organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o92-o93

Crystal structure of cholest-5-en-3β-yl 3-(2,4-dimeth­­oxy-3-methyl­phen­yl)prop-2-enoate

aInstitute of Inorganic Chemistry, University of Hamburg, Hamburg, Germany, bInstitute of Organic Chemistry, University of Hamburg, Hamburg, Germany, cDepartment of Chemical Engineering, United Arab Emirates University, Al Ain, Abu Dhabi, and dDepartment of Chemistry, United Arab Emirates University, Al Ain, Abu Dhabi
*Correspondence e-mail: thies@uaeu.ac.ae

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 15 December 2014; accepted 31 December 2014; online 10 January 2015)

In the title compound, C39H58O4, the steroid rings A and C adopt a chair conformation, while ring B adopts a half-chair conformation, and ring D has an envelope conformation, with the methyl-substituted C atom as the flap. In the crystal, mol­ecules pack within layers parallel to (100), with their long axis parallel to the [101] direction. Adjacent layers are linked via C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming a three-dimensional framework.

1. Related literature

For the preparation of the title compound, see: Thiemann et al. (2011[Thiemann, T., al-Sulaibi, M., Al-Jasem, Y. & al-Hindawi, B. (2011). Proceedings of the 15th International Electronic Conference on Synthetic Organic Chemistry, 1-30 November 2011. Sciforum Electronic Conferences Series.]). For applications of cholesteryl cinnamates, see: Vora (1976[Vora, R. A. (1976). Curr. Sci. 45, 538-539.]); Kutulya et al. (1983[Kutulya, L. A., Cherkashina, R. M., Tishchenko, V. G., Surov, Yu. N. & Polishchuk, A. G. (1983). Zh. Obshch. Khim. 53, 1665-1668.]); Tanaka et al. (1981[Tanaka, Y., Tsuchiya, H., Suzuki, M., Tsuda, K., Takano, J. & Kurihara, H. (1981). Mol. Cryst. Liq. Cryst. 68, 113-125.]); Dong et al. (2010[Dong, X., Guo, J. & Wei, J. (2010). Chin. J. Chem. Phys. 23, 719-725.]). For the crystal structure of a similar compound, see: Bugenhagen et al. (2012[Bugenhagen, B., Munk, A., Vill, V., Al-Jasem, Y. & Thiemann, T. (2012). Acta Cryst. E68, o2064.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C39H58O4

  • Mr = 590.85

  • Orthorhombic, P 21 21 21

  • a = 9.4626 (6) Å

  • b = 12.2687 (8) Å

  • c = 29.6074 (18) Å

  • V = 3437.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.25 × 0.07 × 0.07 mm

2.2. Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.702, Tmax = 0.746

  • 33550 measured reflections

  • 4399 independent reflections

  • 3563 reflections with I > 2σ(I)

  • Rint = 0.052

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.112

  • S = 1.03

  • 4399 reflections

  • 396 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C31–C36 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21A⋯O3i 0.98 2.57 3.399 (3) 143
C36—H36⋯O3ii 0.95 2.51 3.431 (3) 164
C22—H22BCg1i 0.99 2.77 3.756 (3) 173
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Structural commentary top

Cholesteryl cinnamates exhibit chiral mesogenic phases. The influence of the substituents of the cinnamyl unit in these compounds on their phase transition behaviour (Vora, 1976; Kutulya et al., 1983) remains of inter­est (Bugenhagen et al., 2012). Also, their crystal packing at room temperature which can give the possibility to photodimerize the substances in the crystal (Tanaka et al., 1981; Dong et al., 2010) is continued to be studied. For the title compound, the authors have observed the following phase transformation sequence: Cr 162.2 Ch 229.9 I, where the numbers denote temperature of the phase transition in °C.

There are short intra­molecular C—H···O contacts present in the methyl (E)-3-(2,4-di­meth­oxy-3-methyl­phenyl)­acrylate moiety of the title compound (Fig. 1 and Table 1).

The conformational analysis of rings A, B, C and D was carried out. It was found that rings A and C adopt a chair conformation, while ring B adopts a half-chair conformation, and ring D adopts an envelope conformation with the methyl substituted C atom as the flap.

In the crystal, molecules are arranged in separate layers parallel to (1 0 0). Within each layer, translation related molecules form columns extend along [1 0 1] with their long molecular axis collinear with this direction (Figure 3). Molecules in the neighbouring columns exhibit head to tail arrangement with C—H···O inter­actions occurring between the 2-meth­oxy group (O3) of one cinnamate unit with the C6—H (H36) of the other molecule's cinnamate unit (Table 1). The neighboring layers are packed in such a manner that there are two close contact, (C21—H21A···O3) and (C22—H22B···π) between molecules in a head-to-tail arrangement, with a dihedral angle between the steroidal mean planes of these contacting molecules of 46.7 (2)° (Fig. 2 and Table 1). These inter­actions lead to the formation of a three-dimensional framework.

Synthesis and crystallization top

To a solution of tri­phenyl­phosphine (582 mg, 2.2 mmol) in CH2Cl2 (7.5 mL) is added bromo­tri­chloro­methane (900 mg, 4.5 mmol), and the resulting solution is stirred for 20 min. at rt. Thereafter, 3-(2',4'-di­meth­oxy-3-'methyl­phenyl)­prop-2-enoic acid (2,4-di­meth­oxy-3-methyl­cinnamic acid, 444 mg, 2.0 mmol) is added, and the solution is heated at 323 K for 15 min. Cholest-5-en-3β-ol (cholesterol, 386 mg, 1.0 mmol) is added, and after 20 min. Et3N (200 mg, 2.0 mmol) is added dropwise with the help of a syringe. The reaction mixture is stirred at 318 K for 12h. Then, it is cooled, poured into water (30 mL) and extracted with CH2Cl2 (3 × 15 mL). The organic phase is washed with 15 w% aq. NaOH (15 mL) and subsequently with aq. HCl (1 mL conc. HCl in 7 mL of H2O), dried over anhydrous MgSO4, and evaporated in vacuo. Column chromatography of the residue on silica gel (eluent MtBE/hexane/CHCl3 1:3:1) gives the target compound (413 mg, 70%) as colorless needles; δH (400 MHz, CDCl3) 0.68 (3H, s, CH3), 0.86 (3H, d, 3J = 6.8 Hz, CH3), 0.87 (3H, d, 3J = 6.8 Hz, CH3), 0.92 (3H, d, 3J = 6.4 Hz, CH3), 0.98 – 2.17 (26H, m), 1.05 (3H, s, CH3), 2.41 (2H, m), 3.73 (3H, s, OCH3), 3.85 (3H, s, OCH3), 4.73 (1H, m), 5.41 (1H, m), 6.38 (1H, d, 3J = 16.0 Hz), 6.66 (1H, d, 3J = 8.7 Hz), 7.41 (1H, d, 3J = 8.7 Hz), 7.89 (1H, d, 3J = 16.0 Hz); δC (100.5 MHz, CDCl3) 8.9, 11.9, 18.7, 19.4, 21.0, 22.6, 22.8, 23.8, 24.3, 27.9, 28.0, 28.2, 31.9, 35.8, 36.2, 36.6, 37.0, 38.3, 39.5, 39.7, 42.3, 50.0, 55.7, 56.1, 56.7, 61.5, 73.8, 106.5, 117.0, 120.2, 120.7, 122.6, 126.0, 139.8, 139.9, 158.9, 160.5, 167.0.

Refinement top

All H atoms were placed in calculated positions with C—H distances of 0.95 - 1.00 Å and refined as riding with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H-atoms. In the final cycles of refinement, in the absence of significant anomalous scattering effects, the Friedel pairs were merged and Δf ' set to zero.

Related literature top

For the preparation of the title compound, see: Thiemann et al. (2011). For applications of cholesteryl cinnamates, see: Vora (1976); Kutulya et al. (1983); Tanaka et al. (1981); Dong et al. (2010). For the crystal structure of a similar compound, see: Bugenhagen et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. A view of molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are shown at the 50% probability level. The short intramolecular C-H···O contacts are shown as green dashed lines (see Table 1 for details).
[Figure 2] Fig. 2. Intermolecular C—H···O and C—H···π(Cg1) contacts between molecules of the title compound (see Table 1 for details; symmetry codes: (i) - x + 1, y + 1/2, - z +3/2; (ii) x, y, z; (iii) x + 1/2, - y + 3/2, - z + 1).
[Figure 3] Fig. 3. A view of adjacent molecules lying in layers (three layers in this figure) parallel to (100), showing their long molecular axis which is parallel to the [101] direction.
Cholest-5-en-3β-yl 3-(2,4-dimethoxy-3-methylphenyl)prop-2-enoate top
Crystal data top
C39H58O4Dx = 1.142 Mg m3
Mr = 590.85Melting point: 503 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
a = 9.4626 (6) ÅCell parameters from 4605 reflections
b = 12.2687 (8) Åθ = 2.3–20.4°
c = 29.6074 (18) ŵ = 0.07 mm1
V = 3437.2 (4) Å3T = 100 K
Z = 4Needle, colourless
F(000) = 12960.25 × 0.07 × 0.07 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4399 independent reflections
Radiation source: micro-focus3563 reflections with I > 2σ(I)
Multi-layer monochromatorRint = 0.052
Detector resolution: 8 pixels mm-1θmax = 27.5°, θmin = 2.2°
ω and ϕ scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1515
Tmin = 0.702, Tmax = 0.746l = 3838
33550 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0454P)2 + 1.4494P]
where P = (Fo2 + 2Fc2)/3
4399 reflections(Δ/σ)max = 0.001
396 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C39H58O4V = 3437.2 (4) Å3
Mr = 590.85Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.4626 (6) ŵ = 0.07 mm1
b = 12.2687 (8) ÅT = 100 K
c = 29.6074 (18) Å0.25 × 0.07 × 0.07 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4399 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3563 reflections with I > 2σ(I)
Tmin = 0.702, Tmax = 0.746Rint = 0.052
33550 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.03Δρmax = 0.56 e Å3
4399 reflectionsΔρmin = 0.20 e Å3
396 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3236 (3)0.9302 (2)0.48990 (8)0.0265 (6)
C100.4360 (3)0.8630 (2)0.46390 (8)0.0231 (6)
C110.3496 (3)0.9329 (2)0.38602 (8)0.0275 (6)
C120.3055 (3)0.9041 (2)0.33754 (8)0.0278 (6)
C130.4131 (3)0.8268 (2)0.31576 (8)0.0228 (6)
C140.4170 (3)0.7240 (2)0.34577 (8)0.0242 (6)
C150.5026 (3)0.6419 (2)0.31835 (8)0.0264 (6)
C160.4683 (3)0.6701 (2)0.26855 (8)0.0267 (6)
C170.3738 (3)0.7732 (2)0.26950 (8)0.0239 (6)
C180.5575 (3)0.8817 (2)0.31194 (9)0.0260 (6)
C190.5755 (3)0.9279 (2)0.45997 (9)0.0286 (6)
C20.3567 (3)0.9469 (2)0.54015 (9)0.0284 (6)
C200.3855 (3)0.8421 (2)0.22638 (8)0.0235 (6)
C210.2799 (3)0.9367 (2)0.22650 (9)0.0283 (6)
C220.3674 (3)0.7725 (2)0.18347 (8)0.0280 (6)
C230.4106 (3)0.8306 (2)0.14017 (8)0.0319 (7)
C240.4104 (4)0.7584 (2)0.09850 (8)0.0345 (7)
C250.4636 (4)0.8142 (3)0.05567 (9)0.0349 (7)
C260.6193 (4)0.8428 (3)0.05855 (11)0.0492 (9)
C270.4329 (6)0.7462 (4)0.01422 (10)0.0776 (16)
C280.4001 (3)0.7813 (2)0.64075 (9)0.0253 (6)
C290.4332 (3)0.8217 (2)0.68646 (8)0.0256 (6)
C30.3759 (3)0.8379 (2)0.56332 (8)0.0256 (6)
C300.4294 (3)0.7554 (2)0.72230 (8)0.0224 (5)
C310.4576 (3)0.7846 (2)0.76936 (8)0.0225 (5)
C320.4539 (3)0.7051 (2)0.80346 (8)0.0215 (5)
C330.4829 (3)0.7288 (2)0.84855 (8)0.0231 (6)
C340.5126 (3)0.8372 (2)0.85963 (8)0.0239 (6)
C350.5165 (3)0.9187 (2)0.82683 (8)0.0252 (6)
C360.4898 (3)0.8915 (2)0.78239 (8)0.0257 (6)
C370.2873 (3)0.5625 (3)0.80063 (10)0.0344 (7)
C380.4917 (3)0.6416 (2)0.88433 (8)0.0287 (6)
C390.5834 (4)0.9622 (2)0.91719 (10)0.0398 (8)
C40.4913 (3)0.7723 (2)0.54083 (8)0.0263 (6)
C50.4638 (3)0.7582 (2)0.49066 (8)0.0239 (6)
C60.4669 (3)0.6604 (2)0.47162 (8)0.0259 (6)
C70.4521 (3)0.6396 (2)0.42197 (8)0.0290 (6)
C80.4648 (3)0.7443 (2)0.39412 (8)0.0233 (6)
C90.3748 (3)0.8333 (2)0.41646 (8)0.0238 (6)
H11A0.27490.97880.39980.033*
H11B0.43730.97680.38490.033*
H12A0.21130.86900.33790.033*
H12B0.29840.97160.31940.033*
H140.31810.69540.34740.029*
H15A0.47370.56630.32560.032*
H15B0.60500.64990.32450.032*
H16A0.55630.68460.25150.032*
H16B0.41780.60890.25390.032*
H170.27360.74800.27180.029*
H18A0.59430.89680.34220.039*
H18B0.54790.95030.29520.039*
H18C0.62280.83340.29590.039*
H19A0.64090.88880.44000.043*
H19B0.61810.93560.49000.043*
H19C0.55601.00020.44740.043*
H1A0.31441.00250.47540.032*
H1B0.23120.89290.48720.032*
H200.48260.87420.22560.028*
H21A0.18610.90950.23490.042*
H21B0.27560.96930.19630.042*
H21C0.31030.99190.24840.042*
H22A0.42470.70540.18660.034*
H22B0.26710.75030.18090.034*
H23A0.34530.89240.13500.038*
H23B0.50660.86110.14430.038*
H24A0.31280.73230.09320.041*
H24B0.47020.69380.10450.041*
H250.41030.88410.05240.042*
H26A0.63550.89000.08470.074*
H26B0.64800.88090.03100.074*
H26C0.67480.77580.06180.074*
H27A0.48890.67900.01530.116*
H27B0.45780.78760.01290.116*
H27C0.33210.72780.01340.116*
H290.45760.89610.69050.031*
H2A0.44400.99070.54330.034*
H2B0.27840.98730.55470.034*
H30.28510.79620.56220.031*
H300.40590.68130.71660.027*
H350.53720.99190.83490.030*
H360.49350.94690.76000.031*
H37A0.22030.60750.78360.052*
H37B0.26830.56970.83300.052*
H37C0.27670.48600.79170.052*
H38A0.57580.65380.90300.043*
H38B0.49810.56990.86990.043*
H38C0.40710.64450.90340.043*
H39A0.66630.98310.89940.060*
H39B0.60760.96310.94940.060*
H39C0.50631.01370.91150.060*
H4A0.49730.69970.55530.032*
H4B0.58300.80960.54520.032*
H60.47940.59910.49080.031*
H7A0.35910.60560.41600.035*
H7B0.52620.58770.41230.035*
H80.56590.76820.39390.028*
H90.27990.80010.42200.029*
O10.4114 (2)0.86254 (15)0.61032 (6)0.0278 (4)
O20.3647 (2)0.68939 (15)0.63125 (6)0.0299 (5)
O30.4279 (2)0.59773 (14)0.79131 (6)0.0237 (4)
O40.5397 (2)0.85517 (14)0.90460 (6)0.0304 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0330 (16)0.0255 (14)0.0212 (13)0.0032 (12)0.0000 (11)0.0011 (11)
C100.0248 (14)0.0223 (13)0.0222 (12)0.0015 (11)0.0009 (11)0.0022 (10)
C110.0340 (16)0.0267 (14)0.0219 (13)0.0069 (13)0.0003 (11)0.0004 (11)
C120.0317 (16)0.0291 (15)0.0226 (13)0.0047 (13)0.0003 (12)0.0012 (12)
C130.0242 (13)0.0231 (13)0.0211 (12)0.0016 (11)0.0006 (11)0.0012 (11)
C140.0292 (14)0.0220 (13)0.0213 (12)0.0011 (12)0.0021 (11)0.0002 (10)
C150.0348 (16)0.0225 (13)0.0218 (12)0.0009 (12)0.0019 (11)0.0006 (11)
C160.0332 (15)0.0240 (13)0.0228 (12)0.0006 (12)0.0024 (12)0.0017 (11)
C170.0245 (14)0.0238 (13)0.0234 (12)0.0008 (12)0.0003 (11)0.0013 (11)
C180.0305 (15)0.0230 (13)0.0246 (13)0.0021 (12)0.0027 (12)0.0028 (11)
C190.0339 (16)0.0266 (14)0.0254 (13)0.0057 (13)0.0012 (12)0.0020 (11)
C20.0391 (16)0.0229 (14)0.0233 (13)0.0057 (13)0.0011 (12)0.0006 (11)
C200.0217 (13)0.0269 (14)0.0219 (12)0.0029 (11)0.0013 (11)0.0002 (11)
C210.0301 (15)0.0274 (15)0.0273 (13)0.0013 (12)0.0038 (12)0.0016 (12)
C220.0324 (15)0.0282 (14)0.0233 (13)0.0012 (13)0.0023 (12)0.0020 (12)
C230.0379 (17)0.0343 (15)0.0236 (13)0.0024 (14)0.0013 (12)0.0033 (12)
C240.0469 (19)0.0323 (16)0.0243 (13)0.0058 (14)0.0044 (13)0.0014 (12)
C250.0486 (19)0.0333 (16)0.0227 (13)0.0015 (15)0.0017 (14)0.0005 (12)
C260.048 (2)0.066 (2)0.0335 (16)0.0039 (19)0.0100 (15)0.0044 (17)
C270.144 (5)0.067 (3)0.0216 (16)0.045 (3)0.004 (2)0.0024 (18)
C280.0277 (15)0.0250 (14)0.0231 (13)0.0035 (12)0.0015 (11)0.0016 (11)
C290.0283 (14)0.0237 (13)0.0249 (13)0.0001 (12)0.0012 (11)0.0014 (11)
C30.0334 (15)0.0259 (14)0.0174 (12)0.0022 (12)0.0031 (11)0.0014 (11)
C300.0232 (13)0.0226 (13)0.0215 (12)0.0015 (11)0.0028 (11)0.0017 (11)
C310.0220 (13)0.0233 (13)0.0222 (12)0.0018 (11)0.0018 (11)0.0003 (10)
C320.0223 (13)0.0192 (13)0.0231 (12)0.0011 (11)0.0013 (11)0.0020 (10)
C330.0253 (14)0.0214 (13)0.0227 (12)0.0016 (12)0.0003 (11)0.0005 (10)
C340.0283 (14)0.0240 (13)0.0194 (11)0.0028 (12)0.0017 (11)0.0032 (10)
C350.0344 (15)0.0168 (12)0.0245 (12)0.0018 (12)0.0009 (12)0.0026 (10)
C360.0331 (16)0.0211 (13)0.0230 (12)0.0024 (12)0.0022 (12)0.0018 (11)
C370.0279 (16)0.0366 (17)0.0387 (16)0.0086 (14)0.0036 (13)0.0003 (14)
C380.0382 (16)0.0252 (13)0.0227 (12)0.0004 (13)0.0016 (12)0.0026 (11)
C390.066 (2)0.0264 (15)0.0270 (14)0.0051 (16)0.0106 (15)0.0039 (12)
C40.0308 (15)0.0248 (13)0.0233 (12)0.0004 (12)0.0009 (12)0.0027 (11)
C50.0246 (14)0.0248 (13)0.0223 (12)0.0007 (12)0.0013 (11)0.0028 (11)
C60.0325 (15)0.0230 (13)0.0222 (12)0.0024 (12)0.0006 (11)0.0062 (11)
C70.0394 (17)0.0219 (14)0.0257 (13)0.0007 (13)0.0032 (12)0.0016 (11)
C80.0283 (14)0.0222 (13)0.0194 (11)0.0013 (12)0.0004 (11)0.0021 (10)
C90.0262 (14)0.0239 (13)0.0211 (12)0.0010 (12)0.0011 (11)0.0011 (11)
O10.0404 (12)0.0245 (10)0.0186 (8)0.0014 (9)0.0025 (8)0.0015 (7)
O20.0406 (12)0.0248 (10)0.0244 (9)0.0029 (9)0.0005 (9)0.0003 (8)
O30.0261 (10)0.0201 (9)0.0250 (9)0.0021 (8)0.0016 (8)0.0009 (7)
O40.0490 (13)0.0220 (9)0.0200 (9)0.0010 (10)0.0042 (9)0.0020 (7)
Geometric parameters (Å, º) top
O1—C31.463 (3)C32—O31.388 (3)
O1—C281.348 (3)C10—C11.550 (4)
O2—C281.210 (3)C10—C51.533 (4)
C3—H31.0000C10—C191.546 (4)
C3—C41.511 (4)C17—H171.0000
C3—C21.514 (4)C1—H1A0.9900
C30—H300.9500C1—H1B0.9900
C30—C291.338 (3)C1—C21.534 (3)
C30—C311.463 (3)C5—C41.518 (3)
C34—C331.399 (4)C21—H21A0.9800
C34—C351.394 (4)C21—H21B0.9800
C34—O41.374 (3)C21—H21C0.9800
C8—H81.0000C12—H12A0.9900
C8—C141.522 (3)C12—H12B0.9900
C8—C71.531 (3)C12—C111.536 (4)
C8—C91.535 (4)C22—H22A0.9900
C14—H141.0000C22—H22B0.9900
C14—C151.526 (4)C22—C231.523 (4)
C14—C131.544 (4)C4—H4A0.9900
C28—C291.475 (4)C4—H4B0.9900
C29—H290.9500C2—H2A0.9900
C15—H15A0.9900C2—H2B0.9900
C15—H15B0.9900C24—H24A0.9900
C15—C161.549 (3)C24—H24B0.9900
C7—H7A0.9900C24—C231.519 (4)
C7—H7B0.9900C11—H11A0.9900
C7—C61.499 (3)C11—H11B0.9900
C6—H60.9500C23—H23A0.9900
C6—C51.326 (4)C23—H23B0.9900
C31—C361.401 (4)C26—H26A0.9800
C31—C321.404 (3)C26—H26B0.9800
C33—C321.394 (3)C26—H26C0.9800
C33—C381.508 (4)O4—C391.426 (3)
C20—H201.0000O3—C371.426 (3)
C20—C171.535 (3)C18—H18A0.9800
C20—C211.532 (4)C18—H18B0.9800
C20—C221.540 (3)C18—H18C0.9800
C13—C171.564 (3)C19—H19A0.9800
C13—C121.534 (4)C19—H19B0.9800
C13—C181.527 (4)C19—H19C0.9800
C35—H350.9500C38—H38A0.9800
C35—C361.381 (3)C38—H38B0.9800
C16—H16A0.9900C38—H38C0.9800
C16—H16B0.9900C37—H37A0.9800
C16—C171.549 (4)C37—H37B0.9800
C36—H360.9500C37—H37C0.9800
C25—H251.0000C39—H39A0.9800
C25—C241.526 (4)C39—H39B0.9800
C25—C261.516 (5)C39—H39C0.9800
C25—C271.512 (4)C27—H27A0.9800
C9—H91.0000C27—H27B0.9800
C9—C101.562 (3)C27—H27C0.9800
C9—C111.537 (3)
C28—O1—C3117.7 (2)C16—C17—H17107.2
O1—C3—H3109.5C10—C1—H1A108.7
O1—C3—C4111.3 (2)C10—C1—H1B108.7
O1—C3—C2106.0 (2)H1A—C1—H1B107.6
C4—C3—H3109.5C2—C1—C10114.4 (2)
C4—C3—C2110.9 (2)C2—C1—H1A108.7
C2—C3—H3109.5C2—C1—H1B108.7
C29—C30—H30116.5C6—C5—C10122.9 (2)
C29—C30—C31127.0 (2)C6—C5—C4121.0 (2)
C31—C30—H30116.5C4—C5—C10116.1 (2)
C35—C34—C33121.6 (2)C20—C21—H21A109.5
O4—C34—C33114.7 (2)C20—C21—H21B109.5
O4—C34—C35123.7 (2)C20—C21—H21C109.5
C14—C8—H8109.0H21A—C21—H21B109.5
C14—C8—C7110.2 (2)H21A—C21—H21C109.5
C14—C8—C9110.9 (2)H21B—C21—H21C109.5
C7—C8—H8109.0C13—C12—H12A109.5
C7—C8—C9108.8 (2)C13—C12—H12B109.5
C9—C8—H8109.0C13—C12—C11110.8 (2)
C8—C14—H14106.9H12A—C12—H12B108.1
C8—C14—C15116.8 (2)C11—C12—H12A109.5
C8—C14—C13114.5 (2)C11—C12—H12B109.5
C15—C14—H14106.9C20—C22—H22A108.8
C15—C14—C13104.2 (2)C20—C22—H22B108.8
C13—C14—H14106.9H22A—C22—H22B107.7
O1—C28—C29110.4 (2)C23—C22—C20113.9 (2)
O2—C28—O1123.8 (2)C23—C22—H22A108.8
O2—C28—C29125.8 (2)C23—C22—H22B108.8
C30—C29—C28121.2 (2)C3—C4—C5111.6 (2)
C30—C29—H29119.4C3—C4—H4A109.3
C28—C29—H29119.4C3—C4—H4B109.3
C14—C15—H15A110.9C5—C4—H4A109.3
C14—C15—H15B110.9C5—C4—H4B109.3
C14—C15—C16104.3 (2)H4A—C4—H4B108.0
H15A—C15—H15B108.9C3—C2—C1110.3 (2)
C16—C15—H15A110.9C3—C2—H2A109.6
C16—C15—H15B110.9C3—C2—H2B109.6
C8—C7—H7A109.2C1—C2—H2A109.6
C8—C7—H7B109.2C1—C2—H2B109.6
H7A—C7—H7B107.9H2A—C2—H2B108.1
C6—C7—C8112.2 (2)C25—C24—H24A108.7
C6—C7—H7A109.2C25—C24—H24B108.7
C6—C7—H7B109.2H24A—C24—H24B107.6
C7—C6—H6117.7C23—C24—C25114.4 (2)
C5—C6—C7124.7 (2)C23—C24—H24A108.7
C5—C6—H6117.7C23—C24—H24B108.7
C36—C31—C30122.1 (2)C9—C11—H11A108.8
C36—C31—C32117.2 (2)C9—C11—H11B108.8
C32—C31—C30120.7 (2)C12—C11—C9114.0 (2)
C34—C33—C38119.9 (2)C12—C11—H11A108.8
C32—C33—C34117.5 (2)C12—C11—H11B108.8
C32—C33—C38122.4 (2)H11A—C11—H11B107.6
C17—C20—H20107.6C22—C23—H23A108.7
C17—C20—C22111.9 (2)C22—C23—H23B108.7
C21—C20—H20107.6C24—C23—C22114.2 (2)
C21—C20—C17111.6 (2)C24—C23—H23A108.7
C21—C20—C22110.5 (2)C24—C23—H23B108.7
C22—C20—H20107.6H23A—C23—H23B107.6
C14—C13—C1799.5 (2)C25—C26—H26A109.5
C12—C13—C14106.2 (2)C25—C26—H26B109.5
C12—C13—C17118.0 (2)C25—C26—H26C109.5
C18—C13—C14112.5 (2)H26A—C26—H26B109.5
C18—C13—C17109.5 (2)H26A—C26—H26C109.5
C18—C13—C12110.6 (2)H26B—C26—H26C109.5
C34—C35—H35120.5C34—O4—C39117.1 (2)
C36—C35—C34119.1 (2)C32—O3—C37113.8 (2)
C36—C35—H35120.5C13—C18—H18A109.5
C15—C16—H16A110.4C13—C18—H18B109.5
C15—C16—H16B110.4C13—C18—H18C109.5
H16A—C16—H16B108.6H18A—C18—H18B109.5
C17—C16—C15106.7 (2)H18A—C18—H18C109.5
C17—C16—H16A110.4H18B—C18—H18C109.5
C17—C16—H16B110.4C10—C19—H19A109.5
C31—C36—H36119.1C10—C19—H19B109.5
C35—C36—C31121.9 (2)C10—C19—H19C109.5
C35—C36—H36119.1H19A—C19—H19B109.5
C24—C25—H25107.3H19A—C19—H19C109.5
C26—C25—H25107.3H19B—C19—H19C109.5
C26—C25—C24112.2 (3)C33—C38—H38A109.5
C27—C25—H25107.3C33—C38—H38B109.5
C27—C25—C24111.3 (3)C33—C38—H38C109.5
C27—C25—C26111.1 (3)H38A—C38—H38B109.5
C8—C9—H9106.3H38A—C38—H38C109.5
C8—C9—C10110.4 (2)H38B—C38—H38C109.5
C8—C9—C11113.6 (2)O3—C37—H37A109.5
C10—C9—H9106.3O3—C37—H37B109.5
C11—C9—H9106.3O3—C37—H37C109.5
C11—C9—C10113.5 (2)H37A—C37—H37B109.5
C33—C32—C31122.7 (2)H37A—C37—H37C109.5
O3—C32—C31118.5 (2)H37B—C37—H37C109.5
O3—C32—C33118.7 (2)O4—C39—H39A109.5
C1—C10—C9108.5 (2)O4—C39—H39B109.5
C5—C10—C9109.4 (2)O4—C39—H39C109.5
C5—C10—C1107.9 (2)H39A—C39—H39B109.5
C5—C10—C19108.9 (2)H39A—C39—H39C109.5
C19—C10—C9111.6 (2)H39B—C39—H39C109.5
C19—C10—C1110.5 (2)C25—C27—H27A109.5
C20—C17—C13118.6 (2)C25—C27—H27B109.5
C20—C17—C16113.1 (2)C25—C27—H27C109.5
C20—C17—H17107.2H27A—C27—H27B109.5
C13—C17—H17107.2H27A—C27—H27C109.5
C16—C17—C13102.8 (2)H27B—C27—H27C109.5
C(1)—C(2)—C(3)—O(1)178.2 (2)C(5)—C(10)—C(19)—H(19A)69
C(1)—C(2)—C(3)—C(4)57.2 (3)C(5)—C(10)—C(19)—H(19B)51
C(1)—C(2)—C(3)—H(3)64C(5)—C(10)—C(19)—H(19C)171
C(1)—C(10)—C(19)—H(19A)172C(6)—C(5)—C(10)—C(1)132.6 (3)
C(1)—C(10)—C(19)—H(19B)68C(6)—C(5)—C(10)—C(9)14.8 (4)
C(1)—C(10)—C(19)—H(19C)52C(6)—C(5)—C(10)—C(19)107.5 (3)
C(10)—C(1)—C(2)—C(3)56.7 (3)C(6)—C(7)—C(8)—C(9)45.6 (3)
C(10)—C(5)—C(6)—C(7)3.6 (5)C(6)—C(7)—C(8)—C(14)167.4 (2)
C(10)—C(9)—C(11)—C(12)173.4 (2)C(6)—C(7)—C(8)—H(8)73
C(10)—C(1)—C(2)—H(2A)64C(7)—C(8)—C(9)—C(10)65.3 (3)
C(10)—C(1)—C(2)—H(2B)177C(7)—C(8)—C(9)—C(11)166.0 (2)
C(10)—C(5)—C(6)—H(6)176C(7)—C(8)—C(14)—C(13)174.9 (2)
C(10)—C(9)—C(11)—H(11A)65C(7)—C(8)—C(14)—C(15)62.9 (3)
C(10)—C(9)—C(11)—H(11B)52C(7)—C(8)—C(9)—H(9)50
C(11)—C(9)—C(10)—C(1)65.2 (3)C(7)—C(8)—C(14)—H(14)57
C(11)—C(9)—C(10)—C(5)177.3 (2)C(8)—C(9)—C(10)—C(1)166.0 (2)
C(11)—C(9)—C(10)—C(19)56.7 (3)C(8)—C(9)—C(10)—C(5)48.6 (3)
C(11)—C(12)—C(13)—C(14)59.5 (3)C(8)—C(9)—C(10)—C(19)72.1 (3)
C(11)—C(12)—C(13)—C(17)170.1 (2)C(8)—C(9)—C(11)—C(12)46.3 (3)
C(11)—C(12)—C(13)—C(18)62.8 (3)C(8)—C(14)—C(15)—C(16)159.4 (2)
C(12)—C(13)—C(14)—C(8)61.6 (3)C(8)—C(9)—C(11)—H(11A)168
C(12)—C(13)—C(14)—C(15)169.6 (2)C(8)—C(9)—C(11)—H(11B)75
C(12)—C(13)—C(17)—C(16)156.9 (2)C(8)—C(14)—C(15)—H(15A)81
C(12)—C(13)—C(17)—C(20)77.4 (3)C(8)—C(14)—C(15)—H(15B)40
C(12)—C(13)—C(14)—H(14)57C(9)—C(8)—C(14)—C(13)54.4 (3)
C(12)—C(13)—C(17)—H(17)44C(9)—C(8)—C(14)—C(15)176.6 (2)
C(12)—C(13)—C(18)—H(18A)64C(9)—C(11)—C(12)—C(13)54.8 (3)
C(12)—C(13)—C(18)—H(18B)56C(9)—C(8)—C(14)—H(14)64
C(12)—C(13)—C(18)—H(18C)176C(9)—C(10)—C(19)—H(19A)52
C(13)—C(14)—C(15)—C(16)32.0 (3)C(9)—C(10)—C(19)—H(19B)172
C(13)—C(17)—C(20)—C(21)65.2 (3)C(9)—C(10)—C(19)—H(19C)68
C(13)—C(17)—C(20)—C(22)170.5 (2)C(9)—C(11)—C(12)—H(12A)66
C(13)—C(14)—C(15)—H(15A)151C(9)—C(11)—C(12)—H(12B)176
C(13)—C(14)—C(15)—H(15B)88H(11A)—C(11)—C(12)—C(13)176
C(13)—C(17)—C(20)—H(20)53H(11A)—C(11)—C(12)—H(12A)55
C(14)—C(8)—C(9)—C(10)173.3 (2)H(11A)—C(11)—C(12)—H(12B)63
C(14)—C(8)—C(9)—C(11)44.6 (3)H(11B)—C(11)—C(12)—C(13)67
C(14)—C(13)—C(17)—C(16)42.6 (2)H(11B)—C(11)—C(12)—H(12A)172
C(14)—C(13)—C(17)—C(20)168.3 (2)H(11B)—C(11)—C(12)—H(12B)54
C(14)—C(15)—C(16)—C(17)4.4 (3)H(12A)—C(12)—C(13)—C(14)61
C(14)—C(8)—C(9)—H(9)72H(12A)—C(12)—C(13)—C(17)49
C(14)—C(13)—C(17)—H(17)70H(12A)—C(12)—C(13)—C(18)176
C(14)—C(13)—C(18)—H(18A)54H(12B)—C(12)—C(13)—C(14)180
C(14)—C(13)—C(18)—H(18B)174H(12B)—C(12)—C(13)—C(17)69
C(14)—C(13)—C(18)—H(18C)66H(12B)—C(12)—C(13)—C(18)58
C(14)—C(15)—C(16)—H(16A)124H(14)—C(14)—C(15)—C(16)81
C(14)—C(15)—C(16)—H(16B)116H(14)—C(14)—C(15)—H(15A)38
C(15)—C(16)—C(17)—C(13)24.1 (3)H(14)—C(14)—C(15)—H(15B)159
C(15)—C(16)—C(17)—C(20)153.3 (2)H(15A)—C(15)—C(16)—C(17)124
C(15)—C(16)—C(17)—H(17)89H(15A)—C(15)—C(16)—H(16A)116
C(16)—C(17)—C(20)—C(21)174.2 (2)H(15A)—C(15)—C(16)—H(16B)4
C(16)—C(17)—C(20)—C(22)49.9 (3)H(15B)—C(15)—C(16)—C(17)115
C(16)—C(17)—C(20)—H(20)68H(15B)—C(15)—C(16)—H(16A)5
C(17)—C(13)—C(14)—C(8)175.3 (2)H(15B)—C(15)—C(16)—H(16B)125
C(17)—C(13)—C(14)—C(15)46.5 (3)H(16A)—C(16)—C(17)—C(13)96
C(17)—C(20)—C(22)—C(23)166.9 (2)H(16A)—C(16)—C(17)—C(20)33
C(17)—C(13)—C(14)—H(14)66H(16A)—C(16)—C(17)—H(17)151
C(17)—C(13)—C(18)—H(18A)164H(16B)—C(16)—C(17)—C(13)144
C(17)—C(13)—C(18)—H(18B)76H(16B)—C(16)—C(17)—C(20)87
C(17)—C(13)—C(18)—H(18C)44H(16B)—C(16)—C(17)—H(17)31
C(17)—C(20)—C(21)—H(21A)48H(17)—C(17)—C(20)—C(21)56
C(17)—C(20)—C(21)—H(21B)168H(17)—C(17)—C(20)—C(22)68
C(17)—C(20)—C(21)—H(21C)72H(17)—C(17)—C(20)—H(20)174
C(17)—C(20)—C(22)—H(22A)45H(1A)—C(1)—C(2)—C(3)178
C(17)—C(20)—C(22)—H(22B)72H(1A)—C(1)—C(2)—H(2A)58
C(18)—C(13)—C(14)—C(8)59.5 (3)H(1A)—C(1)—C(2)—H(2B)61
C(18)—C(13)—C(14)—C(15)69.3 (3)H(1A)—C(1)—C(10)—C(5)172
C(18)—C(13)—C(17)—C(16)75.4 (2)H(1A)—C(1)—C(10)—C(9)69
C(18)—C(13)—C(17)—C(20)50.3 (3)H(1A)—C(1)—C(10)—C(19)53
C(18)—C(13)—C(14)—H(14)178H(1B)—C(1)—C(2)—C(3)65
C(18)—C(13)—C(17)—H(17)172H(1B)—C(1)—C(2)—H(2A)174
C(2)—C(1)—C(10)—C(5)50.6 (3)H(1B)—C(1)—C(2)—H(2B)56
C(2)—C(1)—C(10)—C(9)169.0 (2)H(1B)—C(1)—C(10)—C(5)71
C(2)—C(1)—C(10)—C(19)68.4 (3)H(1B)—C(1)—C(10)—C(9)47
C(2)—C(3)—C(4)—C(5)55.3 (3)H(1B)—C(1)—C(10)—C(19)170
C(2)—C(3)—C(4)—H(4A)176H(20)—C(20)—C(21)—H(21A)166
C(2)—C(3)—C(4)—H(4B)66H(20)—C(20)—C(21)—H(21B)74
C(20)—C(22)—C(23)—C(24)172.8 (3)H(20)—C(20)—C(21)—H(21C)46
C(20)—C(22)—C(23)—H(23A)66H(20)—C(20)—C(22)—C(23)49
C(20)—C(22)—C(23)—H(23B)51H(20)—C(20)—C(22)—H(22A)73
C(21)—C(20)—C(22)—C(23)68.1 (3)H(20)—C(20)—C(22)—H(22B)170
C(21)—C(20)—C(22)—H(22A)170H(22A)—C(22)—C(23)—C(24)51
C(21)—C(20)—C(22)—H(22B)53H(22A)—C(22)—C(23)—H(23A)173
C(22)—C(23)—C(24)—C(25)175.9 (3)H(22A)—C(22)—C(23)—H(23B)70
C(22)—C(20)—C(21)—H(21A)77H(22B)—C(22)—C(23)—C(24)66
C(22)—C(20)—C(21)—H(21B)43H(22B)—C(22)—C(23)—H(23A)56
C(22)—C(20)—C(21)—H(21C)163H(22B)—C(22)—C(23)—H(23B)173
C(22)—C(23)—C(24)—H(24A)62H(23A)—C(23)—C(24)—C(25)63
C(22)—C(23)—C(24)—H(24B)54H(23A)—C(23)—C(24)—H(24A)59
C(23)—C(24)—C(25)—C(26)66.4 (4)H(23A)—C(23)—C(24)—H(24B)176
C(23)—C(24)—C(25)—C(27)168.4 (3)H(23B)—C(23)—C(24)—C(25)54
C(23)—C(24)—C(25)—H(25)51H(23B)—C(23)—C(24)—H(24A)176
C(24)—C(25)—C(26)—H(26A)58H(23B)—C(23)—C(24)—H(24B)67
C(24)—C(25)—C(26)—H(26B)178H(24A)—C(24)—C(25)—C(26)172
C(24)—C(25)—C(26)—H(26C)62H(24A)—C(24)—C(25)—C(27)47
C(24)—C(25)—C(27)—H(27A)67H(24A)—C(24)—C(25)—H(25)70
C(24)—C(25)—C(27)—H(27B)173H(24B)—C(24)—C(25)—C(26)55
C(24)—C(25)—C(27)—H(27C)53H(24B)—C(24)—C(25)—C(27)70
C(26)—C(25)—C(27)—H(27A)59H(24B)—C(24)—C(25)—H(25)173
C(26)—C(25)—C(27)—H(27B)61H(25)—C(25)—C(26)—H(26A)60
C(26)—C(25)—C(27)—H(27C)179H(25)—C(25)—C(26)—H(26B)60
C(27)—C(25)—C(26)—H(26A)177H(25)—C(25)—C(26)—H(26C)180
C(27)—C(25)—C(26)—H(26B)57H(25)—C(25)—C(27)—H(27A)176
C(27)—C(25)—C(26)—H(26C)63H(25)—C(25)—C(27)—H(27B)56
C(28)—O(1)—C(3)—C(2)164.1 (2)H(25)—C(25)—C(27)—H(27C)64
C(28)—O(1)—C(3)—C(4)75.2 (3)H(29)—C(29)—C(30)—C(31)1
C(28)—C(29)—C(30)—C(31)179.1 (3)H(29)—C(29)—C(30)—H(30)179
C(28)—O(1)—C(3)—H(3)46H(2A)—C(2)—C(3)—O(1)57
C(28)—C(29)—C(30)—H(30)1H(2A)—C(2)—C(3)—C(4)63
C(29)—C(30)—C(31)—C(32)178.0 (3)H(2A)—C(2)—C(3)—H(3)176
C(29)—C(30)—C(31)—C(36)1.7 (5)H(2B)—C(2)—C(3)—O(1)61
C(3)—O(1)—C(28)—O(2)1.3 (4)H(2B)—C(2)—C(3)—C(4)178
C(3)—O(1)—C(28)—C(29)177.3 (2)H(2B)—C(2)—C(3)—H(3)57
C(3)—C(4)—C(5)—C(6)128.5 (3)H(3)—C(3)—C(4)—C(5)66
C(3)—C(4)—C(5)—C(10)52.8 (3)H(3)—C(3)—C(4)—H(4A)55
C(30)—C(31)—C(32)—O(3)2.3 (4)H(3)—C(3)—C(4)—H(4B)173
C(30)—C(31)—C(32)—C(33)178.7 (3)H(30)—C(30)—C(31)—C(32)2
C(30)—C(31)—C(36)—C(35)179.9 (3)H(30)—C(30)—C(31)—C(36)178
C(30)—C(31)—C(36)—H(36)0H(35)—C(35)—C(36)—C(31)179
C(31)—C(32)—C(33)—C(34)1.9 (4)H(35)—C(35)—C(36)—H(36)1
C(31)—C(32)—C(33)—C(38)174.4 (3)H(4A)—C(4)—C(5)—C(6)7
C(32)—C(31)—C(36)—C(35)0.2 (4)H(4A)—C(4)—C(5)—C(10)174
C(32)—C(33)—C(34)—O(4)179.8 (2)H(4B)—C(4)—C(5)—C(6)111
C(32)—C(33)—C(34)—C(35)1.5 (4)H(4B)—C(4)—C(5)—C(10)68
C(32)—O(3)—C(37)—H(37A)61H(6)—C(6)—C(7)—C(8)168
C(32)—O(3)—C(37)—H(37B)59H(6)—C(6)—C(7)—H(7A)71
C(32)—O(3)—C(37)—H(37C)179H(6)—C(6)—C(7)—H(7B)47
C(32)—C(31)—C(36)—H(36)180H(7A)—C(7)—C(8)—C(9)76
C(32)—C(33)—C(38)—H(38A)134H(7A)—C(7)—C(8)—C(14)46
C(32)—C(33)—C(38)—H(38B)14H(7A)—C(7)—C(8)—H(8)166
C(32)—C(33)—C(38)—H(38C)106H(7B)—C(7)—C(8)—C(9)167
C(33)—C(34)—C(35)—C(36)0.3 (4)H(7B)—C(7)—C(8)—C(14)72
C(33)—C(34)—C(35)—H(35)180H(7B)—C(7)—C(8)—H(8)48
C(34)—C(35)—C(36)—C(31)0.6 (4)H(8)—C(8)—C(9)—C(10)53
C(34)—O(4)—C(39)—H(39A)55H(8)—C(8)—C(9)—C(11)75
C(34)—O(4)—C(39)—H(39B)175H(8)—C(8)—C(9)—H(9)168
C(34)—O(4)—C(39)—H(39C)65H(8)—C(8)—C(14)—C(13)66
C(34)—C(33)—C(38)—H(38A)42H(8)—C(8)—C(14)—C(15)57
C(34)—C(33)—C(38)—H(38B)162H(8)—C(8)—C(14)—H(14)176
C(34)—C(33)—C(38)—H(38C)78H(9)—C(9)—C(10)—C(1)51
C(34)—C(35)—C(36)—H(36)179H(9)—C(9)—C(10)—C(5)66
C(36)—C(31)—C(32)—O(3)177.4 (2)H(9)—C(9)—C(10)—C(19)173
C(36)—C(31)—C(32)—C(33)1.1 (4)H(9)—C(9)—C(11)—C(12)70
C(37)—O(3)—C(32)—C(31)103.0 (3)H(9)—C(9)—C(11)—H(11A)51
C(37)—O(3)—C(32)—C(33)80.5 (3)H(9)—C(9)—C(11)—H(11B)168
C(38)—C(33)—C(34)—O(4)3.9 (4)O(1)—C(3)—C(4)—C(5)173.1 (2)
C(38)—C(33)—C(34)—C(35)174.9 (3)O(1)—C(28)—C(29)—C(30)179.8 (3)
C(39)—O(4)—C(34)—C(33)174.4 (3)O(1)—C(3)—C(4)—H(4A)66
C(39)—O(4)—C(34)—C(35)4.4 (4)O(1)—C(3)—C(4)—H(4B)52
C(4)—C(5)—C(6)—C(7)175.1 (3)O(1)—C(28)—C(29)—H(29)0
C(4)—C(5)—C(10)—C(1)48.7 (3)O(2)—C(28)—C(29)—C(30)1.7 (5)
C(4)—C(5)—C(10)—C(9)166.5 (2)O(2)—C(28)—C(29)—H(29)178
C(4)—C(5)—C(10)—C(19)71.2 (3)O(3)—C(32)—C(33)—C(34)178.3 (2)
C(4)—C(5)—C(6)—H(6)5O(3)—C(32)—C(33)—C(38)2.0 (4)
C(5)—C(6)—C(7)—C(8)12.4 (4)O(4)—C(34)—C(35)—C(36)178.9 (3)
C(5)—C(6)—C(7)—H(7A)109O(4)—C(34)—C(35)—H(35)1
C(5)—C(6)—C(7)—H(7B)133
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C31–C36 ring.
D—H···AD—HH···AD···AD—H···A
C4—H4A···O20.992.583.104 (3)113
C30—H30···O20.952.562.881 (3)100
C30—H30···O30.952.452.814 (3)103
C38—H38B···O30.982.442.870 (3)106
C21—H21A···O3i0.982.573.399 (3)143
C36—H36···O3ii0.952.513.431 (3)164
C22—H22B···Cg1i0.992.773.756 (3)173
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C31–C36 ring.
D—H···AD—HH···AD···AD—H···A
C4—H4A···O20.992.583.104 (3)113
C30—H30···O20.952.562.881 (3)100
C30—H30···O30.952.452.814 (3)103
C38—H38B···O30.982.442.870 (3)106
C21—H21A···O3i0.982.573.399 (3)143
C36—H36···O3ii0.952.513.431 (3)164
C22—H22B···Cg1i0.992.773.756 (3)173
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1, y+1/2, z+3/2.
 

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBugenhagen, B., Munk, A., Vill, V., Al-Jasem, Y. & Thiemann, T. (2012). Acta Cryst. E68, o2064.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDong, X., Guo, J. & Wei, J. (2010). Chin. J. Chem. Phys. 23, 719–725.  Web of Science CrossRef CAS Google Scholar
First citationKutulya, L. A., Cherkashina, R. M., Tishchenko, V. G., Surov, Yu. N. & Polishchuk, A. G. (1983). Zh. Obshch. Khim. 53, 1665–1668.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanaka, Y., Tsuchiya, H., Suzuki, M., Tsuda, K., Takano, J. & Kurihara, H. (1981). Mol. Cryst. Liq. Cryst. 68, 113–125.  CrossRef CAS Google Scholar
First citationThiemann, T., al-Sulaibi, M., Al-Jasem, Y. & al-Hindawi, B. (2011). Proceedings of the 15th International Electronic Conference on Synthetic Organic Chemistry, 1–30 November 2011. Sciforum Electronic Conferences Series.  Google Scholar
First citationVora, R. A. (1976). Curr. Sci. 45, 538–539.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o92-o93
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds