organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o88-o89

Crystal structure of 1-(2-amino­phen­yl)-3-phenyl­urea

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 21 December 2014; accepted 26 December 2014; online 10 January 2015)

In the title compound, C13H13N3O, the phenyl ring makes a dihedral angle of 47.0 (1)° with the mean plane of the –NC(=O)N– unit, while the dihedral angle between the latter mean plane and the amino­phenyl ring is 84.43 (7)°. In the crystal, mol­ecules are linked via N—H⋯O hydrogen bonds involving the central –NHC(=O)NH– units, forming chains running parallel to the b axis. These chains associate with one another via N—H⋯O and N—H⋯N hydrogen bonds, from the pendant amino groups to the –NHC(=O)NH– units of adjacent mol­ecules, forming columns propagating along [010]. The structure was refined as a two-component twin with a 0.933 (3):0.067 (3) domain ratio.

1. Related literature

For industrial applications of urea-containing compounds, see: Kapuscinska & Nowak (2014[Kapuscinska, A. & Nowak, I. (2014). CHEMIK, 68, 91-96.]); Doyle & Jacobsen (2007[Doyle, A. G. & Jacobsen, E. N. (2007). Chem. Rev. 107, 5713-5743.]); Helm et al. (1989[Helm, R. F., Karchesy, J. J. & Barofsky, D. F. (1989). Carbohydr. Res. 189, 103-112.]). For the wide spectrum of biological activities of urea scaffold compounds, see: Upadhayaya et al. (2009[Upadhayaya, R. S., Kulkarni, G. M., Vasireddy, N. R., Vandavasi, J. K., Dixit, S. S., Sharma, V. & Chattopadhyaya, J. (2009). Bioorg. Med. Chem. 17, 4681-4692.]); Khan et al. (2008[Khan, S. A., Singh, N. & Saleem, K. (2008). Eur. J. Med. Chem. 43, 2272-2277.]), Seth et al. (2004[Seth, P. P., Ranken, R., Robinson, D. E., Osgood, S. A., Risen, L. M., Rodgers, E. L., Migawa, M. T., Jefferson, E. A. & Swayze, E. E. (2004). Bioorg. Med. Chem. Lett. 14, 5569-5572.]); Kaymakçıoğlu et al. (2005[Kaymakçıoğlu, B. K., Rollas, S., Körceğez, E. & Arıcıoğlu, F. (2005). Eur. J. Pharm. Sci. 26, 97-103.]); Yip & Yang (1986[Yip, W. K. & Yang, S. F. (1986). Plant Physiol. 80, 515-519.]). For details of the use of the TWINROTMAT routine in PLATON, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C13H13N3O

  • Mr = 227.26

  • Monoclinic, P 21 /n

  • a = 16.1742 (4) Å

  • b = 4.5667 (1) Å

  • c = 16.3259 (4) Å

  • β = 106.548 (1)°

  • V = 1155.93 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.69 mm−1

  • T = 150 K

  • 0.20 × 0.12 × 0.09 mm

2.2. Data collection

  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.89, Tmax = 0.94

  • 21843 measured reflections

  • 2282 independent reflections

  • 2084 reflections with I > 2σ(I)

  • Rint = 0.035

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.136

  • S = 1.11

  • 2282 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.91 2.13 2.932 (2) 147
N1—H1A⋯O1i 0.91 1.94 2.771 (2) 151
N3—H3A⋯N3ii 0.91 2.19 3.057 (3) 160
N3—H3B⋯O1ii 0.91 2.24 3.004 (2) 141
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Compounds bearing a urea linkage have attracted the interest of many researchers due to the variety of their applications in both of medicinal and industrial fields. One of the most important class of compounds that are used in the cosmetic industry are urea-containing compounds due to their effective moisturizing properties (Kapuscinska & Nowak, 2014). Urea-linked glycosides serve as small-molecule H-bond donors in asymmetric catalysis (Doyle & Jacobsen, 2007), and are currently employed in the forestry product industry, for example as adhesive mixtures to reduce the level of toxic phenol in furniture and building materials (Helm et al., 1989). Some urea derivatives possess valuable antituberculosis, antibacterial and anticonvulsant properties (Upadhayaya et al., 2009; Khan et al., 2008, Sett et al., 2004; Koçyiğit-Kaymakçıoğlu et al., 2005). Compounds such as Thidiazuron have mimicked the effect of benzyladenine (BA) in the Ca2+ and cytokinin systems (Yip et al., 1986). Based on such findings we report in this study the synthesis and crystal structure of the title compound.

The phenyl ring makes a dihedral angle of 47.0 (1)° with the mean plane of atoms N1/N2/C7/O1 while the dihedral angle between the latter unit and the aminophenyl ring is 84.43 (7)°.

In the crystal, N1—H1A···O1i and N2—H2a···O1i hydrogen bonds link chains of molecules running parallel to the b axis (Fig. 2 and Table 1). Pairs of chains are further associated through N3—H3A···N3ii and N3—H3B···O1ii hydrogen bonds (Table 1 and Fig. 2), forming columns propagating along [010].

Related literature top

For industrial applications of urea-containing compounds, see: Kapuscinska & Nowak (2014); Doyle & Jacobsen (2007); Helm et al. (1989). For the wide spectrum of biological activities of urea scaffold compounds, see: Upadhayaya et al. (2009); Khan et al. (2008), Seth et al. (2004); Kaymakçıoğlu et al. (2005); Yip & Yang (1986). For details of the use of the TWINROTMAT routine in PLATON, see: Spek (2009).

Experimental top

A mixture of 0.01 mol (2.06 g m) of N-phenylmorpholine-4-carboxamide and 0.01 mol (1.08 g m) benzene-1,2-diamine in 20 ml of ethanol was heated under reflux for 10 h. On cooling, the resulting solid product was collected by filtration, washed with a little cold ethanol and dried under vacuum. Colourless crystals suitable for X-ray diffraction were obtained by recrystallization of the product from ethanol (m.p.: 495 K; yield: 73%).

Refinement top

The C-bound H atoms were placed in calculated positions (C—H = 0.95 Å) while those attached to nitrogen were placed in locations derived from a difference Fourier map and their parameters adjusted to give N—H = 0.91 Å. They were all treated as riding atoms with Uiso(H) = 1.2Ueq(N,C). In the final stages of the refinement, analysis of the data with the TWINROTMAT routine in PLATON (Spek, 2009) indicated the presence of a minor twin component rotated by approximately 180° about [101] and the data were finally refined as a 2-component twin (BASF = 0.067).

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the c axis of the crystal packing of the title compound. The N—H···O and N—H···N hydrogen bonds are shown by blue and violet dashed lines, respectively (see Table 1 for details).
1-(2-Aminophenyl)-3-phenylurea top
Crystal data top
C13H13N3OF(000) = 480
Mr = 227.26Dx = 1.306 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 16.1742 (4) ÅCell parameters from 9955 reflections
b = 4.5667 (1) Åθ = 3.4–72.4°
c = 16.3259 (4) ŵ = 0.69 mm1
β = 106.548 (1)°T = 150 K
V = 1155.93 (5) Å3Column, colourless
Z = 40.20 × 0.12 × 0.09 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2282 independent reflections
Radiation source: INCOATEC IµS micro–focus source2084 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.035
Detector resolution: 10.4167 pixels mm-1θmax = 72.5°, θmin = 2.8°
ω scansh = 1917
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 55
Tmin = 0.89, Tmax = 0.94l = 2020
21843 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: mixed
wR(F2) = 0.136H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.054P)2 + 0.8485P]
where P = (Fo2 + 2Fc2)/3
2282 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C13H13N3OV = 1155.93 (5) Å3
Mr = 227.26Z = 4
Monoclinic, P21/nCu Kα radiation
a = 16.1742 (4) ŵ = 0.69 mm1
b = 4.5667 (1) ÅT = 150 K
c = 16.3259 (4) Å0.20 × 0.12 × 0.09 mm
β = 106.548 (1)°
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2282 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
2084 reflections with I > 2σ(I)
Tmin = 0.89, Tmax = 0.94Rint = 0.035
21843 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.11Δρmax = 0.30 e Å3
2282 reflectionsΔρmin = 0.22 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 Å) while those attached to nitrogen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms. In the final stages of the refinement, analysis of the data with the TWINROTMAT routine in PLATON (Spek, 2014) indicated the presence of a minor twin component rotated by approximately 180° about b and the data were finally refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.44188 (9)0.4790 (3)0.32769 (9)0.0300 (3)
N10.48770 (11)0.0380 (4)0.29093 (11)0.0309 (4)
H1A0.49110.15840.30070.037*
N20.40020 (11)0.0618 (3)0.38000 (10)0.0277 (4)
H2A0.39740.13680.37540.033*
N30.22413 (12)0.1572 (4)0.29992 (12)0.0413 (5)
H3A0.25210.01120.28070.050*
H3B0.16550.15210.28080.050*
C10.53488 (14)0.1492 (4)0.23655 (13)0.0305 (4)
C20.49906 (16)0.3542 (5)0.17311 (13)0.0383 (5)
H20.44280.42930.16670.046*
C30.5467 (2)0.4474 (6)0.11924 (16)0.0510 (7)
H30.52350.59160.07700.061*
C40.6271 (2)0.3331 (6)0.12642 (18)0.0551 (7)
H40.65870.39570.08860.066*
C50.66188 (18)0.1280 (6)0.18846 (17)0.0499 (6)
H50.71710.04720.19290.060*
C60.61656 (15)0.0386 (5)0.24462 (15)0.0396 (5)
H60.64150.09820.28850.048*
C70.44317 (12)0.2076 (4)0.33236 (11)0.0255 (4)
C80.34822 (13)0.2198 (4)0.42286 (12)0.0269 (4)
C90.38565 (15)0.3407 (5)0.50231 (13)0.0371 (5)
H90.44530.31140.52940.045*
C100.33681 (18)0.5047 (6)0.54293 (15)0.0464 (6)
H100.36280.58870.59740.056*
C110.25015 (18)0.5444 (5)0.50347 (16)0.0464 (6)
H110.21640.65630.53100.056*
C120.21204 (15)0.4233 (5)0.42441 (15)0.0412 (5)
H120.15210.45220.39820.049*
C130.26029 (13)0.2584 (5)0.38210 (13)0.0317 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0377 (8)0.0201 (7)0.0356 (7)0.0009 (6)0.0158 (6)0.0009 (5)
N10.0379 (9)0.0210 (8)0.0393 (9)0.0002 (7)0.0199 (8)0.0012 (7)
N20.0328 (9)0.0195 (7)0.0337 (8)0.0002 (6)0.0139 (7)0.0009 (7)
N30.0359 (10)0.0442 (11)0.0404 (10)0.0007 (8)0.0052 (8)0.0010 (9)
C10.0385 (11)0.0244 (9)0.0318 (10)0.0071 (8)0.0154 (9)0.0064 (8)
C20.0501 (13)0.0326 (11)0.0342 (11)0.0000 (10)0.0153 (10)0.0020 (9)
C30.083 (2)0.0362 (12)0.0401 (12)0.0022 (13)0.0283 (13)0.0036 (10)
C40.0785 (19)0.0447 (14)0.0600 (16)0.0137 (13)0.0486 (15)0.0063 (12)
C50.0494 (14)0.0487 (14)0.0619 (16)0.0061 (12)0.0327 (13)0.0065 (12)
C60.0407 (12)0.0385 (12)0.0431 (12)0.0007 (10)0.0174 (10)0.0010 (10)
C70.0259 (9)0.0230 (9)0.0269 (9)0.0003 (7)0.0065 (7)0.0004 (7)
C80.0330 (10)0.0206 (9)0.0297 (9)0.0011 (8)0.0131 (8)0.0035 (7)
C90.0405 (12)0.0368 (11)0.0336 (11)0.0022 (9)0.0099 (9)0.0012 (9)
C100.0632 (16)0.0434 (13)0.0363 (11)0.0043 (12)0.0199 (11)0.0097 (10)
C110.0632 (16)0.0364 (12)0.0520 (14)0.0065 (11)0.0361 (13)0.0019 (11)
C120.0373 (12)0.0406 (13)0.0505 (13)0.0083 (10)0.0201 (10)0.0076 (10)
C130.0346 (11)0.0300 (10)0.0322 (10)0.0003 (8)0.0120 (8)0.0053 (8)
Geometric parameters (Å, º) top
O1—C71.241 (2)C4—C51.377 (4)
N1—C71.362 (2)C4—H40.9500
N1—C11.419 (2)C5—C61.388 (3)
N1—H1A0.9099C5—H50.9500
N2—C71.356 (2)C6—H60.9500
N2—C81.433 (2)C8—C91.381 (3)
N2—H2A0.9099C8—C131.399 (3)
N3—C131.381 (3)C9—C101.387 (3)
N3—H3A0.9101C9—H90.9500
N3—H3B0.9101C10—C111.378 (4)
C1—C61.385 (3)C10—H100.9500
C1—C21.394 (3)C11—C121.378 (4)
C2—C31.391 (3)C11—H110.9500
C2—H20.9500C12—C131.400 (3)
C3—C41.375 (4)C12—H120.9500
C3—H30.9500
C7—N1—C1124.19 (16)C1—C6—C5119.9 (2)
C7—N1—H1A119.2C1—C6—H6120.0
C1—N1—H1A116.5C5—C6—H6120.0
C7—N2—C8120.03 (15)O1—C7—N2121.53 (17)
C7—N2—H2A117.6O1—C7—N1122.64 (17)
C8—N2—H2A121.4N2—C7—N1115.82 (16)
C13—N3—H3A117.7C9—C8—C13120.72 (18)
C13—N3—H3B117.0C9—C8—N2119.93 (18)
H3A—N3—H3B115.7C13—C8—N2119.31 (17)
C6—C1—C2119.93 (19)C8—C9—C10120.5 (2)
C6—C1—N1118.56 (19)C8—C9—H9119.7
C2—C1—N1121.43 (19)C10—C9—H9119.7
C3—C2—C1119.2 (2)C11—C10—C9119.3 (2)
C3—C2—H2120.4C11—C10—H10120.3
C1—C2—H2120.4C9—C10—H10120.3
C4—C3—C2120.7 (2)C12—C11—C10120.6 (2)
C4—C3—H3119.6C12—C11—H11119.7
C2—C3—H3119.6C10—C11—H11119.7
C3—C4—C5119.9 (2)C11—C12—C13121.0 (2)
C3—C4—H4120.0C11—C12—H12119.5
C5—C4—H4120.0C13—C12—H12119.5
C4—C5—C6120.3 (2)N3—C13—C8120.78 (18)
C4—C5—H5119.9N3—C13—C12121.2 (2)
C6—C5—H5119.9C8—C13—C12117.83 (19)
C7—N1—C1—C6135.3 (2)C7—N2—C8—C984.9 (2)
C7—N1—C1—C248.0 (3)C7—N2—C8—C1392.9 (2)
C6—C1—C2—C30.8 (3)C13—C8—C9—C100.5 (3)
N1—C1—C2—C3177.4 (2)N2—C8—C9—C10177.3 (2)
C1—C2—C3—C42.0 (4)C8—C9—C10—C110.5 (4)
C2—C3—C4—C51.2 (4)C9—C10—C11—C120.1 (4)
C3—C4—C5—C60.9 (4)C10—C11—C12—C130.3 (4)
C2—C1—C6—C51.2 (3)C9—C8—C13—N3174.9 (2)
N1—C1—C6—C5175.5 (2)N2—C8—C13—N32.9 (3)
C4—C5—C6—C12.1 (4)C9—C8—C13—C120.1 (3)
C8—N2—C7—O13.2 (3)N2—C8—C13—C12177.65 (17)
C8—N2—C7—N1177.12 (17)C11—C12—C13—N3174.5 (2)
C1—N1—C7—O11.9 (3)C11—C12—C13—C80.2 (3)
C1—N1—C7—N2178.46 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.912.132.932 (2)147
N1—H1A···O1i0.911.942.771 (2)151
N3—H3A···N3ii0.912.193.057 (3)160
N3—H3B···O1ii0.912.243.004 (2)141
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.912.132.932 (2)147
N1—H1A···O1i0.911.942.771 (2)151
N3—H3A···N3ii0.912.193.057 (3)160
N3—H3B···O1ii0.912.243.004 (2)141
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDoyle, A. G. & Jacobsen, E. N. (2007). Chem. Rev. 107, 5713–5743.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHelm, R. F., Karchesy, J. J. & Barofsky, D. F. (1989). Carbohydr. Res. 189, 103–112.  Google Scholar
First citationKapuscinska, A. & Nowak, I. (2014). CHEMIK, 68, 91–96.  Google Scholar
First citationKaymakçıoğlu, B. K., Rollas, S., Körceğez, E. & Arıcıoğlu, F. (2005). Eur. J. Pharm. Sci. 26, 97–103.  Google Scholar
First citationKhan, S. A., Singh, N. & Saleem, K. (2008). Eur. J. Med. Chem. 43, 2272–2277.  Google Scholar
First citationSeth, P. P., Ranken, R., Robinson, D. E., Osgood, S. A., Risen, L. M., Rodgers, E. L., Migawa, M. T., Jefferson, E. A. & Swayze, E. E. (2004). Bioorg. Med. Chem. Lett. 14, 5569–5572.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUpadhayaya, R. S., Kulkarni, G. M., Vasireddy, N. R., Vandavasi, J. K., Dixit, S. S., Sharma, V. & Chattopadhyaya, J. (2009). Bioorg. Med. Chem. 17, 4681–4692.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYip, W. K. & Yang, S. F. (1986). Plant Physiol. 80, 515–519.  CrossRef PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o88-o89
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds