organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o109-o110

Crystal structure of (E)-1-[4-({4-[(4-meth­­oxy­benzyl­­idene)amino]­phen­yl}sulfan­yl)phen­yl]ethan-1-one

aDépartement de Chimie, Faculté des Sciences Exactes, Université de Constantine 1, Route de Ain El Bey, Constantine, Algeria, bEcole Normale Supérieure de Constantine, Ville Universitaire Ali Mendjeli, Constantine, Algeria, and cLaboratoire de Physicochimie Analytique et Cristallochimie de Matériaux Organométalliques et Biomoléculaires, Université de Constantine 1, Constantine, Algeria
*Correspondence e-mail: bouzidi_henia@yahoo.fr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 1 January 2015; accepted 7 January 2015; online 14 January 2015)

The title Schiff base compound, C22H19NO2S, crystallized with two independent mol­ecules (A and B) in the asymmetric unit. Both mol­ecules have an E conformation about the C=N bond. The two mol­ecules differ in the orientation of the aromatic rings with respect to each other. The outer 4-meth­oxy­benzene ring is inclined to the central benzene ring and the outer 4-acetyl­benzene ring by 1.80 (19) and 63.73 (19)°, respectively, in mol­ecule A, and by 6.72 (18) and 68.53 (19)°, respectively, in mol­ecule B. The two outer benzene rings are inclined to one another by 63.77 (18) and 63.19 (18)° in mol­ecules A and B, respectively. In the crystal, the individual mol­ecules stack in columns along [010], and are linked by a number of C—H⋯π inter­actions, forming slabs lying parallel to (001).

1. Related literature

For the synthesis and structures of Schiff bases, see, for example: Kahwa et al. (1986[Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.]). For their use as protein and enzyme mimics, see: Santos et al. (2001[Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Da Costa Ferreira, A. M. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.]). For their use as corrosion inhibitors, see: Ahamad et al. (2010[Ahamad, I., Prasad, R. & Quraishi, M. A. (2010). Corros. Sci. 52, 933-942.]); Negm et al. (2010[Negm, N. A., Elkholy, Y. M., Zahran, M. K. & Tawfik, S. M. (2010). Corros. Sci. 52, 3523-3536.]). For their coordination properties, see: Özkar et al. (2004[Özkar, S., Ülkü, D., Yıldırım, L. T., Biricik, N. & Gümgüm, B. (2004). J. Mol. Struct. 688, 207-211.]); Hebbachi & Benali-Cherif (2005[Hebbachi, R. & Benali-Cherif, N. (2005). Acta Cryst. E61, m1188-m1190.]). For complexation of Schiff bases with transition metals, see: Izatt et al. (1995[Izatt, R. M., Pawlak, K., Bradshaw, J. S. & Bruening, R. L. (1995). Chem. Rev. 95, 2529-2586.]); Kalcher et al. (1995[Kalcher, K., Kauffmann, J. M., Wang, J., Švancara, I., Vytřas, K., Neuhold, C. & Yang, Z. (1995). Electroanalysis, 7, 5-22.]). For the crystal structure of a very similar Schiff base compound derived from 4-amino-4-acetyl­diphenyl sulfide, see: Hebbachi et al. (2013[Hebbachi, R., Mousser, H. & Mousser, A. (2013). Acta Cryst. E69, o67-o68.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C22H19NO2S

  • Mr = 361.44

  • Triclinic, P 1

  • a = 5.7708 (2) Å

  • b = 8.0867 (3) Å

  • c = 19.6929 (8) Å

  • α = 81.844 (2)°

  • β = 86.664 (3)°

  • γ = 85.662 (3)°

  • V = 906.05 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 293 K

  • 0.1 × 0.1 × 0.1 mm

2.2. Data collection

  • Bruker SMART 1K CCD area-detector diffractometer

  • 19586 measured reflections

  • 6013 independent reflections

  • 4850 reflections with I > 2σ(I)

  • Rint = 0.032

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.076

  • S = 1.03

  • 6013 reflections

  • 473 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack x determined using 1952 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: 0.06 (3)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg6 are the centroids of the C2–C7, C9–C14, C15–C20 and C37–C42 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯Cg6i 0.93 3.00 3.734 (4) 137
C26—H26⋯Cg1 0.93 2.96 3.763 (4) 146
C32—H32⋯Cg2 0.93 2.98 3.706 (4) 136
C41—H41⋯Cg3ii 0.93 2.99 3.670 (4) 131
Symmetry codes: (i) x+1, y+1, z; (ii) x-1, y, z.

Data collection: SMART (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and SHELXL2014.

Supporting information


Comment top

The synthesis and structures of Schiff bases have attracted much attention in biology and chemistry (Kahwa et al., 1986). One of the aims of investigating their structural chemistry is to develop protein and enzyme mimics (Santos et al., 2001). Structural information is useful in investigating the coordination properties of Schiff bases functioning as ligands (Özkar et al., 2004; Hebbachi & Benali-Cherif, 2005). They have a great capacity for complexation of transition metals (Izatt et al., 1995; Kalcher et al., 1995). They are also used as corrosion inhibitors (Ahamad et al., 2010; Negm et al., 2010). There are only a few reported crystal structures of Schiff bases derived from 4-amino-4-acetyldiphenyl sulfide (Hebbachi et al., 2013). As a part of our ongoing research, we have synthesized the title compound and report herein on its crystal structure.

The title compound, Fig. 1, crystallized with two independent molecules (A and B) in the asymmetric unit. Both molecules have an E conformation about the CN bond, with torsion angles C2—C1N1—C9 and C24—C23 N2—C31 being -179.9 (3) and 177.2 (3), respectively.

The two molecules differ in the orientation of the aromatic rings with respect to one another. The outer 4-methoxybenzene ring is inclined to the central benzene ring and the outer 3-acetylbenzene ring by 1.80 (19) and 63.73 (19) °, respectively, in molecule A, and by 6.72 (18) and 68.53 (19) °, respectively in molecule B. The two outer benzene rings are inclined to one another by 63.77 (18) and 63.19 (18) ° in molecules A and B, respectively.

The bond lengths and angles are close to those observed for a very similar structure, viz. (E)-1-(4-((4-(((4-hydroxynaphthalen-1-yl)methylene)amino)phenyl)thio) phenyl)ethan-1-one (Hebbachi et al., 2013). For example, the sulfur atom has sp3 hybridization as indicated by the C—S—C angle of 106.01 (15) and 105.99 (15) ° in molecules A and B, respectively, compared to 104.88 (15) ° observed in the above mentioned compound.

In the crystal, molecules stack along [010] in columns composed of either A or B molecules, and are linked by a number of C-H···π interactions (Table 1 and Fig. 2) forming slabs lying parallel to (001).

Related literature top

For the synthesis and structures of Schiff bases, see, for example: Kahwa et al. (1986). For their use as protein and enzyme mimics, see: Santos et al. (2001). For their use as corrosion inhibitors, see: Ahamad et al. (2010); Negm et al. (2010). For their coordination properties, see: Özkar et al. (2004); Hebbachi & Benali-Cherif (2005). For complexation of Schiff bases with transition metals, see: Izatt et al. (1995); Kalcher et al. (1995). For the crystal structure of a very similar Schiff base compound derived from 4-amino-4-acetyldiphenyl sulfide, see: Hebbachi et al. (2013).

Experimental top

The title Schiff base was prepared by condensation of 4-amino-4-acetyl diphenylsulfure and anisaldehyde in a 1:1 molar ratio, in an ethanol solution containing a few drops of dry piperidine. The mixture was stirred under reflux for 3 h. The mixture was then concentrated and cooled. Colourless prismatic crystals of title compound were obtained by recrystallization from a mixture of chloroform/hexane (1/1). They were collected by filtration and dried in air (yield: 64%; m.p.: 421 K).

Refinement top

H atoms were positioned geometrically and refined using a riding model: C—H = 0.93 - 0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: SMART (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The molecular structure of the two independent molecules (A and B) of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound. C-H···π interactions are shown as dashed lines (see Table 1 for details; molecule A is red; molecule B is blue; H atoms not involved in these interactions have been omitted for clarity).
(E)-1-[4-({4-[(4-Methoxybenzylidene)amino]phenyl}sulfanyl)phenyl]ethan-1-one top
Crystal data top
C22H19NO2SZ = 2
Mr = 361.44F(000) = 380
Triclinic, P1Dx = 1.325 Mg m3
a = 5.7708 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.0867 (3) Åθ = 1.0–27.1°
c = 19.6929 (8) ŵ = 0.20 mm1
α = 81.844 (2)°T = 293 K
β = 86.664 (3)°Prism, colourless
γ = 85.662 (3)°0.1 × 0.1 × 0.1 mm
V = 906.05 (6) Å3
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
4850 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 25.0°, θmin = 2.6°
ω scanh = 66
19586 measured reflectionsk = 99
6013 independent reflectionsl = 2223
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0319P)2 + 0.0416P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.076(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.14 e Å3
6013 reflectionsΔρmin = 0.19 e Å3
473 parametersAbsolute structure: Flack x determined using 1952 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
3 restraintsAbsolute structure parameter: 0.06 (3)
Crystal data top
C22H19NO2Sγ = 85.662 (3)°
Mr = 361.44V = 906.05 (6) Å3
Triclinic, P1Z = 2
a = 5.7708 (2) ÅMo Kα radiation
b = 8.0867 (3) ŵ = 0.20 mm1
c = 19.6929 (8) ÅT = 293 K
α = 81.844 (2)°0.1 × 0.1 × 0.1 mm
β = 86.664 (3)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
4850 reflections with I > 2σ(I)
19586 measured reflectionsRint = 0.032
6013 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.076Δρmax = 0.14 e Å3
S = 1.03Δρmin = 0.19 e Å3
6013 reflectionsAbsolute structure: Flack x determined using 1952 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
473 parametersAbsolute structure parameter: 0.06 (3)
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.40421 (16)0.84717 (13)0.09943 (5)0.0521 (3)
O11.2589 (5)0.9295 (3)0.65028 (13)0.0582 (8)
O21.1549 (6)1.1965 (5)0.14550 (16)0.0981 (13)
N10.7980 (6)0.9227 (4)0.36608 (16)0.0474 (8)
C10.9871 (7)0.8570 (5)0.38833 (19)0.0467 (10)
H11.08100.79130.36120.056*
C21.0659 (6)0.8797 (5)0.45527 (18)0.0410 (9)
C30.9313 (7)0.9756 (5)0.49822 (19)0.0473 (10)
H30.79121.02930.48350.057*
C41.0031 (7)0.9914 (5)0.5619 (2)0.0474 (10)
H40.91241.05690.58980.057*
C51.2101 (7)0.9106 (5)0.58501 (18)0.0418 (10)
C61.3488 (7)0.8174 (5)0.54288 (19)0.0513 (11)
H61.48930.76450.55770.062*
C71.2765 (7)0.8037 (5)0.4784 (2)0.0519 (10)
H71.37090.74220.44980.062*
C81.4655 (8)0.8448 (6)0.6785 (2)0.0705 (13)
H8A1.47210.86300.72550.106*
H8B1.59930.88770.65260.106*
H8C1.46380.72710.67640.106*
C90.7237 (6)0.9003 (4)0.30085 (18)0.0395 (9)
C100.5119 (6)0.9821 (5)0.28283 (19)0.0454 (10)
H100.42931.04560.31320.054*
C110.4219 (6)0.9703 (5)0.22036 (19)0.0446 (10)
H110.27961.02600.20890.054*
C120.5420 (6)0.8762 (5)0.17482 (18)0.0404 (9)
C130.7546 (6)0.7946 (5)0.19237 (19)0.0462 (10)
H130.83700.73120.16190.055*
C140.8444 (6)0.8068 (5)0.25442 (19)0.0446 (10)
H140.98760.75200.26550.054*
C150.5884 (6)0.9284 (4)0.02990 (18)0.0392 (9)
C160.7859 (6)1.0131 (4)0.03509 (18)0.0417 (9)
H160.83071.03130.07790.050*
C170.9151 (6)1.0700 (5)0.02354 (19)0.0474 (10)
H171.04641.12730.01960.057*
C180.8547 (6)1.0441 (5)0.08816 (19)0.0456 (10)
C190.6550 (7)0.9614 (5)0.09213 (19)0.0489 (10)
H190.60930.94430.13500.059*
C200.5227 (7)0.9041 (5)0.03450 (19)0.0475 (10)
H200.38940.84910.03860.057*
C211.0007 (8)1.1056 (6)0.1499 (2)0.0569 (11)
C220.9573 (9)1.0531 (6)0.2177 (2)0.0800 (15)
H22A1.06591.10210.25220.120*
H22B0.80161.09010.23020.120*
H22C0.97670.93330.21440.120*
S20.10116 (16)0.32763 (13)0.16371 (5)0.0510 (3)
O30.8434 (5)0.4410 (4)0.69853 (14)0.0654 (8)
O40.2586 (6)0.6780 (4)0.14986 (14)0.0845 (10)
N20.4418 (5)0.4400 (4)0.40143 (16)0.0475 (8)
C230.4230 (7)0.3483 (5)0.4586 (2)0.0528 (11)
H230.32510.26090.46270.063*
C240.5470 (7)0.3721 (5)0.51887 (19)0.0446 (10)
C250.7361 (7)0.4704 (5)0.5146 (2)0.0490 (10)
H250.79230.51940.47180.059*
C260.8425 (7)0.4964 (5)0.57344 (19)0.0487 (10)
H260.96860.56270.57010.058*
C270.7591 (7)0.4226 (5)0.6370 (2)0.0466 (10)
C280.5749 (7)0.3232 (5)0.6414 (2)0.0539 (11)
H280.52030.27230.68400.065*
C290.4705 (7)0.2986 (5)0.5829 (2)0.0557 (11)
H290.34580.23100.58660.067*
C301.0244 (8)0.5508 (6)0.6994 (2)0.0753 (14)
H30A1.07220.54610.74560.113*
H30B0.96870.66320.68260.113*
H30C1.15440.51710.67060.113*
C310.3062 (6)0.4115 (4)0.34626 (18)0.0399 (9)
C320.3869 (6)0.4741 (4)0.28040 (18)0.0429 (9)
H320.52140.53200.27460.052*
C330.2704 (6)0.4515 (5)0.22338 (19)0.0422 (9)
H330.32680.49390.17970.051*
C340.0701 (6)0.3659 (4)0.23136 (17)0.0362 (9)
C350.0163 (6)0.3070 (5)0.29683 (18)0.0428 (10)
H350.15300.25160.30250.051*
C360.1005 (6)0.3307 (5)0.35358 (18)0.0455 (10)
H360.04050.29200.39730.055*
C370.0526 (6)0.4036 (4)0.08628 (17)0.0385 (9)
C380.2689 (6)0.3346 (5)0.06659 (18)0.0438 (9)
H380.34810.25410.09690.053*
C390.3663 (7)0.3849 (5)0.00259 (19)0.0434 (10)
H390.51110.33690.01010.052*
C400.2549 (6)0.5052 (5)0.04367 (17)0.0396 (9)
C410.0402 (7)0.5757 (5)0.02320 (19)0.0476 (10)
H410.03690.65830.05310.057*
C420.0611 (7)0.5250 (5)0.04106 (19)0.0465 (10)
H420.20590.57260.05390.056*
C430.3520 (7)0.5607 (5)0.1144 (2)0.0515 (10)
C440.5658 (8)0.4716 (6)0.1407 (2)0.0737 (14)
H44A0.59950.51680.18770.111*
H44B0.54210.35450.13780.111*
H44C0.69390.48590.11360.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0437 (6)0.0641 (8)0.0497 (6)0.0147 (5)0.0073 (5)0.0046 (5)
O10.064 (2)0.069 (2)0.0441 (17)0.0068 (16)0.0058 (15)0.0138 (14)
O20.085 (3)0.149 (4)0.062 (2)0.049 (3)0.0066 (19)0.001 (2)
N10.046 (2)0.052 (2)0.0449 (19)0.0003 (17)0.0026 (17)0.0098 (16)
C10.053 (3)0.044 (3)0.043 (2)0.002 (2)0.002 (2)0.0083 (18)
C20.042 (2)0.040 (2)0.040 (2)0.0033 (18)0.0031 (19)0.0058 (18)
C30.044 (2)0.046 (3)0.051 (3)0.0025 (19)0.001 (2)0.007 (2)
C40.048 (3)0.047 (3)0.048 (2)0.002 (2)0.008 (2)0.0152 (19)
C50.047 (3)0.041 (2)0.039 (2)0.011 (2)0.002 (2)0.0073 (18)
C60.046 (2)0.060 (3)0.047 (2)0.005 (2)0.007 (2)0.011 (2)
C70.053 (3)0.053 (3)0.050 (2)0.006 (2)0.000 (2)0.014 (2)
C80.073 (3)0.085 (4)0.056 (3)0.014 (3)0.017 (3)0.006 (2)
C90.039 (2)0.039 (2)0.040 (2)0.0044 (18)0.0025 (19)0.0066 (17)
C100.041 (2)0.044 (3)0.050 (2)0.0023 (19)0.003 (2)0.0083 (19)
C110.033 (2)0.047 (3)0.050 (3)0.0010 (18)0.001 (2)0.0019 (19)
C120.040 (2)0.040 (2)0.040 (2)0.0035 (19)0.0002 (19)0.0033 (18)
C130.045 (3)0.049 (3)0.046 (2)0.002 (2)0.001 (2)0.0119 (19)
C140.039 (2)0.045 (3)0.048 (2)0.0059 (19)0.006 (2)0.006 (2)
C150.041 (2)0.037 (2)0.041 (2)0.0025 (18)0.0080 (18)0.0080 (17)
C160.041 (2)0.047 (2)0.040 (2)0.0034 (19)0.0093 (19)0.0110 (18)
C170.040 (2)0.059 (3)0.046 (2)0.009 (2)0.006 (2)0.011 (2)
C180.045 (2)0.049 (3)0.042 (2)0.006 (2)0.0108 (19)0.0064 (19)
C190.054 (3)0.055 (3)0.039 (2)0.001 (2)0.015 (2)0.0109 (19)
C200.047 (3)0.050 (3)0.048 (3)0.004 (2)0.015 (2)0.012 (2)
C210.054 (3)0.065 (3)0.050 (3)0.005 (2)0.005 (2)0.003 (2)
C220.114 (4)0.078 (4)0.047 (3)0.001 (3)0.002 (3)0.010 (2)
S20.0423 (6)0.0712 (8)0.0421 (6)0.0166 (5)0.0022 (5)0.0097 (5)
O30.078 (2)0.073 (2)0.0477 (18)0.0194 (17)0.0165 (16)0.0049 (15)
O40.118 (3)0.082 (2)0.0437 (18)0.014 (2)0.0032 (18)0.0140 (17)
N20.051 (2)0.053 (2)0.041 (2)0.0030 (16)0.0040 (17)0.0137 (17)
C230.059 (3)0.045 (3)0.056 (3)0.007 (2)0.011 (2)0.008 (2)
C240.051 (3)0.037 (2)0.049 (2)0.001 (2)0.011 (2)0.0106 (19)
C250.052 (3)0.051 (3)0.043 (2)0.001 (2)0.002 (2)0.0062 (19)
C260.047 (2)0.053 (3)0.047 (3)0.009 (2)0.004 (2)0.008 (2)
C270.050 (3)0.048 (3)0.044 (2)0.001 (2)0.008 (2)0.0105 (19)
C280.061 (3)0.054 (3)0.046 (2)0.008 (2)0.009 (2)0.000 (2)
C290.058 (3)0.050 (3)0.059 (3)0.013 (2)0.012 (2)0.001 (2)
C300.066 (3)0.097 (4)0.070 (3)0.024 (3)0.018 (3)0.021 (3)
C310.041 (2)0.039 (2)0.040 (2)0.0026 (18)0.0019 (18)0.0089 (18)
C320.038 (2)0.046 (3)0.045 (2)0.0111 (18)0.0022 (19)0.0047 (18)
C330.040 (2)0.048 (2)0.037 (2)0.0061 (18)0.0042 (18)0.0023 (17)
C340.034 (2)0.038 (2)0.036 (2)0.0002 (18)0.0014 (17)0.0065 (17)
C350.036 (2)0.048 (3)0.045 (2)0.0100 (18)0.0006 (19)0.0041 (19)
C360.044 (2)0.057 (3)0.035 (2)0.003 (2)0.0018 (19)0.0033 (19)
C370.040 (2)0.042 (2)0.036 (2)0.0046 (18)0.0063 (18)0.0107 (18)
C380.043 (2)0.045 (2)0.040 (2)0.0057 (19)0.0080 (19)0.0012 (17)
C390.041 (2)0.047 (3)0.042 (2)0.0021 (19)0.0037 (19)0.0063 (19)
C400.047 (2)0.039 (2)0.035 (2)0.0056 (18)0.0084 (18)0.0067 (17)
C410.054 (3)0.045 (3)0.044 (2)0.005 (2)0.016 (2)0.0025 (18)
C420.041 (2)0.049 (3)0.049 (2)0.0074 (19)0.007 (2)0.011 (2)
C430.069 (3)0.050 (3)0.037 (2)0.009 (2)0.010 (2)0.006 (2)
C440.073 (3)0.092 (4)0.053 (3)0.004 (3)0.013 (3)0.005 (3)
Geometric parameters (Å, º) top
S1—C151.765 (4)S2—C371.775 (3)
S1—C121.776 (4)S2—C341.779 (3)
O1—C51.363 (4)O3—C271.362 (4)
O1—C81.430 (5)O3—C301.424 (5)
O2—C211.210 (5)O4—C431.207 (5)
N1—C11.252 (4)N2—C231.260 (4)
N1—C91.417 (4)N2—C311.429 (4)
C1—C21.459 (5)C23—C241.464 (5)
C1—H10.9300C23—H230.9300
C2—C71.391 (5)C24—C291.378 (5)
C2—C31.392 (5)C24—C251.389 (5)
C3—C41.369 (5)C25—C261.391 (5)
C3—H30.9300C25—H250.9300
C4—C51.386 (5)C26—C271.385 (5)
C4—H40.9300C26—H260.9300
C5—C61.381 (5)C27—C281.372 (5)
C6—C71.380 (5)C28—C291.376 (5)
C6—H60.9300C28—H280.9300
C7—H70.9300C29—H290.9300
C8—H8A0.9600C30—H30A0.9600
C8—H8B0.9600C30—H30B0.9600
C8—H8C0.9600C30—H30C0.9600
C9—C101.385 (5)C31—C361.388 (5)
C9—C141.391 (5)C31—C321.391 (5)
C10—C111.381 (5)C32—C331.382 (5)
C10—H100.9300C32—H320.9300
C11—C121.381 (5)C33—C341.382 (5)
C11—H110.9300C33—H330.9300
C12—C131.386 (5)C34—C351.387 (5)
C13—C141.374 (5)C35—C361.382 (5)
C13—H130.9300C35—H350.9300
C14—H140.9300C36—H360.9300
C15—C201.389 (5)C37—C421.382 (5)
C15—C161.389 (5)C37—C381.385 (5)
C16—C171.379 (5)C38—C391.370 (5)
C16—H160.9300C38—H380.9300
C17—C181.387 (5)C39—C401.383 (5)
C17—H170.9300C39—H390.9300
C18—C191.387 (5)C40—C411.386 (5)
C18—C211.486 (5)C40—C431.491 (5)
C19—C201.374 (5)C41—C421.384 (5)
C19—H190.9300C41—H410.9300
C20—H200.9300C42—H420.9300
C21—C221.498 (6)C43—C441.485 (6)
C22—H22A0.9600C44—H44A0.9600
C22—H22B0.9600C44—H44B0.9600
C22—H22C0.9600C44—H44C0.9600
C15—S1—C12105.80 (17)C37—S2—C34105.96 (16)
C5—O1—C8118.5 (3)C27—O3—C30118.7 (3)
C1—N1—C9121.9 (3)C23—N2—C31119.6 (3)
N1—C1—C2122.5 (3)N2—C23—C24123.6 (4)
N1—C1—H1118.8N2—C23—H23118.2
C2—C1—H1118.8C24—C23—H23118.2
C7—C2—C3118.1 (4)C29—C24—C25118.2 (3)
C7—C2—C1120.8 (3)C29—C24—C23119.2 (4)
C3—C2—C1121.1 (3)C25—C24—C23122.6 (4)
C4—C3—C2120.6 (4)C24—C25—C26120.9 (4)
C4—C3—H3119.7C24—C25—H25119.5
C2—C3—H3119.7C26—C25—H25119.5
C3—C4—C5120.5 (4)C27—C26—C25119.4 (4)
C3—C4—H4119.7C27—C26—H26120.3
C5—C4—H4119.7C25—C26—H26120.3
O1—C5—C6124.7 (4)O3—C27—C28114.8 (4)
O1—C5—C4115.4 (3)O3—C27—C26125.4 (4)
C6—C5—C4119.9 (3)C28—C27—C26119.8 (4)
C7—C6—C5119.2 (4)C27—C28—C29120.3 (4)
C7—C6—H6120.4C27—C28—H28119.9
C5—C6—H6120.4C29—C28—H28119.9
C6—C7—C2121.6 (4)C28—C29—C24121.4 (4)
C6—C7—H7119.2C28—C29—H29119.3
C2—C7—H7119.2C24—C29—H29119.3
O1—C8—H8A109.5O3—C30—H30A109.5
O1—C8—H8B109.5O3—C30—H30B109.5
H8A—C8—H8B109.5H30A—C30—H30B109.5
O1—C8—H8C109.5O3—C30—H30C109.5
H8A—C8—H8C109.5H30A—C30—H30C109.5
H8B—C8—H8C109.5H30B—C30—H30C109.5
C10—C9—C14118.5 (3)C36—C31—C32118.3 (3)
C10—C9—N1115.5 (3)C36—C31—N2125.3 (3)
C14—C9—N1126.0 (3)C32—C31—N2116.4 (3)
C11—C10—C9120.8 (3)C33—C32—C31121.1 (3)
C11—C10—H10119.6C33—C32—H32119.5
C9—C10—H10119.6C31—C32—H32119.5
C12—C11—C10120.3 (3)C34—C33—C32120.0 (3)
C12—C11—H11119.8C34—C33—H33120.0
C10—C11—H11119.8C32—C33—H33120.0
C11—C12—C13119.2 (3)C33—C34—C35119.6 (3)
C11—C12—S1118.3 (3)C33—C34—S2125.6 (3)
C13—C12—S1122.2 (3)C35—C34—S2114.7 (3)
C14—C13—C12120.4 (3)C36—C35—C34120.0 (4)
C14—C13—H13119.8C36—C35—H35120.0
C12—C13—H13119.8C34—C35—H35120.0
C13—C14—C9120.7 (3)C35—C36—C31120.9 (3)
C13—C14—H14119.6C35—C36—H36119.5
C9—C14—H14119.6C31—C36—H36119.5
C20—C15—C16119.3 (3)C42—C37—C38119.2 (3)
C20—C15—S1115.1 (3)C42—C37—S2117.6 (3)
C16—C15—S1125.5 (3)C38—C37—S2122.8 (3)
C17—C16—C15119.7 (3)C39—C38—C37120.1 (3)
C17—C16—H16120.2C39—C38—H38120.0
C15—C16—H16120.2C37—C38—H38120.0
C16—C17—C18121.8 (3)C38—C39—C40121.7 (3)
C16—C17—H17119.1C38—C39—H39119.2
C18—C17—H17119.1C40—C39—H39119.2
C17—C18—C19117.5 (3)C39—C40—C41117.9 (3)
C17—C18—C21120.0 (4)C39—C40—C43123.4 (3)
C19—C18—C21122.5 (3)C41—C40—C43118.7 (3)
C20—C19—C18121.8 (3)C42—C41—C40121.0 (3)
C20—C19—H19119.1C42—C41—H41119.5
C18—C19—H19119.1C40—C41—H41119.5
C19—C20—C15119.9 (4)C37—C42—C41120.1 (3)
C19—C20—H20120.1C37—C42—H42119.9
C15—C20—H20120.1C41—C42—H42119.9
O2—C21—C18120.4 (4)O4—C43—C44120.1 (4)
O2—C21—C22120.1 (4)O4—C43—C40120.3 (4)
C18—C21—C22119.5 (4)C44—C43—C40119.6 (4)
C21—C22—H22A109.5C43—C44—H44A109.5
C21—C22—H22B109.5C43—C44—H44B109.5
H22A—C22—H22B109.5H44A—C44—H44B109.5
C21—C22—H22C109.5C43—C44—H44C109.5
H22A—C22—H22C109.5H44A—C44—H44C109.5
H22B—C22—H22C109.5H44B—C44—H44C109.5
C9—N1—C1—C2179.7 (3)C31—N2—C23—C24177.4 (3)
N1—C1—C2—C7179.5 (4)N2—C23—C24—C29162.3 (4)
N1—C1—C2—C30.6 (6)N2—C23—C24—C2515.8 (6)
C7—C2—C3—C41.2 (6)C29—C24—C25—C261.2 (6)
C1—C2—C3—C4177.8 (3)C23—C24—C25—C26176.9 (4)
C2—C3—C4—C50.8 (5)C24—C25—C26—C270.3 (6)
C8—O1—C5—C61.3 (5)C30—O3—C27—C28175.9 (4)
C8—O1—C5—C4177.8 (4)C30—O3—C27—C263.3 (6)
C3—C4—C5—O1177.2 (3)C25—C26—C27—O3178.3 (3)
C3—C4—C5—C62.0 (6)C25—C26—C27—C280.8 (6)
O1—C5—C6—C7178.0 (4)O3—C27—C28—C29178.3 (4)
C4—C5—C6—C71.2 (6)C26—C27—C28—C290.9 (6)
C5—C6—C7—C20.9 (6)C27—C28—C29—C240.0 (6)
C3—C2—C7—C62.0 (6)C25—C24—C29—C281.1 (6)
C1—C2—C7—C6177.0 (4)C23—C24—C29—C28177.1 (4)
C1—N1—C9—C10179.3 (4)C23—N2—C31—C3622.6 (5)
C1—N1—C9—C140.0 (5)C23—N2—C31—C32159.0 (4)
C14—C9—C10—C110.4 (5)C36—C31—C32—C332.3 (5)
N1—C9—C10—C11179.7 (3)N2—C31—C32—C33179.2 (3)
C9—C10—C11—C120.1 (5)C31—C32—C33—C340.1 (5)
C10—C11—C12—C130.4 (5)C32—C33—C34—C351.8 (5)
C10—C11—C12—S1173.4 (3)C32—C33—C34—S2179.4 (3)
C15—S1—C12—C11121.4 (3)C37—S2—C34—C335.3 (4)
C15—S1—C12—C1365.0 (3)C37—S2—C34—C35176.9 (3)
C11—C12—C13—C140.2 (5)C33—C34—C35—C361.5 (5)
S1—C12—C13—C14173.3 (3)S2—C34—C35—C36179.4 (3)
C12—C13—C14—C90.3 (6)C34—C35—C36—C310.7 (5)
C10—C9—C14—C130.6 (5)C32—C31—C36—C352.6 (5)
N1—C9—C14—C13179.8 (3)N2—C31—C36—C35179.0 (3)
C12—S1—C15—C20174.3 (3)C34—S2—C37—C42122.2 (3)
C12—S1—C15—C166.2 (4)C34—S2—C37—C3864.7 (3)
C20—C15—C16—C170.7 (5)C42—C37—C38—C391.0 (5)
S1—C15—C16—C17179.9 (3)S2—C37—C38—C39172.0 (3)
C15—C16—C17—C180.5 (6)C37—C38—C39—C400.5 (6)
C16—C17—C18—C191.4 (5)C38—C39—C40—C410.6 (6)
C16—C17—C18—C21179.2 (4)C38—C39—C40—C43178.5 (4)
C17—C18—C19—C201.1 (6)C39—C40—C41—C421.1 (5)
C21—C18—C19—C20179.5 (4)C43—C40—C41—C42178.0 (3)
C18—C19—C20—C150.1 (6)C38—C37—C42—C410.4 (5)
C16—C15—C20—C191.0 (5)S2—C37—C42—C41173.0 (3)
S1—C15—C20—C19179.5 (3)C40—C41—C42—C370.7 (5)
C17—C18—C21—O29.5 (6)C39—C40—C43—O4172.4 (4)
C19—C18—C21—O2169.9 (4)C41—C40—C43—O48.5 (6)
C17—C18—C21—C22170.0 (4)C39—C40—C43—C447.1 (6)
C19—C18—C21—C2210.6 (6)C41—C40—C43—C44172.0 (4)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg6 are the centroids of the C2–C7, C9–C14, C15–C20 and C37–C42 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C17—H17···Cg6i0.933.003.734 (4)137
C26—H26···Cg10.932.963.763 (4)146
C32—H32···Cg20.932.983.706 (4)136
C41—H41···Cg3ii0.932.993.670 (4)131
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg6 are the centroids of the C2–C7, C9–C14, C15–C20 and C37–C42 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C17—H17···Cg6i0.933.003.734 (4)137
C26—H26···Cg10.932.963.763 (4)146
C32—H32···Cg20.932.983.706 (4)136
C41—H41···Cg3ii0.932.993.670 (4)131
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z.
 

Acknowledgements

The authors thank the Algerian Ministère de l'Enseignement Supérieur et de la Recherche Scientifique for financial support.

References

First citationAhamad, I., Prasad, R. & Quraishi, M. A. (2010). Corros. Sci. 52, 933–942.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHebbachi, R. & Benali-Cherif, N. (2005). Acta Cryst. E61, m1188–m1190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHebbachi, R., Mousser, H. & Mousser, A. (2013). Acta Cryst. E69, o67–o68.  CSD CrossRef IUCr Journals Google Scholar
First citationIzatt, R. M., Pawlak, K., Bradshaw, J. S. & Bruening, R. L. (1995). Chem. Rev. 95, 2529–2586.  CrossRef CAS Web of Science Google Scholar
First citationKahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.  CrossRef CAS Web of Science Google Scholar
First citationKalcher, K., Kauffmann, J. M., Wang, J., Švancara, I., Vytřas, K., Neuhold, C. & Yang, Z. (1995). Electroanalysis, 7, 5–22.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNegm, N. A., Elkholy, Y. M., Zahran, M. K. & Tawfik, S. M. (2010). Corros. Sci. 52, 3523–3536.  Web of Science CrossRef CAS Google Scholar
First citationÖzkar, S., Ülkü, D., Yıldırım, L. T., Biricik, N. & Gümgüm, B. (2004). J. Mol. Struct. 688, 207–211.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSantos, M. L. P., Bagatin, I. A., Pereira, E. M. & Da Costa Ferreira, A. M. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o109-o110
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds