organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o119-o120

Crystal structure of (E)-1-([1,1′-biphen­yl]-4-yl)-3-(3-nitro­phen­yl)prop-2-en-1-one

aDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India, bDepartment of Physics, Kunthavai Naachiar Government Arts College (W) (Autonomous), Thanjavur 613 007, Tamilnadu, India, and cPostgraduate Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India
*Correspondence e-mail: thiruvalluvar.a@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 8 January 2015; accepted 11 January 2015; online 17 January 2015)

In the title compound, C21H15NO3, the mol­ecule has an E conformation about the C=C bond, and the C—C=C—C torsion angle is −178.24 (18)°. In the mol­ecule, the planes of the terminal rings are twisted by an angle of 42.19 (10)°, while the biphenyl part is not planar, with a dihedral angle between the rings of 39.2 (1)°. The dihedral angle between the nitro­phenyl ring and the inner benzene ring is 5.56 (9)°. The 3-nitro group is approximately coplanar with the benzene ring to which it is attached [O—N—C—C = 0.1 (3)°]. In the crystal, mol­ecules are linked via C—H⋯π inter­actions, involving the terminal benzene rings, forming corrugated layers parallel to (100).

1. Related literature

For the biological activities of chalcones, see: Nowakowska (2007[Nowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125-137.]); Liu et al. (2008[Liu, X. L., Xu, Y. J. & Go, M. L. (2008). Eur. J. Med. Chem. 43, 1681-1687.]); Wu et al. (2010[Wu, J. Z., Wang, C., Cai, Y. P., Yang, S. L., Zheng, X. Y., Qiu, P. H., Peng, J., Liang, G. & Li, X. K. (2010). Chin. J. Org. Chem. 30, 884-889.]); Singh et al. (2012[Singh, N., Ahmad, S. & Shamsher Alam, M. (2012). Int. J. Pharm. Bio. Archiv. 3, 1298-1303.]). For non-linear optical (NLO) properties of chalcone derivatives, see: Uchida et al. (1998[Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135-140.]); Indira et al. (2002[Indira, J., Karat, P. P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209-214.]). For the crystal structures of related compounds, see: Shanthi et al. (2014[Shanthi, D., Vidhya Sagar, T., Kayalvizhi, M., Vasuki, G. & Thiruvalluvar, A. (2014). Acta Cryst. E70, o809-o810.]); Vidhyasagar et al. (2015a[Vidhyasagar, T., Rajeswari, K., Shanthi, D., Kayalvizhi, M., Vasuki, G. & Thiruvalluvar, A. (2015a). Acta Cryst. E71, 1-3.],b[Vidhyasagar, T., Rajeswari, K., Shanthi, D., Kayalvizhi, M., Vasuki, G. & Thiruvalluvar, A. (2015b). Acta Cryst. E71, o65-o66.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C21H15NO3

  • Mr = 329.34

  • Monoclinic, C 2/c

  • a = 17.6546 (5) Å

  • b = 6.1464 (2) Å

  • c = 30.0234 (9) Å

  • β = 99.899 (4)°

  • V = 3209.40 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.35 × 0.35 × 0.30 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.691, Tmax = 0.745

  • 26025 measured reflections

  • 3170 independent reflections

  • 2500 reflections with I > 2σ(I)

  • Rint = 0.026

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.138

  • S = 1.08

  • 3170 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg3 are the centroids of the nitro­benzene ring C1–C6 and the phenyl ring C16–C21, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯Cg1i 0.93 2.93 3.637 (2) 133
C20—H20⋯Cg3ii 0.93 2.90 3.565 (2) 129
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL2014, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Chalcones and their analogs have been used for a wide range of biological activities, including antimicrobial, antitumor, anti-inflammatory, antifungal and antioxidant activities (Nowakowska, 2007; Liu et al. 2008; Wu et al. 2010; Singh et al. 2012). Chalcone derivatives also show considerable promise as organic non-linear optical materials (Uchida et al., 1998; Indira et al., (2002). The crystal structures of related compounds have been reported (Shanthi et al., 2014; Vidhyasagar et al., 2015a,b). As part of our on-going research on biphenyl chalcone derivatives, the title compound was synthesized and its crystal structure is reported on herein.

In the title compound, Fig. 1, the molecule exists as an E conformer with the C3—C7—C8—C9 torsion angle being -178.24 (18)°. The terminal rings (C1—C6) and (C16—C21) are twisted by an angle of 42.19 (10)°, while the biphenyl (C10—C15 and C16—C21) part is not planar, the dihedral angle between the planes of these rings being 39.2 (1)°. The dihedral angle between the benzene rings (C1—C6) and (C10—C15) is 5.56 (9)°. The 3-nitro group is approximately coplanar with the benzene ring to which it is attached [O2—N1—C1—C2 = 0.1 (3)°].

In the crystal, molecules are linked via C-H···π interactions, involving the terminal benzene rings (C1—C6) and (C16—C21), forming corrugated layers parallel to (100); see Table 1 and Fig. 2.

Related literature top

For the biological activities of chalcones, see: Nowakowska (2007); Liu et al. (2008); Wu et al. (2010); Singh et al. (2012). For non-linear optical (NLO) properties of chalcone derivatives, see: Uchida et al. (1998); Indira et al. (2002). For the crystal structures of related compounds, see: Shanthi et al. (2014); Vidhyasagar et al. (2015a,b).

Experimental top

A mixture of 4-acetylbiphenyl (1.96 g, 10 mmol) and 3-nitro benzaldehyde (1.07 g, 10 mmol) in ethanol (25 ml) in the presence of NaOH (10 ml 30%) were heated in a water bath for 30 min. and then allowed to cool. The solid that separated was filtered and recrystallized from ethanol. The yellow crystals of the title compound used for the X-ray diffraction study were grown by slow evaporation from acetone (yield: 2.5 g; 75%).

Refinement top

All H-atoms were positioned geometrically and allowed to ride on their parent atoms: C—H = 0.93 Å with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound. The C-H···π interactions are shown as dashed lines (see Table 1 for details; for clarity only the H atoms participating in these interactions are shown).
(E)-1-([1,1'-Biphenyl]-4-yl)-3-(3-nitrophenyl)prop-2-en-1-one top
Crystal data top
C21H15NO3F(000) = 1376
Mr = 329.34Dx = 1.363 Mg m3
Monoclinic, C2/cMelting point: 462.9 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 17.6546 (5) ÅCell parameters from 9326 reflections
b = 6.1464 (2) Åθ = 2.5–15.9°
c = 30.0234 (9) ŵ = 0.09 mm1
β = 99.899 (4)°T = 296 K
V = 3209.40 (17) Å3Block, yellow
Z = 80.35 × 0.35 × 0.30 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3170 independent reflections
Radiation source: fine-focus sealed tube2500 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and ϕ scanθmax = 26.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2121
Tmin = 0.691, Tmax = 0.745k = 77
26025 measured reflectionsl = 3736
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0541P)2 + 3.3754P]
where P = (Fo2 + 2Fc2)/3
3170 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C21H15NO3V = 3209.40 (17) Å3
Mr = 329.34Z = 8
Monoclinic, C2/cMo Kα radiation
a = 17.6546 (5) ŵ = 0.09 mm1
b = 6.1464 (2) ÅT = 296 K
c = 30.0234 (9) Å0.35 × 0.35 × 0.30 mm
β = 99.899 (4)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3170 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2500 reflections with I > 2σ(I)
Tmin = 0.691, Tmax = 0.745Rint = 0.026
26025 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.08Δρmax = 0.26 e Å3
3170 reflectionsΔρmin = 0.17 e Å3
226 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.57652 (12)0.4252 (3)0.19910 (6)0.0883 (8)
O20.58837 (11)0.7332 (3)0.16537 (6)0.0773 (7)
O30.39281 (11)1.0140 (3)0.01671 (6)0.0693 (6)
N10.56468 (10)0.5469 (3)0.16914 (6)0.0562 (7)
C10.51892 (10)0.4648 (3)0.13607 (6)0.0420 (6)
C20.50490 (10)0.6028 (3)0.10237 (6)0.0407 (6)
C30.45859 (11)0.5329 (3)0.07197 (6)0.0404 (6)
C40.43071 (12)0.3208 (3)0.07611 (7)0.0486 (7)
C50.44639 (12)0.1864 (3)0.10995 (8)0.0544 (7)
C60.49053 (12)0.2569 (4)0.14085 (7)0.0506 (7)
C70.43910 (11)0.6866 (3)0.03818 (6)0.0458 (6)
C80.38646 (11)0.6597 (3)0.01229 (7)0.0475 (7)
C90.37029 (11)0.8276 (3)0.01956 (6)0.0454 (6)
C100.32643 (10)0.7680 (3)0.05601 (6)0.0398 (6)
C110.31668 (12)0.9253 (3)0.08779 (7)0.0487 (7)
C120.27956 (12)0.8788 (3)0.12315 (7)0.0485 (7)
C130.25004 (11)0.6723 (3)0.12863 (6)0.0386 (5)
C140.25952 (11)0.5155 (3)0.09672 (6)0.0422 (6)
C150.29722 (11)0.5609 (3)0.06115 (6)0.0433 (6)
C160.21041 (11)0.6233 (3)0.16715 (6)0.0397 (6)
C170.16140 (11)0.7741 (3)0.18176 (7)0.0470 (6)
C180.12348 (13)0.7254 (4)0.21715 (7)0.0570 (8)
C190.13376 (13)0.5265 (4)0.23841 (7)0.0586 (8)
C200.18328 (13)0.3770 (4)0.22494 (7)0.0545 (7)
C210.22157 (12)0.4246 (3)0.18959 (6)0.0461 (6)
H20.526150.741610.099870.0488*
H40.400970.269120.055640.0582*
H50.426940.045430.112060.0653*
H60.500620.166840.164030.0607*
H70.466670.816230.034680.0549*
H80.358780.530300.014300.0570*
H110.335701.064820.085000.0584*
H120.273980.987360.143920.0582*
H140.239990.376470.099380.0506*
H150.303130.452310.040450.0520*
H170.154060.908900.167620.0564*
H180.090840.827680.226650.0683*
H190.107330.493260.261790.0703*
H200.191030.243600.239630.0654*
H210.255070.322930.180740.0554*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1143 (15)0.0909 (14)0.0732 (12)0.0074 (12)0.0544 (11)0.0205 (11)
O20.0927 (13)0.0690 (12)0.0825 (12)0.0205 (10)0.0494 (10)0.0031 (10)
O30.0946 (12)0.0492 (9)0.0733 (11)0.0190 (9)0.0408 (10)0.0026 (8)
N10.0556 (11)0.0650 (13)0.0523 (10)0.0023 (10)0.0215 (9)0.0020 (9)
C10.0377 (10)0.0457 (11)0.0434 (10)0.0031 (8)0.0092 (8)0.0021 (8)
C20.0402 (10)0.0382 (10)0.0442 (10)0.0031 (8)0.0088 (8)0.0019 (8)
C30.0422 (10)0.0416 (10)0.0370 (9)0.0048 (8)0.0056 (8)0.0031 (8)
C40.0500 (11)0.0459 (12)0.0503 (11)0.0088 (9)0.0102 (9)0.0054 (9)
C50.0563 (13)0.0384 (11)0.0686 (14)0.0081 (10)0.0107 (10)0.0008 (10)
C60.0488 (11)0.0497 (12)0.0527 (12)0.0032 (10)0.0067 (9)0.0095 (10)
C70.0531 (12)0.0428 (11)0.0431 (10)0.0056 (9)0.0132 (9)0.0008 (9)
C80.0507 (11)0.0485 (12)0.0462 (11)0.0119 (9)0.0168 (9)0.0038 (9)
C90.0480 (11)0.0453 (11)0.0434 (10)0.0076 (9)0.0092 (8)0.0002 (9)
C100.0417 (10)0.0395 (10)0.0383 (9)0.0011 (8)0.0074 (8)0.0017 (8)
C110.0619 (13)0.0327 (10)0.0537 (12)0.0081 (9)0.0166 (10)0.0037 (9)
C120.0684 (13)0.0342 (10)0.0460 (11)0.0029 (9)0.0183 (10)0.0070 (9)
C130.0440 (10)0.0342 (9)0.0369 (9)0.0023 (8)0.0051 (8)0.0004 (8)
C140.0531 (11)0.0316 (9)0.0432 (10)0.0051 (8)0.0124 (9)0.0014 (8)
C150.0519 (11)0.0384 (10)0.0414 (10)0.0036 (9)0.0129 (8)0.0072 (8)
C160.0457 (10)0.0374 (10)0.0353 (9)0.0015 (8)0.0049 (8)0.0034 (8)
C170.0542 (12)0.0417 (11)0.0446 (10)0.0055 (9)0.0069 (9)0.0014 (9)
C180.0578 (13)0.0665 (15)0.0493 (12)0.0100 (11)0.0170 (10)0.0055 (11)
C190.0648 (14)0.0724 (16)0.0415 (11)0.0057 (12)0.0175 (10)0.0007 (11)
C200.0713 (14)0.0500 (12)0.0424 (11)0.0045 (11)0.0107 (10)0.0051 (9)
C210.0580 (12)0.0384 (10)0.0423 (10)0.0015 (9)0.0095 (9)0.0021 (8)
Geometric parameters (Å, º) top
O1—N11.215 (3)C16—C171.390 (3)
O2—N11.218 (3)C16—C211.392 (3)
O3—C91.221 (3)C17—C181.383 (3)
N1—C11.473 (3)C18—C191.377 (3)
C1—C21.375 (3)C19—C201.376 (3)
C1—C61.371 (3)C20—C211.384 (3)
C2—C31.394 (3)C2—H20.9300
C3—C41.392 (3)C4—H40.9300
C3—C71.470 (3)C5—H50.9300
C4—C51.374 (3)C6—H60.9300
C5—C61.380 (3)C7—H70.9300
C7—C81.320 (3)C8—H80.9300
C8—C91.468 (3)C11—H110.9300
C9—C101.491 (3)C12—H120.9300
C10—C111.390 (3)C14—H140.9300
C10—C151.392 (3)C15—H150.9300
C11—C121.370 (3)C17—H170.9300
C12—C131.393 (3)C18—H180.9300
C13—C141.389 (3)C19—H190.9300
C13—C161.482 (3)C20—H200.9300
C14—C151.381 (3)C21—H210.9300
O1—N1—O2123.20 (19)C18—C19—C20119.8 (2)
O1—N1—C1118.18 (18)C19—C20—C21120.2 (2)
O2—N1—C1118.62 (17)C16—C21—C20120.62 (19)
N1—C1—C2118.28 (16)C1—C2—H2120.00
N1—C1—C6118.80 (17)C3—C2—H2120.00
C2—C1—C6122.90 (18)C3—C4—H4119.00
C1—C2—C3119.46 (17)C5—C4—H4119.00
C2—C3—C4117.94 (17)C4—C5—H5119.00
C2—C3—C7119.16 (17)C6—C5—H5119.00
C4—C3—C7122.87 (17)C1—C6—H6121.00
C3—C4—C5121.08 (19)C5—C6—H6121.00
C4—C5—C6121.14 (19)C3—C7—H7117.00
C1—C6—C5117.44 (19)C8—C7—H7117.00
C3—C7—C8126.72 (18)C7—C8—H8119.00
C7—C8—C9122.06 (17)C9—C8—H8119.00
O3—C9—C8120.80 (18)C10—C11—H11119.00
O3—C9—C10119.91 (18)C12—C11—H11119.00
C8—C9—C10119.28 (16)C11—C12—H12119.00
C9—C10—C11118.31 (17)C13—C12—H12119.00
C9—C10—C15123.72 (16)C13—C14—H14119.00
C11—C10—C15117.91 (17)C15—C14—H14119.00
C10—C11—C12121.27 (17)C10—C15—H15120.00
C11—C12—C13121.35 (18)C14—C15—H15120.00
C12—C13—C14117.32 (17)C16—C17—H17120.00
C12—C13—C16120.93 (17)C18—C17—H17120.00
C14—C13—C16121.75 (17)C17—C18—H18120.00
C13—C14—C15121.64 (17)C19—C18—H18120.00
C10—C15—C14120.51 (17)C18—C19—H19120.00
C13—C16—C17120.93 (17)C20—C19—H19120.00
C13—C16—C21120.62 (17)C19—C20—H20120.00
C17—C16—C21118.45 (17)C21—C20—H20120.00
C16—C17—C18120.55 (19)C16—C21—H21120.00
C17—C18—C19120.4 (2)C20—C21—H21120.00
O1—N1—C1—C2179.46 (19)C9—C10—C11—C12177.45 (19)
O2—N1—C1—C20.1 (3)C15—C10—C11—C120.0 (3)
O1—N1—C1—C61.1 (3)C9—C10—C15—C14177.65 (18)
O2—N1—C1—C6178.40 (19)C11—C10—C15—C140.3 (3)
N1—C1—C2—C3176.84 (17)C10—C11—C12—C130.1 (3)
C6—C1—C2—C31.4 (3)C11—C12—C13—C140.2 (3)
N1—C1—C6—C5178.54 (18)C11—C12—C13—C16179.62 (19)
C2—C1—C6—C50.3 (3)C12—C13—C14—C150.6 (3)
C1—C2—C3—C42.5 (3)C16—C13—C14—C15179.26 (18)
C1—C2—C3—C7175.45 (17)C12—C13—C16—C1739.4 (3)
C2—C3—C4—C51.9 (3)C12—C13—C16—C21140.6 (2)
C7—C3—C4—C5175.90 (19)C14—C13—C16—C17140.8 (2)
C2—C3—C7—C8167.81 (19)C14—C13—C16—C2139.3 (3)
C4—C3—C7—C810.0 (3)C13—C14—C15—C100.6 (3)
C3—C4—C5—C60.3 (3)C13—C16—C17—C18178.72 (19)
C4—C5—C6—C10.9 (3)C21—C16—C17—C181.4 (3)
C3—C7—C8—C9178.24 (18)C13—C16—C21—C20178.60 (19)
C7—C8—C9—O315.5 (3)C17—C16—C21—C201.5 (3)
C7—C8—C9—C10163.88 (18)C16—C17—C18—C190.0 (3)
O3—C9—C10—C114.1 (3)C17—C18—C19—C201.3 (3)
O3—C9—C10—C15178.56 (19)C18—C19—C20—C211.2 (3)
C8—C9—C10—C11175.31 (18)C19—C20—C21—C160.2 (3)
C8—C9—C10—C152.0 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg3 are the centroids of the nitrobenzene ring C1–C6 and the phenyl ring C16–C21, respectively.
D—H···AD—HH···AD···AD—H···A
C17—H17···Cg1i0.932.933.637 (2)133
C20—H20···Cg3ii0.932.903.565 (2)129
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg3 are the centroids of the nitrobenzene ring C1–C6 and the phenyl ring C16–C21, respectively.
D—H···AD—HH···AD···AD—H···A
C17—H17···Cg1i0.932.933.637 (2)133
C20—H20···Cg3ii0.932.903.565 (2)129
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Sophisticated Analytical Instrument Facility (SAIF), IITM, Chennai 600 036, Tamilnadu, India, for the single-crystal X-ray data.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIndira, J., Karat, P. P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209–214.  Web of Science CrossRef CAS Google Scholar
First citationLiu, X. L., Xu, Y. J. & Go, M. L. (2008). Eur. J. Med. Chem. 43, 1681–1687.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125–137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShanthi, D., Vidhya Sagar, T., Kayalvizhi, M., Vasuki, G. & Thiruvalluvar, A. (2014). Acta Cryst. E70, o809–o810.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, N., Ahmad, S. & Shamsher Alam, M. (2012). Int. J. Pharm. Bio. Archiv. 3, 1298–1303.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135–140.  Web of Science CrossRef Google Scholar
First citationVidhyasagar, T., Rajeswari, K., Shanthi, D., Kayalvizhi, M., Vasuki, G. & Thiruvalluvar, A. (2015a). Acta Cryst. E71, 1–3.  Google Scholar
First citationVidhyasagar, T., Rajeswari, K., Shanthi, D., Kayalvizhi, M., Vasuki, G. & Thiruvalluvar, A. (2015b). Acta Cryst. E71, o65–o66.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, J. Z., Wang, C., Cai, Y. P., Yang, S. L., Zheng, X. Y., Qiu, P. H., Peng, J., Liang, G. & Li, X. K. (2010). Chin. J. Org. Chem. 30, 884–889.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o119-o120
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds