organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o117-o118

Crystal structure of ethyl (2S)-9-meth­­oxy-2-methyl-4-oxo-3,4,5,6-tetra­hydro-2H- 2,6-methano­benzo[g][1,3,5]oxa­diazocine-11-carboxyl­ate

aPost Graduate and Research Department of Chemistry, Government Arts College, C-Mutlur, Chidambaram 608 102, Tamil Nadu, India, bCentre for Research & Development, PRIST University, Vallam, Thanjavur 613 403, Tamil Nadu, India, and cDepartment of Physics & Nano Technology, SRM University, SRM Nagar, Kattankulathur, Kancheepuram Dist, Chennai 603 203, Tamil Nadu, India
*Correspondence e-mail: phdguna@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 3 January 2015; accepted 11 January 2015; online 17 January 2015)

In the title compound, C15H18N2O5, the meth­oxy­phenyl ring makes a dihedral angle of 84.70 (12)° with the mean plane of the tetra­hydro­pyrimidin-2(1H)-one ring. Both the pyran and tetra­hydro­pyrimidin-2(1H)-one rings have distorted envelope conformations with the carboxyl­ate-substituted C atom as the flap. In the crystal, mol­ecules are linked via pairs of N—H⋯O hydrogen bonds, forming zigzag chains propagating along [010], which enclose R22(8) ring motifs. The chains are linked by C—H⋯π inter­actions, forming a two-dimensional network parallel to (100).

1. Related literature

For the biological activity of di­hydro­pyrimidine derivatives, see: Hurst & Hull (1961[Hurst, E. W. & Hull, R. (1961). J. Med. Chem. 3, 215-229.]); Ashok et al. (2007[Ashok, M., Holla, B. S. & Kumari, N. S. (2007). Eur. J. Med. Chem. 42, 380-385.]); Bahekar & Shinde (2004[Bahekar, S. S. & Shinde, D. B. (2004). Bioorg. Med. Chem. Lett. 14, 1733-1736.]); Mayer et al. (1999[Mayer, T. U., Kapoor, T. M., Haggarty, S. J., King, R. W., Schreiber, S. L. & Mitchison, T. J. (1999). Science, 286, 971-974.]); Kappe (2000[Kappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043-1052.]); For the crystal structures of two very similar compounds, see: Jing et al. (2009[Jing, X., Li, Z., Pan, X., Wang, Q., Yan, C. & Zhu, H. (2009). Synth. Commun. 39, 3796-3803.]); Yar et al. (2014[Yar, M., Bajda, M., Shahzadi, L., Shahzad, S. A., Ahmed, M., Ashraf, M., Alam, U., Khan, I. U. & Khan, A. F. (2014). Bioorg. Chem. 54, 96-104.]; Liu et al. (2014[Liu, Q., Xu, J., Teng, F., Chen, A., Pan, N. & Zhang, W. (2014). J. Heterocycl. Chem. 51, 741-746.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H18N2O5

  • Mr = 306.31

  • Monoclinic, P 21

  • a = 9.6982 (14) Å

  • b = 7.4802 (12) Å

  • c = 10.8293 (17) Å

  • β = 111.252 (5)°

  • V = 732.2 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 295 K

  • 0.25 × 0.20 × 0.20 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.954, Tmax = 0.975

  • 10886 measured reflections

  • 3030 independent reflections

  • 2029 reflections with I > 2σ(I)

  • Rint = 0.053

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.175

  • S = 1.14

  • 3030 reflections

  • 203 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1371 Friedel pairs

  • Absolute structure parameter: 0.01 (4)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.12 2.962 (5) 168
N2—H2A⋯O2ii 0.86 2.11 2.936 (4) 162
C14—H14BCg1iii 0.96 2.62 3.570 (6) 171
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z]; (ii) [-x+1, y-{\script{1\over 2}}, -z]; (iii) [-x+1, y-{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.], 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Dihydropyrimidine derivatives have recently received great attention because of their wide range of therapeutic and pharmacological properties, such as antiviral (Hurst & Hull, 1961), antitumor, antibacterial and antifungal (Ashok et al., 2007), anti-inflammatory (Bahekar & Shinde, 2004), antihypertensive agents, and neuropeptide Y (NPY) antagonists (Mayer et al., 1999). The natural products containing these heterocyclic moieties have been studied as new leads for AIDS therapies (Kappe, 2000).

The molecular structure of the title compound is illustrated in Fig. 1. The methoxyphenyl ring (C1-C6) makes a dihedral angles of 84.70 (12) ° with the mean plane of the tetrahydropyrimidin-2(1H)-one ring (N1/N2/C7-C10). Both the pyran (O1/C3/C4/C7/C10)and tetrahydropyrimidin-2(1H)-one rings have distorted envelope con formations with atom C10 as the flap.

The geometrical parameters of the title molecule agree well with those reported for two very similar compounds, viz. ethyl 2-methyl-4-oxo-3,4,5,6-tetrahydro-2H-2,6-methanobenzo[g][1,3,5]oxadiazocine-11-carboxylate (Jing et al., 2009; Yar et al., 2014) and methyl 2-methyl-4-oxo-3,4,5,6-tetrahydro-2H-2,6-methanobenzo[g][1,3,5]oxadiazocine-11-carboxylate (Liu et al., 2014)

In the crystal, molecules are linked via pairs of N—H···O hydrogen bonds forming zigzag chains propagating along [010], which enclose R22(8) ring motifs (Table 1 and Fig. 2). The chains are linked by C-H···π interactions forming a two-dimensional network parallel to (100).

Related literature top

For the biological activity of dihydropyrimidine derivatives, see: Hurst & Hull (1961); Ashok et al. (2007); Bahekar & Shinde (2004); Mayer et al. (1999); Kappe (2000); For the crystal structures of two very similar compounds, see: Jing et al. (2009); Yar et al. (2014; Liu et al. (2014).

Experimental top

2-hydroxy-4-methoxybenzaldehyde (0.76 g, 5 mmol) and urea (0.9 g, 15 mmol) were added to an ethanolic solution of ethyl acetoacetate (0.65 ml, 5 mmol). To this mixture CeCl3.7H2O (0.465 g, 25%) was added slowly with stirring. After the addition was complete the reaction mixture was reflux at 363 K. The reaction mixture was then cooled to room temperature, then poured onto crushed ice water and stirred for 10 min. The solid that separated was filtered under suction, washed with water, and then recrystallized from DMSO giving colourless block-like crystals (yield: 96%; m.p.: 463 K).

Refinement top

H atoms were positioned geometrically and refined using a riding model: N-H = 0.86 Å, C—H = 0.93 - 98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(N,C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008, 2015).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines (see Table 1 for details).
Ethyl (2S)-9-methoxy-2-methyl-4-oxo-3,4,5,6-tetrahydro-2H- 2,6-methanobenzo[g][1,3,5]oxadiazocine-11-carboxylate top
Crystal data top
C15H18N2O5F(000) = 324
Mr = 306.31Dx = 1.389 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3030 reflections
a = 9.6982 (14) Åθ = 2.0–26.8°
b = 7.4802 (12) ŵ = 0.11 mm1
c = 10.8293 (17) ÅT = 295 K
β = 111.252 (5)°Block, colourless
V = 732.2 (2) Å30.25 × 0.20 × 0.20 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
3030 independent reflections
Radiation source: fine-focus sealed tube2029 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 0 pixels mm-1θmax = 26.9°, θmin = 2.0°
ω and ϕ scansh = 1112
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 99
Tmin = 0.954, Tmax = 0.975l = 1313
10886 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.071 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.7506P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.175(Δ/σ)max < 0.001
S = 1.14Δρmax = 0.26 e Å3
3030 reflectionsΔρmin = 0.25 e Å3
203 parametersExtinction correction: SHELXL97 (Sheldrick, 2008)
1 restraintExtinction coefficient: 0.031 (8)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1371 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (4)
Crystal data top
C15H18N2O5V = 732.2 (2) Å3
Mr = 306.31Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.6982 (14) ŵ = 0.11 mm1
b = 7.4802 (12) ÅT = 295 K
c = 10.8293 (17) Å0.25 × 0.20 × 0.20 mm
β = 111.252 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
3030 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2029 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.975Rint = 0.053
10886 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.071H-atom parameters constrained
wR(F2) = 0.175Δρmax = 0.26 e Å3
S = 1.14Δρmin = 0.25 e Å3
3030 reflectionsAbsolute structure: Flack (1983), 1371 Friedel pairs
203 parametersAbsolute structure parameter: 0.01 (4)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9053 (5)0.2379 (7)0.5750 (5)0.0437 (13)
C20.8132 (5)0.0956 (7)0.5239 (5)0.0412 (12)
H20.84300.01980.55350.049*
C30.6753 (5)0.1257 (6)0.4278 (4)0.0325 (10)
C40.6293 (5)0.2978 (6)0.3837 (4)0.0309 (10)
C50.7245 (6)0.4362 (6)0.4375 (5)0.0375 (11)
H50.69480.55190.40850.045*
C60.8629 (6)0.4105 (7)0.5331 (5)0.0455 (13)
H60.92570.50660.56820.055*
C70.4765 (5)0.3254 (6)0.2807 (4)0.0299 (10)
H70.43530.43790.29840.036*
C80.4926 (4)0.1772 (6)0.0871 (4)0.0302 (9)
C90.4544 (5)0.0033 (6)0.2670 (4)0.0295 (10)
C100.3772 (4)0.1706 (6)0.2878 (4)0.0308 (9)
H100.37220.16710.37650.037*
C110.2243 (5)0.2001 (7)0.1873 (5)0.0412 (11)
C120.0178 (7)0.3958 (9)0.1308 (6)0.0700 (19)
H12A0.01210.37010.04130.084*
H12B0.01230.52440.13960.084*
C130.1071 (7)0.3110 (11)0.1540 (7)0.088 (2)
H13A0.11190.18700.12990.132*
H13B0.19740.36930.10110.132*
H13C0.09370.32120.24600.132*
C140.3703 (5)0.1689 (6)0.2594 (5)0.0398 (12)
H14A0.28260.16850.18100.060*
H14B0.34320.17920.33610.060*
H14C0.43160.26830.25640.060*
C151.1301 (7)0.3274 (10)0.7503 (6)0.074 (2)
H15A1.15130.41570.69530.111*
H15B1.22090.27560.80850.111*
H15C1.07940.38280.80170.111*
N10.4778 (4)0.3287 (5)0.1464 (3)0.0341 (9)
H10.46900.42880.10510.041*
N20.4908 (4)0.0226 (4)0.1509 (3)0.0326 (9)
H2A0.51360.07330.11870.039*
O10.5875 (3)0.0211 (4)0.3833 (3)0.0343 (8)
O20.5039 (3)0.1774 (4)0.0236 (3)0.0383 (8)
O30.1709 (4)0.1240 (6)0.0862 (4)0.0817 (15)
O40.1593 (4)0.3304 (6)0.2256 (4)0.0650 (12)
O51.0392 (4)0.1917 (6)0.6693 (4)0.0682 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.033 (3)0.059 (3)0.037 (3)0.002 (2)0.010 (2)0.003 (2)
C20.044 (3)0.040 (3)0.039 (3)0.006 (2)0.014 (2)0.003 (2)
C30.040 (3)0.028 (2)0.031 (2)0.001 (2)0.016 (2)0.0004 (18)
C40.039 (3)0.028 (2)0.028 (2)0.003 (2)0.015 (2)0.0012 (19)
C50.046 (3)0.033 (3)0.038 (3)0.003 (2)0.020 (2)0.000 (2)
C60.046 (3)0.044 (3)0.048 (3)0.015 (3)0.018 (3)0.008 (2)
C70.042 (3)0.023 (2)0.028 (2)0.000 (2)0.017 (2)0.0006 (18)
C80.039 (2)0.026 (2)0.029 (2)0.001 (2)0.0161 (18)0.000 (2)
C90.037 (2)0.025 (2)0.028 (2)0.000 (2)0.013 (2)0.0020 (18)
C100.036 (2)0.031 (2)0.030 (2)0.001 (2)0.0173 (18)0.002 (2)
C110.042 (3)0.040 (3)0.042 (3)0.002 (2)0.016 (2)0.004 (2)
C120.060 (4)0.077 (4)0.065 (4)0.028 (4)0.014 (3)0.009 (3)
C130.060 (4)0.084 (5)0.099 (5)0.006 (4)0.003 (4)0.011 (5)
C140.051 (3)0.030 (2)0.047 (3)0.007 (2)0.028 (2)0.002 (2)
C150.057 (4)0.089 (5)0.055 (3)0.020 (4)0.006 (3)0.004 (4)
N10.058 (3)0.0218 (18)0.0261 (19)0.0069 (18)0.0197 (18)0.0055 (15)
N20.050 (2)0.0202 (19)0.036 (2)0.0038 (17)0.0244 (19)0.0013 (15)
O10.0418 (18)0.0264 (16)0.0315 (16)0.0019 (14)0.0092 (14)0.0033 (13)
O20.062 (2)0.0286 (16)0.0309 (15)0.0006 (17)0.0244 (14)0.0015 (14)
O30.058 (3)0.089 (3)0.071 (3)0.019 (2)0.011 (2)0.041 (3)
O40.060 (2)0.074 (3)0.051 (2)0.037 (2)0.0092 (19)0.004 (2)
O50.044 (2)0.073 (3)0.066 (2)0.007 (2)0.0064 (19)0.008 (2)
Geometric parameters (Å, º) top
C1—C21.371 (7)C9—C101.516 (6)
C1—O51.373 (6)C10—C111.504 (6)
C1—C61.381 (7)C10—H100.9800
C2—C31.383 (6)C11—O31.174 (5)
C2—H20.9300C11—O41.308 (6)
C3—O11.366 (5)C12—O41.468 (7)
C3—C41.389 (6)C12—C131.468 (9)
C4—C51.369 (6)C12—H12A0.9700
C4—C71.511 (6)C12—H12B0.9700
C5—C61.379 (7)C13—H13A0.9600
C5—H50.9300C13—H13B0.9600
C6—H60.9300C13—H13C0.9600
C7—N11.459 (5)C14—H14A0.9600
C7—C101.526 (6)C14—H14B0.9600
C7—H70.9800C14—H14C0.9600
C8—O21.242 (5)C15—O51.420 (7)
C8—N11.336 (5)C15—H15A0.9600
C8—N21.351 (5)C15—H15B0.9600
C9—N21.431 (6)C15—H15C0.9600
C9—O11.452 (5)N1—H10.8600
C9—C141.510 (6)N2—H2A0.8600
C2—C1—O5114.0 (5)C7—C10—H10109.1
C2—C1—C6121.3 (4)O3—C11—O4123.8 (5)
O5—C1—C6124.6 (5)O3—C11—C10126.1 (4)
C1—C2—C3119.3 (4)O4—C11—C10110.0 (4)
C1—C2—H2120.4O4—C12—C13110.9 (5)
C3—C2—H2120.4O4—C12—H12A109.5
O1—C3—C2116.3 (4)C13—C12—H12A109.5
O1—C3—C4122.9 (4)O4—C12—H12B109.5
C2—C3—C4120.8 (4)C13—C12—H12B109.5
C5—C4—C3118.1 (4)H12A—C12—H12B108.1
C5—C4—C7122.8 (4)C12—C13—H13A109.5
C3—C4—C7119.1 (4)C12—C13—H13B109.5
C4—C5—C6122.5 (4)H13A—C13—H13B109.5
C4—C5—H5118.8C12—C13—H13C109.5
C6—C5—H5118.8H13A—C13—H13C109.5
C5—C6—C1118.1 (5)H13B—C13—H13C109.5
C5—C6—H6121.0C9—C14—H14A109.5
C1—C6—H6121.0C9—C14—H14B109.5
N1—C7—C4112.2 (4)H14A—C14—H14B109.5
N1—C7—C10107.3 (3)C9—C14—H14C109.5
C4—C7—C10109.1 (3)H14A—C14—H14C109.5
N1—C7—H7109.4H14B—C14—H14C109.5
C4—C7—H7109.4O5—C15—H15A109.5
C10—C7—H7109.4O5—C15—H15B109.5
O2—C8—N1121.7 (4)H15A—C15—H15B109.5
O2—C8—N2121.1 (4)O5—C15—H15C109.5
N1—C8—N2117.2 (3)H15A—C15—H15C109.5
N2—C9—O1110.5 (3)H15B—C15—H15C109.5
N2—C9—C14109.8 (3)C8—N1—C7120.4 (4)
O1—C9—C14103.5 (3)C8—N1—H1119.8
N2—C9—C10109.8 (3)C7—N1—H1119.8
O1—C9—C10107.8 (3)C8—N2—C9126.1 (3)
C14—C9—C10115.2 (4)C8—N2—H2A117.0
C11—C10—C9115.1 (4)C9—N2—H2A117.0
C11—C10—C7109.1 (4)C3—O1—C9116.7 (3)
C9—C10—C7105.3 (3)C11—O4—C12117.5 (4)
C11—C10—H10109.1C1—O5—C15119.1 (5)
C9—C10—H10109.1
O5—C1—C2—C3179.8 (4)N1—C7—C10—C964.6 (4)
C6—C1—C2—C30.4 (7)C4—C7—C10—C957.2 (4)
C1—C2—C3—O1178.5 (4)C9—C10—C11—O312.8 (7)
C1—C2—C3—C40.5 (7)C7—C10—C11—O3105.3 (6)
O1—C3—C4—C5178.2 (4)C9—C10—C11—O4170.0 (4)
C2—C3—C4—C50.4 (6)C7—C10—C11—O471.9 (5)
O1—C3—C4—C70.9 (6)O2—C8—N1—C7175.1 (4)
C2—C3—C4—C7178.7 (4)N2—C8—N1—C76.6 (6)
C3—C4—C5—C60.2 (7)C4—C7—N1—C875.5 (5)
C7—C4—C5—C6178.9 (4)C10—C7—N1—C844.2 (5)
C4—C5—C6—C10.0 (7)O2—C8—N2—C9169.1 (4)
C2—C1—C6—C50.2 (7)N1—C8—N2—C99.1 (6)
O5—C1—C6—C5179.9 (5)O1—C9—N2—C8103.2 (5)
C5—C4—C7—N187.0 (5)C14—C9—N2—C8143.3 (4)
C3—C4—C7—N194.0 (5)C10—C9—N2—C815.7 (6)
C5—C4—C7—C10154.3 (4)C2—C3—O1—C9169.5 (4)
C3—C4—C7—C1024.7 (5)C4—C3—O1—C912.6 (6)
N2—C9—C10—C1169.2 (5)N2—C9—O1—C372.7 (4)
O1—C9—C10—C11170.3 (3)C14—C9—O1—C3169.9 (4)
C14—C9—C10—C1155.3 (5)C10—C9—O1—C347.4 (5)
N2—C9—C10—C750.9 (4)O3—C11—O4—C126.2 (8)
O1—C9—C10—C769.5 (4)C10—C11—O4—C12171.1 (5)
C14—C9—C10—C7175.5 (4)C13—C12—O4—C1196.3 (7)
N1—C7—C10—C1159.5 (4)C2—C1—O5—C15166.0 (5)
C4—C7—C10—C11178.8 (3)C6—C1—O5—C1513.8 (8)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.122.962 (5)168
N2—H2A···O2ii0.862.112.936 (4)162
C14—H14B···Cg1iii0.962.623.570 (6)171
Symmetry codes: (i) x+1, y+1/2, z; (ii) x+1, y1/2, z; (iii) x+1, y1/2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.122.962 (5)168
N2—H2A···O2ii0.862.112.936 (4)162
C14—H14B···Cg1iii0.962.623.570 (6)171
Symmetry codes: (i) x+1, y+1/2, z; (ii) x+1, y1/2, z; (iii) x+1, y1/2, z+1.
 

References

First citationAshok, M., Holla, B. S. & Kumari, N. S. (2007). Eur. J. Med. Chem. 42, 380–385.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBahekar, S. S. & Shinde, D. B. (2004). Bioorg. Med. Chem. Lett. 14, 1733–1736.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHurst, E. W. & Hull, R. (1961). J. Med. Chem. 3, 215–229.  Google Scholar
First citationJing, X., Li, Z., Pan, X., Wang, Q., Yan, C. & Zhu, H. (2009). Synth. Commun. 39, 3796–3803.  Google Scholar
First citationKappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043–1052.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, Q., Xu, J., Teng, F., Chen, A., Pan, N. & Zhang, W. (2014). J. Heterocycl. Chem. 51, 741–746.  Google Scholar
First citationMayer, T. U., Kapoor, T. M., Haggarty, S. J., King, R. W., Schreiber, S. L. & Mitchison, T. J. (1999). Science, 286, 971–974.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYar, M., Bajda, M., Shahzadi, L., Shahzad, S. A., Ahmed, M., Ashraf, M., Alam, U., Khan, I. U. & Khan, A. F. (2014). Bioorg. Chem. 54, 96–104.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o117-o118
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds