 (2) | O2—N1—C1 | 118.3 (3) |
C6—C5—C4 | 120.5 (2) | O1—N1—C1 | 120.2 (3) |
C6—C5—N2 | 118.8 (3) | O3—N2—O4 | 121.9 (3) |
C4—C5—N2 | 120.7 (3) | O3—N2—C5 | 119.8 (3) |
C1—C6—C5 | 120.9 (3) | O4—N2—C5 | 118.4 (3) |
C1—C6—H6 | 119.5 | O5—N3—O6 | 123.2 (3) |
C5—C6—H6 | 119.5 | O5—N3—C3 | 118.8 (3) |
N4—C7—C8 | 120.4 (3) | O6—N3—C3 | 117.8 (3) |
N4—C7—H7 | 119.8 | C7—N4—C11 | 121.7 (3) |
C8—C7—H7 | 119.8 | C7—N4—H4A | 118 (3) |
C9—C8—C7 | 118.7 (3) | C11—N4—H4A | 120 (3) |
C9—C8—H8 | 120.6 | C4—O8—H8A | 109.5 |
C6—C1—C2—O7 | 178.0 (3) | N2—C5—C6—C1 | −178.3 (3) |
N1—C1—C2—O7 | −2.3 (4) | N4—C7—C8—C9 | −0.6 (5) |
C6—C1—C2—C3 | −2.0 (4) | C7—C8—C9—C10 | 0.8 (5) |
N1—C1—C2—C3 | 177.7 (2) | C8—C9—C10—C11 | −0.7 (5) |
O7—C2—C3—C4 | −178.4 (3) | C9—C10—C11—N4 | 0.3 (5) |
C1—C2—C3—C4 | 1.6 (4) | C6—C1—N1—O2 | −3.0 (5) |
O7—C2—C3—N3 | 0.6 (4) | C2—C1—N1—O2 | 177.3 (3) |
C1—C2—C3—N3 | −179.4 (2) | C6—C1—N1—O1 | 177.1 (3) |
C2—C3—C4—O8 | −179.9 (3) | C2—C1—N1—O1 | −2.6 (4) |
N3—C3—C4—O8 | 1.1 (4) | C6—C5—N2—O3 | −2.8 (4) |
C2—C3—C4—C5 | 0.3 (4) | C4—C5—N2—O3 | 177.3 (3) |
N3—C3—C4—C5 | −178.7 (2) | C6—C5—N2—O4 | 177.0 (3) |
O8—C4—C5—C6 | 178.3 (3) | C4—C5—N2—O4 | −2.9 (4) |
C3—C4—C5—C6 | −1.9 (4) | C4—C3—N3—O5 | −87.2 (4) |
O8—C4—C5—N2 | −1.8 (4) | C2—C3—N3—O5 | 93.7 (3) |
C3—C4—C5—N2 | 178.0 (2) | C4—C3—N3—O6 | 89.1 (4) |
C2—C1—C6—C5 | 0.6 (4) | C2—C3—N3—O6 | −90.0 (4) |
N1—C1—C6—C5 | −179.2 (3) | C8—C7—N4—C11 | 0.2 (5) |
C4—C5—C6—C1 | 1.5 (4) | C10—C11—N4—C7 | 0.0 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4A···O1 | 0.90 (2) | 2.22 (4) | 2.946 (4) | 137 (4) |
N4—H4A···O7 | 0.90 (2) | 1.88 (4) | 2.625 (3) | 138 (5) |
O8—H8A···N2 | 0.82 | 2.48 | 2.905 (3) | 113 |
O8—H8A···O4 | 0.82 | 1.87 | 2.563 (3) | 141 |
O8—H8A···O6i | 0.82 | 2.63 | 3.110 (4) | 119 |
C8—H8···O6ii | 0.93 | 2.58 | 3.352 (5) | 141 |
C8—H8···O8iii | 0.93 | 2.63 | 3.405 (4) | 141 |
C10—H10···O2iv | 0.93 | 2.43 | 3.139 (4) | 133 |
Symmetry codes: (i) x−1, y, z; (ii) −x+5/2, y+1/2, −z+1/2; (iii) −x+3/2, y+1/2, −z+1/2; (iv) −x+2, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4A···O1 | 0.90 (2) | 2.22 (4) | 2.946 (4) | 137 (4) |
N4—H4A···O7 | 0.90 (2) | 1.88 (4) | 2.625 (3) | 138 (5) |
O8—H8A···N2 | 0.82 | 2.48 | 2.905 (3) | 113 |
O8—H8A···O4 | 0.82 | 1.87 | 2.563 (3) | 141 |
O8—H8A···O6i | 0.82 | 2.63 | 3.110 (4) | 119 |
C8—H8···O6ii | 0.93 | 2.58 | 3.352 (5) | 141 |
C8—H8···O8iii | 0.93 | 2.63 | 3.405 (4) | 141 |
C10—H10···O2iv | 0.93 | 2.43 | 3.139 (4) | 133 |
Symmetry codes: (i) x−1, y, z; (ii) −x+5/2, y+1/2, −z+1/2; (iii) −x+3/2, y+1/2, −z+1/2; (iv) −x+2, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | C5H6N+·C6H2N3O8− |
Mr | 324.21 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 296 |
a, b, c (Å) | 5.9506 (2), 8.1608 (3), 27.0175 (10) |
β (°) | 90.379 (5) |
V (Å3) | 1311.99 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.14 |
Crystal size (mm) | 0.35 × 0.35 × 0.30 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.951, 0.959 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14733, 2296, 1771 |
Rint | 0.047 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.059, 0.198, 1.14 |
No. of reflections | 2296 |
No. of parameters | 212 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.32, −0.34 |
Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008).
Acknowledgements
The authors are grateful to the UGC for financial support and the SAIF, IIT Madras, for the data collection.
References
Abashev, G. G., Gritsenko, V. V., Kazheva, O. N., Tenishev, A. G., Canadell, E. & Dyachenk, O. A. (2001b). Z. Kristallogr. 216, 623–628. CSD CrossRef CAS Google Scholar
Abashev, G. G., Kazheva, O. N., Dyachenk, O. A., Gritsenko, V. V., Tenishev, A. G., Nishimura, K. & Saito, G. (2001a). Mendeleev Commun. 4, 125–127. CSD CrossRef Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cui, Y., Zhang, T. L., Zhang, J. G. & Yang, L. (2008a). Chin. J. Chem. 26, 2021–2028. Web of Science CSD CrossRef CAS Google Scholar
Cui, Y., Zhang, T. L., Zhang, J. G., Yang, L., Hu, X. C. & Zhang, J. (2008b). J. Mol. Struct. 889, 177–185. Web of Science CSD CrossRef CAS Google Scholar
Deblitz, R., Hrib, C. G., Plenikowski, G. & Edelmann, F. T. (2012). Crystals, 2, 34–42. CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Feuer, H. & Harban, A. A. (1954). US Patent 2679538 A. Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CrossRef CAS Google Scholar
Hu, R., Chen, S., Gao, S., Zhao, F., Luo, Y., Gao, H., Shi, Q., Zhao, H., Yao, P. & Li, J. (2005). J. Hazard. Mater. 117, 346–350. CrossRef Google Scholar
Kalaivani, D. & Malarvizhi, R. (2010). Acta Cryst. E66, o2698. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kalaivani, D., Malarvizhi, R., Thanigaimani, K. & Muthiah, P. T. (2011). Acta Cryst. E67, o686. CSD CrossRef IUCr Journals Google Scholar
Kazheva, O. N., Canadell, E., Shilov, G. V., Abashev, G. G., Tenishev, A. G. & Dyachenk, O. A. (2002). Phys. E Low Dimens. Syst. Nanostruct. 13, 1268–1270. CSD CrossRef CAS Google Scholar
Kissinger, H. E. (1957). Anal. Chem. 29, 1702–1706. CrossRef CAS Google Scholar
Liu, Z. H., Ao, G. J., Zhang, T. L., Yang, L., Zhang, J. G. & Zhang, Y. (2008). Wuji Huaxue Xuebao, 24, 1155–1159. CAS Google Scholar
Liu, J. W., Zhang, J. G., Zhang, T. L., Zheng, H., Yang, L. & Yu, K. B. (2009). Struct. Chem. 20, 387–392. CSD CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Meyer, R. & Kohler, J. (1993a). Editors. Explosives, 4th ed., revised and extended, p. 149. New York: VCH Publishers. Google Scholar
Meyer, R. & Kohler, J. (1993b). Editors. Explosives, 4th ed., revised and extended, p. 197. New York: VCH Publishers. Google Scholar
Orbovic, N. & Codoceo, C. L. (2008). Prop. Explos. Pyrotech. 33, 459–466. Web of Science CrossRef CAS Google Scholar
Ozawa, T. (1965). Bull. Chem. Soc. Jpn, 38, 1881–1886. CrossRef CAS Google Scholar
Pierce-Butler, M. A. (1982). Acta Cryst. B38, 3097–3100. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Refat, M. S., Saad, H. A., EI-Sayed, M. Y., Adam, A. M. A., Yeşilel, O. Z. & Taş, M. (2013). J. Chem. 2013, article ID 107515, 8 pages. doi: 10.1155/2013/107515. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tang, Z., Yang, L., Qiao, X. J., Wu, B. D., Zhang, T. L., Zhou, Z. N. & Yu, K. B. (2012). Chem. Res. Chin. Univ. 28, 4-8. CAS Google Scholar
Vogel, A. I. (1978). Textbook of Practical Organic Chemistry, 4th ed., p. 1093. London: Longman. Google Scholar
Wu, J. T., Zhang, J. G., Sun, M., Yin, X. & Zhang, T. L. (2013b). New Trends Res. Energ. Mater. pp. 433–440. Google Scholar
Wu, J. T., Zhang, J. G., Sun, M., Yin, X. & Zhang, T. L. (2013c). Cent. Eur. J. Energ. Mater. 10, 481–493. CAS Google Scholar
Wu, J. T., Zhang, J. G., Yin, X., Sun, M. & Zhang, T. L. (2013a). Z. Anorg. Allg. Chem. 639, 2354–2358. CrossRef CAS Google Scholar
Zhang, J. G., Liang, Y. H., Feng, J. L., Wang, K., Zhang, T. L., Zhou, Z. N. & Yang, L. (2012). Z. Anorg. Allg. Chem. 638, 1212–1218. CSD CrossRef CAS Google Scholar
Zhang, J. G., Wang, K., Li, Z. M., Zheng, H., Zhang, T. L. & Yang, L. (2011a). Main Group Chem. 10, 205–213. CAS Google Scholar
Zhang, J., Wei, L., Cui, Y., Zhang, T., Zhou, Z. & Yong, L. (2011b). Z. Anorg. Allg. Chem. 637, 1527–1532. CSD CrossRef CAS Google Scholar
Zheng, H., Zhang, T. L., Zhang, J. G., Qiao, X. L., Yang, L. & Yu, K. B. (2006a). Wuji Huaxue Xuebao 22, 346–350. CAS Google Scholar
Zheng, H., Zhang, T. L., Zhang, J. G., Qiao, X. L., Yang, L. & Yu, K. B. (2006b). Chin. J. Chem. 24, 845–848. Web of Science CSD CrossRef CAS Google Scholar
Zhu, W. & Xiao, H. (2009). J. Phys. Chem. B, 113, 10315–10321. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.