organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o103-o104

Crystal structure of S-hexyl (E)-3-(4-methyl­benzyl­­idene)di­thio­carbazate

aDepartment of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh, bDepartment of Applied Chemistry, Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan, cCenter for Environmental Conservation and Research Safety, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan, and dDepartment of Chemical and Pharmaceutical Sciences, via Giorgieri 1, 34127, Trieste, Italy
*Correspondence e-mail: sabina_sust@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 17 December 2014; accepted 5 January 2015; online 10 January 2015)

In the title compound, C15H22N2S2, the di­thio­carbazate group adopts an E conformation with respect to the C=N bond of the benzyl­idene moiety. In the crystal, mol­ecules are linked by pairs of N—H⋯S hydrogen bonds, forming inversion dimers with an R22(8) ring motif. The dimers are linked via C—H⋯π inter­actions, forming chains propagating along [100].

1. Related literature

For the biological properties of bidentate Schiff bases of S-methyl di­thio­carbazate or S-benzyl di­thio­carbaza­te and their bivalent metal complexes, see: Chan et al. (2008[Chan, M. H. E., Crouse, K. A., Tahir, M. I. M., Rosli, R., Umar-Tsafe, N. & Cowley, A. R. (2008). Polyhedron, 27, 1141-1149.]); How et al. (2008[How, F. N. F., Crouse, K. A., Tahir, M. I. M., Tarafder, M. T. H. & Cowley, A. R. (2008). Polyhedron, 27, 3325-3329.]); Tarafder et al. (2002[Tarafder, M. T. H., Chew, K. B., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2002). Polyhedron, 21, 2683-2690.]); Ali et al. (2002[Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B. & Ali Manaf, A. (2002). J. Inorg. Biochem. 92, 141-148.]); Chew et al. (2004[Chew, K. B., Tarafder, M. T. H., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2004). Polyhedron, 23, 1385-1392.]); Crouse et al. (2004[Crouse, K. A., Chew, K. B., Tarafder, M. T. H., Kasbollah, A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2004). Polyhedron, 23, 161-168.]). For their N,S-chelating behavior towards metal atoms, see for example: Islam et al. (2011[Islam, M. A.-A. A. A., Tarafder, M. T. H., Sheikh, M. C., Alam, M. A. & Zangrando, E. (2011). Transition Met. Chem. 36, 531-537.]). For the structures of related compounds, see: Tarafder et al. (2008[Tarafder, M. T. H., Crouse, K. A., Islam, M. T., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1042-o1043.], 2010[Tarafder, M. T. H., Khan, S. S., Islam, M. A. A. A. A., Lorenzi, L. & Zangrando, E. (2010). Acta Cryst. E66, o2851.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H22N2S2

  • Mr = 294.47

  • Triclinic, [P \overline 1]

  • a = 4.79244 (9) Å

  • b = 11.3790 (2) Å

  • c = 14.5382 (3) Å

  • α = 100.1666 (7)°

  • β = 91.2117 (7)°

  • γ = 94.6754 (7)°

  • V = 777.26 (3) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 3.00 mm−1

  • T = 173 K

  • 0.19 × 0.11 × 0.07 mm

2.2. Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Rigaku, 2001[Rigaku (2001). RAPID AUTO and ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.615, Tmax = 0.811

  • 8970 measured reflections

  • 2802 independent reflections

  • 2162 reflections with F2 > 2.0σ(F2)

  • Rint = 0.052

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.129

  • S = 1.04

  • 2802 reflections

  • 176 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H9⋯S1i 0.83 (3) 2.56 (3) 3.3760 (19) 168 (2)
C1—H2⋯Cg1ii 0.98 2.61 3.529 (3) 157
Symmetry codes: (i) -x+3, -y+2, -z+2; (ii) x-1, y, z.

Data collection: RAPID-AUTO (Rigaku, 2001[Rigaku (2001). RAPID AUTO and ABSCOR. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Synthesis and crystallization top

To an ethano­lic solution of KOH (2.81 g, 0.05 mol) hydrazine hydrate (2.50 g, 0.05 mol, 99%) was added and the mixture was stirred at 273 K. To this solution carbon di­sulfide (3.81 g, 0.05 mol) was added drop wise with constant stirring for one hour. Then n-bromo­hexane (8.25 g, 0.05 mol) was added drop wise with vigorous stirring at 273 K for an additional hour. Finally, 4-methyl­benzaldehyde (6.0 g, 0.05 mol) in ethanol was added and the mixture refluxed for 30 min. The mixture was filtered while hot and then the filtrate was cooled to 273 K giving a precipitate of the Schiff base product. It was recrystallized from ethanol at room temperature and dried in a vacuum desiccator over anhydrous CaCl2. Colourless crystals, suitable for X-ray diffraction, of the title compound were obtained by slow evaporation of a solution in ethanol/aceto­nitrile (2:1) after 23 days (m.p.: 357 K).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atom of the NH group was located in a difference Fourier map and freely refined. The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95–0.99 Å with Uiso(H) = 1.5Ueq(C) for methy H atoms and = 1.2Ueq(C) for other H atoms.

Comment top

Bidentate Schiff bases of S-methyl dithiocarbazate or S-benzyl dithiocarbazates and their bivalent metal complexes have received considerable attention in the field of medical science for their antibacterial, antifungal, antiviral, antitumour, and anticancer activities (Chan et al., 2008; How et al., 2008; Tarafder et al., 2002; Ali et al., 2002; Chew et al., 2004; Crouse et al., 2004)

The molecular structure of the title compound is shown in Fig. 1. The Schiff base exists in the thione tautomeric form with the dithiocarbazate fragment adopting an E conformation with respect to the CN bond of the benzylidene moiety. The β-nitrogen and the thioketo sulphur are trans located with respect to the C9—N2 bond. The bond lengths and angles are within the normal ranges and are comparable to those in related structures (Tarafder et al., 2008, 2010). The molecule is in its thione tautomeric and the co-planarity of atoms (with the exception of the S-hexyl chain) indicates an electron delocalization within it. The molecule, when used in coordination chemistry, requires a rotation about the C9—N2 by 180 ° in order to allow the N,S chelating behavior towards the metal atom (Islam et al., 2011).

In the crystal, molecules are linked by pairs of N—H···S hydrogen bonds forming inversion dimers with an R22(8) ring motif (Table 1 and Fig. 2). The dimers are linked via C—H···π interactions forming chains propagating along the a axis direction (Table 1).

Related literature top

For the biological properties of bidentate Schiff bases of S-methyl dithiocarbazate or S-benzyl dithiocarbazates and their bivalent metal complexes, see: Chan et al. (2008); How et al. (2008); Tarafder et al. (2002); Ali et al. (2002); Chew et al. (2004); Crouse et al. (2004). For their N,S-chelating behavior towards metal atoms, see for example: Islam et al. (2011). For the structures of related compounds, see: Tarafder et al. (2008, 2010).

Computing details top

Data collection: RAPID AUTO (Rigaku, 2001); cell refinement: RAPID AUTO (Rigaku, 2001); data reduction: RAPID AUTO (Rigaku, 2001); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).
S-Hexyl (E)-3-(4-methylbenzylidene)dithiocarbazate top
Crystal data top
C15H22N2S2Z = 2
Mr = 294.47F(000) = 316.00
Triclinic, P1Dx = 1.258 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54187 Å
a = 4.79244 (9) ÅCell parameters from 7029 reflections
b = 11.3790 (2) Åθ = 3.1–68.2°
c = 14.5382 (3) ŵ = 3.00 mm1
α = 100.1666 (7)°T = 173 K
β = 91.2117 (7)°Prism, colorless
γ = 94.6754 (7)°0.19 × 0.11 × 0.07 mm
V = 777.26 (3) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2162 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.052
ω scansθmax = 68.2°
Absorption correction: multi-scan
(ABSCOR; Rigaku, 2001)
h = 55
Tmin = 0.615, Tmax = 0.811k = 1313
8970 measured reflectionsl = 1717
2802 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0784P)2]
where P = (Fo2 + 2Fc2)/3
2802 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.26 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C15H22N2S2γ = 94.6754 (7)°
Mr = 294.47V = 777.26 (3) Å3
Triclinic, P1Z = 2
a = 4.79244 (9) ÅCu Kα radiation
b = 11.3790 (2) ŵ = 3.00 mm1
c = 14.5382 (3) ÅT = 173 K
α = 100.1666 (7)°0.19 × 0.11 × 0.07 mm
β = 91.2117 (7)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2802 independent reflections
Absorption correction: multi-scan
(ABSCOR; Rigaku, 2001)
2162 reflections with F2 > 2.0σ(F2)
Tmin = 0.615, Tmax = 0.811Rint = 0.052
8970 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.43 e Å3
2802 reflectionsΔρmin = 0.26 e Å3
176 parameters
Special details top

Experimental. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.54116 (12)0.83289 (5)0.90597 (4)0.0326 (2)
S21.17201 (12)0.64667 (5)0.98677 (4)0.0333 (2)
N11.0048 (4)0.84542 (15)1.10436 (12)0.0293 (5)
N21.2012 (4)0.87708 (16)1.04349 (13)0.0297 (5)
C10.0848 (5)0.8428 (3)1.42942 (17)0.0390 (6)
C20.2994 (5)0.8663 (2)1.35925 (15)0.0300 (5)
C30.3922 (5)0.77235 (19)1.29544 (15)0.0333 (6)
C40.5864 (5)0.79268 (19)1.23002 (15)0.0327 (6)
C50.6987 (5)0.90853 (18)1.22664 (14)0.0282 (5)
C60.6060 (5)1.00311 (19)1.28972 (15)0.0314 (6)
C70.4103 (5)0.9817 (2)1.35483 (15)0.0334 (6)
C80.9098 (5)0.93191 (19)1.15966 (15)0.0281 (5)
C91.3050 (5)0.79357 (19)0.98029 (15)0.0290 (5)
C101.3277 (5)0.55512 (19)0.88956 (15)0.0329 (6)
C111.1314 (5)0.51925 (18)0.80356 (15)0.0333 (6)
C121.0591 (5)0.62287 (19)0.75707 (15)0.0329 (6)
C130.8582 (5)0.58746 (19)0.67205 (15)0.0330 (6)
C140.7870 (5)0.69523 (19)0.63000 (16)0.0363 (6)
C150.5920 (6)0.6635 (3)0.54445 (17)0.0445 (7)
H10.07070.75761.43380.0468*
H20.09750.86471.40950.0468*
H30.14170.89081.49070.0468*
H40.32010.69251.29710.0400*
H50.64400.72701.18690.0393*
H60.67781.08301.28800.0377*
H70.35051.04741.39740.0401*
H80.97721.01211.15720.0337*
H91.266 (5)0.948 (3)1.0471 (17)0.044 (8)*
H101.49870.60000.87230.0395*
H111.38480.48170.90980.0395*
H121.21930.46030.75730.0400*
H130.95560.47910.82200.0400*
H141.23460.66210.73760.0394*
H150.97450.68260.80370.0394*
H160.94420.53000.62400.0396*
H170.68340.54670.69070.0396*
H180.69900.75190.67810.0435*
H190.96280.73670.61290.0435*
H200.55740.73660.52060.0534*
H210.41420.62530.56120.0534*
H220.67820.60810.49610.0534*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0382 (4)0.0272 (4)0.0329 (4)0.0014 (3)0.0096 (3)0.0062 (3)
S20.0453 (5)0.0245 (3)0.0317 (4)0.0021 (3)0.0077 (3)0.0087 (3)
N10.0353 (12)0.0273 (10)0.0259 (10)0.0011 (9)0.0034 (9)0.0070 (8)
N20.0342 (12)0.0236 (10)0.0318 (11)0.0010 (9)0.0072 (9)0.0062 (8)
C10.0374 (15)0.0452 (14)0.0383 (14)0.0048 (12)0.0056 (11)0.0169 (11)
C20.0308 (14)0.0345 (12)0.0266 (12)0.0037 (10)0.0019 (10)0.0104 (10)
C30.0404 (15)0.0240 (11)0.0361 (13)0.0023 (10)0.0017 (11)0.0091 (10)
C40.0413 (15)0.0255 (11)0.0312 (12)0.0045 (11)0.0007 (11)0.0039 (10)
C50.0324 (14)0.0268 (11)0.0263 (12)0.0034 (10)0.0014 (10)0.0071 (9)
C60.0350 (14)0.0238 (11)0.0364 (13)0.0016 (10)0.0032 (11)0.0079 (10)
C70.0399 (15)0.0290 (12)0.0314 (12)0.0060 (11)0.0044 (11)0.0033 (10)
C80.0296 (13)0.0255 (11)0.0304 (12)0.0025 (10)0.0003 (10)0.0083 (9)
C90.0333 (14)0.0280 (11)0.0274 (11)0.0054 (10)0.0011 (10)0.0084 (9)
C100.0406 (15)0.0249 (11)0.0346 (13)0.0086 (11)0.0042 (11)0.0061 (10)
C110.0416 (15)0.0245 (11)0.0350 (13)0.0034 (11)0.0046 (11)0.0074 (10)
C120.0396 (15)0.0254 (11)0.0345 (13)0.0044 (10)0.0050 (11)0.0069 (10)
C130.0362 (14)0.0272 (12)0.0364 (13)0.0021 (10)0.0056 (11)0.0077 (10)
C140.0416 (16)0.0301 (12)0.0388 (13)0.0035 (11)0.0048 (12)0.0100 (10)
C150.0494 (17)0.0415 (14)0.0449 (15)0.0004 (13)0.0021 (13)0.0160 (12)
Geometric parameters (Å, º) top
S1—C91.670 (3)C1—H20.980
S2—C91.759 (3)C1—H30.980
S2—C101.814 (3)C3—H40.950
N1—N21.375 (3)C4—H50.950
N1—C81.277 (3)C6—H60.950
N2—C91.335 (3)C7—H70.950
C1—C21.505 (4)C8—H80.950
C2—C31.395 (3)C10—H100.990
C2—C71.389 (4)C10—H110.990
C3—C41.380 (4)C11—H120.990
C4—C51.392 (3)C11—H130.990
C5—C61.394 (3)C12—H140.990
C5—C81.460 (4)C12—H150.990
C6—C71.384 (4)C13—H160.990
C10—C111.524 (3)C13—H170.990
C11—C121.518 (4)C14—H180.990
C12—C131.526 (3)C14—H190.990
C13—C141.523 (4)C15—H200.980
C14—C151.512 (4)C15—H210.980
N2—H90.84 (3)C15—H220.980
C1—H10.980
C9—S2—C10103.78 (11)C2—C7—H7119.297
N2—N1—C8115.97 (18)C6—C7—H7119.294
N1—N2—C9120.61 (18)N1—C8—H8119.724
C1—C2—C3120.9 (2)C5—C8—H8119.729
C1—C2—C7121.6 (2)S2—C10—H10108.909
C3—C2—C7117.5 (2)S2—C10—H11108.910
C2—C3—C4121.5 (2)C11—C10—H10108.900
C3—C4—C5120.6 (2)C11—C10—H11108.913
C4—C5—C6118.3 (2)H10—C10—H11107.737
C4—C5—C8121.55 (19)C10—C11—H12108.647
C6—C5—C8120.14 (19)C10—C11—H13108.645
C5—C6—C7120.6 (2)C12—C11—H12108.656
C2—C7—C6121.4 (2)C12—C11—H13108.654
N1—C8—C5120.5 (2)H12—C11—H13107.587
S1—C9—S2126.25 (13)C11—C12—H14108.631
S1—C9—N2120.30 (17)C11—C12—H15108.636
S2—C9—N2113.44 (17)C13—C12—H14108.637
S2—C10—C11113.33 (17)C13—C12—H15108.627
C10—C11—C12114.44 (17)H14—C12—H15107.578
C11—C12—C13114.52 (18)C12—C13—H16109.166
C12—C13—C14112.20 (17)C12—C13—H17109.171
C13—C14—C15113.80 (18)C14—C13—H16109.159
N1—N2—H9121.2 (17)C14—C13—H17109.167
C9—N2—H9118.1 (17)H16—C13—H17107.879
C2—C1—H1109.474C13—C14—H18108.795
C2—C1—H2109.467C13—C14—H19108.797
C2—C1—H3109.465C15—C14—H18108.803
H1—C1—H2109.474C15—C14—H19108.808
H1—C1—H3109.480H18—C14—H19107.672
H2—C1—H3109.467C14—C15—H20109.472
C2—C3—H4119.227C14—C15—H21109.469
C4—C3—H4119.232C14—C15—H22109.470
C3—C4—H5119.709H20—C15—H21109.471
C5—C4—H5119.710H20—C15—H22109.473
C5—C6—H6119.686H21—C15—H22109.472
C7—C6—H6119.692
C9—S2—C10—C1199.27 (15)C3—C4—C5—C61.2 (4)
C10—S2—C9—S14.68 (19)C3—C4—C5—C8178.37 (19)
C10—S2—C9—N2176.19 (15)C4—C5—C6—C70.9 (4)
N2—N1—C8—C5179.48 (17)C4—C5—C8—N12.6 (4)
C8—N1—N2—C9177.29 (18)C6—C5—C8—N1176.96 (19)
N1—N2—C9—S1179.41 (16)C8—C5—C6—C7178.62 (18)
N1—N2—C9—S21.4 (3)C5—C6—C7—C20.3 (4)
C1—C2—C3—C4179.25 (19)S2—C10—C11—C1266.6 (2)
C1—C2—C7—C6179.50 (19)C10—C11—C12—C13178.90 (17)
C3—C2—C7—C60.1 (4)C11—C12—C13—C14178.41 (17)
C7—C2—C3—C40.2 (4)C12—C13—C14—C15178.99 (17)
C2—C3—C4—C50.8 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N2—H9···S1i0.83 (3)2.56 (3)3.3760 (19)168 (2)
C1—H2···Cg1ii0.982.613.529 (3)157
Symmetry codes: (i) x+3, y+2, z+2; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N2—H9···S1i0.83 (3)2.56 (3)3.3760 (19)168 (2)
C1—H2···Cg1ii0.982.613.529 (3)157
Symmetry codes: (i) x+3, y+2, z+2; (ii) x1, y, z.
 

Acknowledgements

MBHH and MSB are grateful to the Department of Chemistry, Rajshahi University, for the provision of laboratory facilities. MCS acknowledges the Department of Applied Chemistry, Toyama University, for providing funds for single-crystal X-ray analyses.

References

First citationAli, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B. & Ali Manaf, A. (2002). J. Inorg. Biochem. 92, 141–148.  PubMed Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationChan, M. H. E., Crouse, K. A., Tahir, M. I. M., Rosli, R., Umar-Tsafe, N. & Cowley, A. R. (2008). Polyhedron, 27, 1141–1149.  Web of Science CSD CrossRef CAS Google Scholar
First citationChew, K. B., Tarafder, M. T. H., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2004). Polyhedron, 23, 1385–1392.  Web of Science CSD CrossRef CAS Google Scholar
First citationCrouse, K. A., Chew, K. B., Tarafder, M. T. H., Kasbollah, A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2004). Polyhedron, 23, 161–168.  CSD CrossRef CAS Google Scholar
First citationHow, F. N. F., Crouse, K. A., Tahir, M. I. M., Tarafder, M. T. H. & Cowley, A. R. (2008). Polyhedron, 27, 3325–3329.  CSD CrossRef CAS Google Scholar
First citationIslam, M. A.-A. A. A., Tarafder, M. T. H., Sheikh, M. C., Alam, M. A. & Zangrando, E. (2011). Transition Met. Chem. 36, 531–537.  Google Scholar
First citationRigaku (2001). RAPID AUTO and ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Chew, K. B., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2002). Polyhedron, 21, 2683–2690.  Google Scholar
First citationTarafder, M. T. H., Crouse, K. A., Islam, M. T., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1042–o1043.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Khan, S. S., Islam, M. A. A. A. A., Lorenzi, L. & Zangrando, E. (2010). Acta Cryst. E66, o2851.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o103-o104
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds