organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o135-o136

Crystal structure of 2-chloro-1-(3-methyl-2,6-di­phenyl­piperidin-1-yl)ethanone

aDepartment of Physics, Anna Adarsh College for Women, Chennai-40, Tamilnadu, India, bPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India, and cPG and Research Department of Chemistry, Government Arts College, Coimbatore-18, Tamilnadu, India
*Correspondence e-mail: guqmc@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 16 January 2015; accepted 20 January 2015; online 28 January 2015)

In the title compound, C20H22ClNO, the piperidine ring has a twist-boat conformation. There is an intra­molecular C—H⋯π inter­action involving the two phenyl rings which are inclined to one another by 84.91 (7)°. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds, forming helical chains along [010]. The chains are linked by C—H⋯π inter­actions, forming sheets parallel to (100).

1. Related literature

For the biological activity of piperidines and their derivatives, see: Aridoss et al. (2007[Aridoss, G., Balasubramanian, S., Parthiban, P., Ramachandran, R. & Kabilan, S. (2007). Med. Chem. Res. 16, 188-204.]); Jain et al. (2005[Jain, R., Chen, D., White, R. J., Patel, D. V. & Yuan, Z. (2005). Curr. Med. Chem. 12, 1607-1621.]); Mobio et al. (1989[Mobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sargeeva, N. D., Lin, S., Stashenko, E. E., Prostakov, N. S. & Andreeva, E. I. (1989). Khim. Farm. Zh. 23, 421-427.]); Palani et al. (2002[Palani, A., Shapiro, S., Josien, H., Bara, T., Clader, J. W., Greenlee, W. J., Cox, K., Strizki, J. M. & Baroudy, B. M. (2002). J. Med. Chem. 45, 3143-3160.]). For the crystal structure of a very similar compound, 2-chloro-1-(3,3-dimethyl-2,6-di­phenyl­piperidin-1-yl)ethanone, see: Prathebha et al. (2013[Prathebha, K., Revathi, B. K., Usha, G., Ponnuswamy, S. & Abdul Basheer, S. (2013). Acta Cryst. E69, o1424.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C20H22ClNO

  • Mr = 327.84

  • Monoclinic, P 21 /n

  • a = 8.7146 (3) Å

  • b = 12.3963 (4) Å

  • c = 16.6117 (6) Å

  • β = 101.523 (2)°

  • V = 1758.37 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.25 × 0.23 × 0.23 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.946, Tmax = 0.950

  • 16473 measured reflections

  • 4353 independent reflections

  • 3075 reflections with I > 2σ(I)

  • Rint = 0.026

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.236

  • S = 0.92

  • 4353 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C5–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯Cg1 0.93 2.98 3.879 (2) 164
C21—H21⋯O1i 0.93 2.57 3.472 (3) 165
C14—H14b⋯Cg1ii 0.98 2.84 3.751 (2) 156
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Structural commentary top

Piperidine and their derivatives are significant heterocyclic compounds found in natural substances (Jain et al., 2005). They have been observed to exhibit a wide range of biological activities, such as anti-fungal, anti-malarial, anti-bacterial and anti-viral activities (Aridoss et al., 2007; Mobio et al., 1989). They also show a highly favourable anti­viral activity against a range of primary HIV-1 isolates (Palani et al., 2002).

The molecular structure of the title compound is illustrated in Fig. 1. The sum of the bond angles around atom N1 is 359.85 (1) °, indicating sp2 hybridization. The dihedral angle between the phenyl rings (C5—C10 and C16—C21) is 84.91 (7) °. They are linked by an intra­molecular C—H···π inter­action (Table 1). The piperidine ring adopts a twist-boat conformation.

In the crystal, molecules are linked via C—H···O hydrogen bonds forming helical chains along [010], see Table 1 and Fig. 2. The chains are linked by C—H···π inter­actions forming sheets parallel to (100), see Table 1.

Synthesis and crystallization top

A mixture of t-3-methyl-r-2,c-6-di­phenyl­piperidine (5 mmol), chloro­acetyl chloride (20 mmol) and tri­ethyl­amine (20 mmol) in anhydrous benzene (20 ml) was stirred at rt. The precipitated ammonium salt was filtered and the resulting solution was washed with water and bicarbonate solution (4 × 10 ml). Finally, the benzene solution was dried over anhydrous sodium sulfate and concentrated. The pasty mass was purified by crystallization from pet-ether (333-353 K) and ethyl acetate in the ratio of 95: 5, and yielded colourless block-like crystals.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were positioned geometrically and treated as riding on their parent atoms: C—H = 0.93 - 0.98 Å, with Uiso(H)= 1.5 Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Related literature top

For the biological activity of piperidines and their derivatives, see: Aridoss et al. (2007); Jain et al. (2005); Mobio et al. (1989); Palani et al. (2002). For the crystal structure of a very similar compound, 2-chloro-1-(3,3-dimethyl-2,6-diphenylpiperidin-1-yl)ethanone, see: Prathebha et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The intramolecular C—H···π interaction is shown as a dashed line (see Table 1 for details).
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound. The dashed lines indicate the hydrogen bonds (see Table 1 for details).
2-Chloro-1-(3-methyl-2,6-diphenylpiperidin-1-yl)ethanone top
Crystal data top
C20H22ClNOF(000) = 696
Mr = 327.84Dx = 1.238 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4353 reflections
a = 8.7146 (3) Åθ = 2.1–28.2°
b = 12.3963 (4) ŵ = 0.22 mm1
c = 16.6117 (6) ÅT = 293 K
β = 101.523 (2)°Block, colourless
V = 1758.37 (10) Å30.25 × 0.23 × 0.23 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4353 independent reflections
Radiation source: fine-focus sealed tube3075 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and ϕ scanθmax = 28.2°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1111
Tmin = 0.946, Tmax = 0.950k = 1614
16473 measured reflectionsl = 2216
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.236H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
4353 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C20H22ClNOV = 1758.37 (10) Å3
Mr = 327.84Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.7146 (3) ŵ = 0.22 mm1
b = 12.3963 (4) ÅT = 293 K
c = 16.6117 (6) Å0.25 × 0.23 × 0.23 mm
β = 101.523 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4353 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3075 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.950Rint = 0.026
16473 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.236H-atom parameters constrained
S = 0.92Δρmax = 0.47 e Å3
4353 reflectionsΔρmin = 0.38 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C170.6269 (2)0.82630 (15)0.42412 (12)0.0533 (5)
H170.65070.89950.42640.064*
C10.3083 (2)0.97610 (15)0.30256 (11)0.0498 (4)
C20.2026 (2)0.88094 (17)0.31112 (13)0.0579 (5)
H2A0.14000.89720.35170.069*
H2B0.26570.81770.32930.069*
C30.4639 (5)1.0949 (3)0.11267 (17)0.1078 (11)
H3A0.45081.16800.12900.162*
H3B0.36571.05750.10620.162*
H3C0.49911.09430.06150.162*
C40.53945 (19)1.05108 (12)0.26296 (10)0.0426 (4)
H40.46601.11180.25710.051*
C50.67052 (19)1.08102 (12)0.33476 (10)0.0415 (4)
C60.6292 (2)1.13399 (16)0.40066 (12)0.0548 (5)
H60.52401.14700.40030.066*
C70.7409 (3)1.16786 (19)0.46692 (14)0.0678 (6)
H70.71021.20390.51020.081*
C80.8963 (3)1.14864 (17)0.46926 (15)0.0674 (6)
H80.97131.17070.51420.081*
C90.9404 (2)1.09646 (16)0.40468 (14)0.0615 (5)
H91.04581.08290.40610.074*
C100.8292 (2)1.06365 (14)0.33729 (12)0.0507 (4)
H100.86101.02970.29340.061*
C120.5843 (2)1.03897 (16)0.17806 (11)0.0548 (5)
H120.68431.07640.18070.066*
C130.6075 (3)0.92372 (16)0.15453 (13)0.0677 (6)
H13A0.51340.89860.11780.081*
H13B0.69290.92050.12500.081*
C140.6440 (3)0.84909 (14)0.22878 (13)0.0555 (5)
H14A0.73600.87500.26660.067*
H14B0.66610.77720.21110.067*
C150.5053 (2)0.84491 (12)0.27212 (11)0.0446 (4)
H150.42080.80590.23600.053*
C160.54725 (18)0.78122 (13)0.35133 (10)0.0439 (4)
C180.6713 (2)0.76237 (18)0.49382 (13)0.0601 (5)
H180.72530.79320.54230.072*
C190.6364 (3)0.65523 (18)0.49162 (15)0.0633 (5)
H190.66730.61300.53830.076*
C200.5549 (3)0.60920 (16)0.41981 (15)0.0660 (6)
H200.53000.53620.41840.079*
C210.5101 (2)0.67207 (14)0.34978 (13)0.0533 (5)
H210.45510.64100.30160.064*
N10.44797 (15)0.95570 (11)0.28196 (8)0.0429 (4)
O10.25929 (16)1.06617 (12)0.31359 (10)0.0666 (4)
Cl10.07878 (7)0.85512 (5)0.21470 (4)0.0825 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C170.0562 (11)0.0472 (10)0.0536 (11)0.0082 (8)0.0041 (8)0.0001 (8)
C10.0431 (9)0.0574 (10)0.0479 (9)0.0011 (7)0.0069 (7)0.0009 (8)
C20.0448 (9)0.0684 (12)0.0604 (12)0.0021 (8)0.0106 (8)0.0106 (9)
C30.156 (3)0.112 (2)0.0510 (14)0.046 (2)0.0100 (16)0.0171 (14)
C40.0463 (8)0.0389 (8)0.0431 (9)0.0000 (6)0.0101 (7)0.0021 (6)
C50.0471 (8)0.0327 (7)0.0455 (9)0.0017 (6)0.0110 (7)0.0004 (6)
C60.0509 (10)0.0632 (11)0.0518 (11)0.0061 (8)0.0138 (8)0.0084 (8)
C70.0716 (14)0.0793 (14)0.0506 (11)0.0073 (11)0.0079 (10)0.0165 (10)
C80.0613 (12)0.0715 (13)0.0623 (13)0.0037 (10)0.0046 (10)0.0086 (10)
C90.0477 (10)0.0570 (11)0.0772 (14)0.0019 (8)0.0062 (9)0.0096 (10)
C100.0494 (9)0.0437 (9)0.0601 (11)0.0015 (7)0.0139 (8)0.0070 (8)
C120.0668 (12)0.0546 (11)0.0447 (10)0.0038 (8)0.0151 (8)0.0025 (8)
C130.0993 (16)0.0601 (12)0.0502 (11)0.0033 (11)0.0305 (11)0.0054 (9)
C140.0698 (12)0.0449 (9)0.0578 (11)0.0054 (8)0.0269 (9)0.0036 (8)
C150.0472 (9)0.0385 (8)0.0465 (9)0.0035 (6)0.0057 (7)0.0045 (6)
C160.0395 (8)0.0427 (8)0.0496 (9)0.0013 (6)0.0089 (7)0.0017 (7)
C180.0521 (10)0.0715 (13)0.0528 (11)0.0055 (9)0.0014 (8)0.0043 (9)
C190.0608 (12)0.0658 (12)0.0648 (13)0.0057 (9)0.0159 (10)0.0212 (10)
C200.0820 (15)0.0449 (10)0.0749 (14)0.0032 (9)0.0245 (12)0.0103 (9)
C210.0600 (11)0.0424 (9)0.0580 (11)0.0060 (7)0.0134 (9)0.0014 (8)
N10.0422 (7)0.0418 (7)0.0445 (8)0.0020 (5)0.0081 (6)0.0003 (6)
O10.0523 (8)0.0640 (9)0.0863 (11)0.0095 (6)0.0205 (7)0.0041 (7)
Cl10.0729 (4)0.0820 (5)0.0812 (5)0.0188 (3)0.0121 (3)0.0008 (3)
Geometric parameters (Å, º) top
C17—C161.386 (2)C8—H80.9300
C17—C181.393 (3)C9—C101.387 (3)
C17—H170.9300C9—H90.9300
C1—O11.222 (2)C10—H100.9300
C1—N11.352 (2)C12—C131.505 (3)
C1—C21.521 (3)C12—H120.9800
C2—Cl11.773 (2)C13—C141.524 (3)
C2—H2A0.9700C13—H13A0.9700
C2—H2B0.9700C13—H13B0.9700
C3—C121.518 (3)C14—C151.526 (3)
C3—H3A0.9600C14—H14A0.9700
C3—H3B0.9600C14—H14B0.9700
C3—H3C0.9600C15—N11.482 (2)
C4—N11.495 (2)C15—C161.515 (2)
C4—C51.523 (2)C15—H150.9800
C4—C121.544 (2)C16—C211.390 (2)
C4—H40.9800C18—C191.361 (3)
C5—C61.384 (2)C18—H180.9300
C5—C101.392 (2)C19—C201.384 (3)
C6—C71.381 (3)C19—H190.9300
C6—H60.9300C20—C211.390 (3)
C7—C81.368 (3)C20—H200.9300
C7—H70.9300C21—H210.9300
C8—C91.372 (3)
C16—C17—C18120.23 (17)C13—C12—C3110.9 (2)
C16—C17—H17119.9C13—C12—C4113.64 (15)
C18—C17—H17119.9C3—C12—C4110.11 (19)
O1—C1—N1124.60 (17)C13—C12—H12107.3
O1—C1—C2117.28 (17)C3—C12—H12107.3
N1—C1—C2118.11 (16)C4—C12—H12107.3
C1—C2—Cl1109.05 (13)C14—C13—C12112.53 (17)
C1—C2—H2A109.9C14—C13—H13A109.1
Cl1—C2—H2A109.9C12—C13—H13A109.1
C1—C2—H2B109.9C14—C13—H13B109.1
Cl1—C2—H2B109.9C12—C13—H13B109.1
H2A—C2—H2B108.3H13A—C13—H13B107.8
C12—C3—H3A109.5C13—C14—C15110.24 (17)
C12—C3—H3B109.5C13—C14—H14A109.6
H3A—C3—H3B109.5C15—C14—H14A109.6
C12—C3—H3C109.5C13—C14—H14B109.6
H3A—C3—H3C109.5C15—C14—H14B109.6
H3B—C3—H3C109.5H14A—C14—H14B108.1
N1—C4—C5112.06 (13)N1—C15—C16114.54 (14)
N1—C4—C12111.04 (13)N1—C15—C14109.68 (13)
C5—C4—C12116.84 (14)C16—C15—C14110.55 (15)
N1—C4—H4105.3N1—C15—H15107.2
C5—C4—H4105.3C16—C15—H15107.2
C12—C4—H4105.3C14—C15—H15107.2
C6—C5—C10117.60 (16)C17—C16—C21118.86 (17)
C6—C5—C4117.51 (15)C17—C16—C15122.65 (15)
C10—C5—C4124.82 (15)C21—C16—C15118.43 (15)
C7—C6—C5121.42 (18)C19—C18—C17120.6 (2)
C7—C6—H6119.3C19—C18—H18119.7
C5—C6—H6119.3C17—C18—H18119.7
C8—C7—C6120.4 (2)C18—C19—C20119.92 (19)
C8—C7—H7119.8C18—C19—H19120.0
C6—C7—H7119.8C20—C19—H19120.0
C7—C8—C9119.4 (2)C19—C20—C21120.01 (18)
C7—C8—H8120.3C19—C20—H20120.0
C9—C8—H8120.3C21—C20—H20120.0
C8—C9—C10120.65 (19)C20—C21—C16120.33 (19)
C8—C9—H9119.7C20—C21—H21119.8
C10—C9—H9119.7C16—C21—H21119.8
C5—C10—C9120.56 (18)C1—N1—C15122.79 (14)
C5—C10—H10119.7C1—N1—C4116.78 (14)
C9—C10—H10119.7C15—N1—C4120.28 (13)
O1—C1—C2—Cl188.83 (19)C18—C17—C16—C15175.86 (17)
N1—C1—C2—Cl190.01 (18)N1—C15—C16—C1741.6 (2)
N1—C4—C5—C675.98 (19)C14—C15—C16—C1782.9 (2)
C12—C4—C5—C6154.28 (16)N1—C15—C16—C21141.29 (16)
N1—C4—C5—C10107.24 (18)C14—C15—C16—C2194.20 (19)
C12—C4—C5—C1022.5 (2)C16—C17—C18—C190.4 (3)
C10—C5—C6—C70.4 (3)C17—C18—C19—C200.5 (3)
C4—C5—C6—C7177.46 (19)C18—C19—C20—C210.7 (3)
C5—C6—C7—C80.7 (3)C19—C20—C21—C160.2 (3)
C6—C7—C8—C90.8 (4)C17—C16—C21—C201.1 (3)
C7—C8—C9—C100.3 (3)C15—C16—C21—C20176.11 (18)
C6—C5—C10—C91.5 (3)O1—C1—N1—C15177.72 (17)
C4—C5—C10—C9178.23 (16)C2—C1—N1—C153.5 (3)
C8—C9—C10—C51.4 (3)O1—C1—N1—C46.8 (3)
N1—C4—C12—C1330.7 (2)C2—C1—N1—C4171.99 (14)
C5—C4—C12—C1399.5 (2)C16—C15—N1—C169.0 (2)
N1—C4—C12—C394.4 (2)C14—C15—N1—C1166.04 (16)
C5—C4—C12—C3135.4 (2)C16—C15—N1—C4115.63 (16)
C3—C12—C13—C14146.8 (2)C14—C15—N1—C49.3 (2)
C4—C12—C13—C1422.1 (3)C5—C4—N1—C1101.09 (17)
C12—C13—C14—C1563.8 (2)C12—C4—N1—C1126.23 (17)
C13—C14—C15—N146.3 (2)C5—C4—N1—C1583.27 (17)
C13—C14—C15—C16173.53 (16)C12—C4—N1—C1549.41 (19)
C18—C17—C16—C211.3 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
C17—H17···Cg10.932.983.879 (2)164
C21—H21···O1i0.932.573.472 (3)165
C14—H14b···Cg1ii0.982.843.751 (2)156
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
C17—H17···Cg10.932.983.879 (2)164
C21—H21···O1i0.932.573.472 (3)165
C14—H14b···Cg1ii0.982.843.751 (2)156
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank Professor D. Velmurugan, Centre for Advanced Study in Crystallography and Biophysics, University of Madras, for providing data-collection facilities.

References

First citationAridoss, G., Balasubramanian, S., Parthiban, P., Ramachandran, R. & Kabilan, S. (2007). Med. Chem. Res. 16, 188–204.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJain, R., Chen, D., White, R. J., Patel, D. V. & Yuan, Z. (2005). Curr. Med. Chem. 12, 1607–1621.  Google Scholar
First citationMobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sargeeva, N. D., Lin, S., Stashenko, E. E., Prostakov, N. S. & Andreeva, E. I. (1989). Khim. Farm. Zh. 23, 421–427.  CAS Google Scholar
First citationPalani, A., Shapiro, S., Josien, H., Bara, T., Clader, J. W., Greenlee, W. J., Cox, K., Strizki, J. M. & Baroudy, B. M. (2002). J. Med. Chem. 45, 3143–3160.  Google Scholar
First citationPrathebha, K., Revathi, B. K., Usha, G., Ponnuswamy, S. & Abdul Basheer, S. (2013). Acta Cryst. E69, o1424.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o135-o136
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds