organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o99-o100

Crystal structure of (E)-N′-{[(1R,3R)-3-iso­propyl-1-methyl-2-oxo­cyclo­pent­yl]methyl­­idene}-4-methyl­benzene­sulfono­hydrazide

aFakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
*Correspondence e-mail: hans.preut@tu-dortmund.de

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 25 November 2014; accepted 5 December 2014; online 10 January 2015)

The title compound, C17H24N2O3S, was synthesized in order to determine the relative configuration of the corresponding β-keto aldehyde. In the U-shaped mol­ecule, the five-membered ring approximates an envelope with the methyl­ene atom adjacent to the quaternary C atom being the flap. The dihedral angles between the four nearly coplanar atoms of the five-membered ring and the flap and the aromatic ring are 38.8 (4) and 22.9 (2)°, respectively. The bond angles around the S atom are in the range 104.11 (16)–119.95 (16)°. In the crystal, mol­ecules are linked via N—H⋯O by hydrogen bonds, forming a chain along the a-axis direction.

1. Related literature

For the synthesis of terpenoid-related building blocks, in particular cyclo­penta­noids, see: Becker et al. (2013[Becker, J., Butt, L., von Kiedrowski, V., Mischler, E., Quentin, F. & Hiersemann, M. (2013). Org. Lett. 15, 5982-5985.]); Gille et al. (2011[Gille, A., Rehbein, J. & Hiersemann, M. (2011). Org. Lett. 13, 2122-2125.]); Helmboldt et al. (2006[Helmboldt, H., Köhler, D. & Hiersemann, M. (2006). Org. Lett. 8, 1573-1576.]); Nelson et al. (2011[Nelson, B., Hiller, W., Pollex, A. & Hiersemann, M. (2011). Org. Lett. 13, 4438-4441.]); Tymann et al.(2014[Tymann, D., Klüppel, A., Hiller, W. & Hiersemann, M. (2014). Org. Lett. 16, 4062-4065.]). For a review on cyclo­penta­noids by ring contraction see: Silva (2002[Silva, L. F. Jr (2002). Tetrahedron, 58, 9137-9161.]). For a solid–acid catalysed rearrangement of cyclic α,β-ep­oxy ketones see: Elings et al. (2000[Elings, J. A., Lempers, H. E. B. & Sheldon, R. A. (2000). Eur. J. Org. Chem. pp. 1905-1911.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H24N2O3S

  • Mr = 336.44

  • Monoclinic, P 21

  • a = 6.6198 (8) Å

  • b = 16.8318 (18) Å

  • c = 7.9506 (9) Å

  • β = 97.141 (11)°

  • V = 879.00 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 173 K

  • 0.23 × 0.10 × 0.03 mm

2.2. Data collection

  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis CCD; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.98, Tmax = 1.00

  • 6620 measured reflections

  • 3684 independent reflections

  • 3185 reflections with I > 2σ(I)

  • Rint = 0.032

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.091

  • S = 1.01

  • 3684 reflections

  • 216 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack x determined using 1307 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons & Flack,2004[Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.])

  • Absolute structure parameter: 0.02 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.91 (4) 2.03 (4) 2.889 (4) 158 (3)
Symmetry code: (i) x-1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Prompted by our efforts in natural product synthesis, we seek access to cyclopentyl units. Herein, we chosed a ring contraction strategy of a cyclic epoxy ketone. A Brønsted-acid promoted [1,2]-sigmatropic rearrangement of cis-piperitone oxide delivered trans-3-Isopropyl-1-methyl-2-oxocyclopentane-1-carbaldehyde (II). A subsequent condensation of (II) with p-toulenesulfonyl hydrazide afforded the title compound (I).

Related literature top

For the synthesis of terpenoid-related building blocks, in particular cyclopentanoids, see: Becker et al. (2013); Gille et al. (2011); Helmboldt et al. (2006); Nelson et al. (2011); Tymann et al.(2014). For a review on cyclopentanoids by ring contraction see: Silva (2002). For a solid–acid catalysed rearrangement of cyclic α,β-epoxy ketones see: Elings et al. (2000).

Experimental top

A sealable glass pressure tube was charged with a solution of trans-3-Isopropyl-1-methyl-2-oxocyclopentane-1-carbaldehyde (II) (C10H16O2, M = 168.23 g/mol, [α]D20 = +248.3 (c 0.059 mol/L, CHCl3), 150 mg, 0.89 mmol, 1.0 eq) and p-toluenesulfonyl hydrazide (C7H10N2O2S, M = 186.23 g/mol, 232 mg, 1.24 mmol, 1.4 eq) in methanol (9 ml, 10.1 ml/mmol). The tube was sealed with a Teflon screw cap and placed in a pre-heated oil bath (353 K). After being stirred for 2.5 h at 353 K, the reaction mixture was cooled to ambient temperature and stirred for additional 16 h at room temperature. Next, the volatiles were removed under reduced pressure. Purification of the residue by flash chromatography (cyclohexane/ethyl acetate 50/1 to 5/1) delivered the title compound (I) (C17H24N2O3S, M = 336.45 g/mol, 161 mg, 0.48 mmol, 54%) as a white solid and as an apparent mixture of double bond isomers (ratio = 68:32). Subsequent recrystallization of (I) from n-pentane provided colourless plates of the E-configured double bond isomer of (I). The ratio of isomers was determined by integration of the 1H NMR signals at 6.66 p.p.m. (s, 1H) and 7.12 p.p.m. (s, 1H). Characterization data are reported for the mixture of isomers. Rf 0.44 (cyclohexane/ethyl acetate 2/1); m.p. 361–363 K; 1H NMR (CDCl3, 500 MHz, ratio of double bond isomers = 68:32) δ 0.81 (d, J = 6.7 Hz, 3Hmajor), 0.93 (d, J = 6.9 Hz, 3Hminor), 0.97 (d, J = 6.7 Hz, 3Hmajor), 1.08–1.09 (m, 3Hmajor+3Hminor), 1.12 (s, 3Hminor), 1.52–1.59 (m, 1Hminor), 1.62–1.81 (m, 2Hmajor+3Hminor), 1.93–2.02 (m, 1Hmajor), 2.05–2.23 (m, 3Hmajor+1Hminor), 2.42 (s, 3Hminor), 2.43 (s, 3Hmajor), 2.53–2.56 (m, 1Hminor), 6.66 (s, 1Hminor), 7.12 (s 1Hminor), 7.29–7.32 (m, 2Hmajor+2Hminor), 7.58 (br. s, 1H), 7.70 (br. s, 1H), 7.79 (d, J = 8.2 Hz, 2Hmajor), 7.84 (d, J = 8.2 Hz, 2Hminor); 13C NMR (CDCl3, 126 MHz) δ 16.9 (CH3minor), 18.5 (CH3major), 19.3 (CH3minor), 20.1 (CH3major), 20.5 (CH2major), 20.9 (CH3major), 21.57 (CH3minor), 21.59 (CH3major), 23.7 (CH3minor), 24.3 (CH2minor), 26.2 (CHmajor), 27.3 (CHminor), 31.4 (CH2major), 35.8 (CH2minor), 53.1 (Cmajor), 55.2 (CHminor), 55.3 (CHmajor), 61.9 (Cminor), 127.8 (CHminor), 127.9 (CHmajor), 129.4 (CHminor), 129.5 (CHmajor), 135.1 (Cmajor), 136.6 (Cminor), 134.8 (Cminor), 144.2 (Cmajor), 152.8 (CHmajor), 154.0 (CHminor), 218.9 (Cmajor+Cminor); IR ν 3445 (m), 3175 (m), 2960 (m), 2360 (w), 1730 (s), 1595 (m), 1470 (m), 1355 (s), 1320 (m), 1185 (s), 1165 (s), 1093 (m), 815 (s); Anal. Calcd. for C17H24N2O3S: C, 60.7; H, 7.2; N, 8.3; Found: C, 60.9; H, 7.2; N, 8.1.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. : The molecular structure of the title compound, showing the labelling of all non-H atoms. Displacement ellipsoids are shown at the 30% probability level.
(E)-N'-{[(1R,3R)-3-Isopropyl-1-methyl-2-oxocyclopentyl]methylidene}-4-methylbenzenesulfonohydrazide top
Crystal data top
C17H24N2O3SZ = 2
Mr = 336.44F(000) = 360
Monoclinic, P21Dx = 1.271 Mg m3
a = 6.6198 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 16.8318 (18) ŵ = 0.20 mm1
c = 7.9506 (9) ÅT = 173 K
β = 97.141 (11)°Plate, colourless
V = 879.00 (17) Å30.23 × 0.10 × 0.03 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3684 independent reflections
Radiation source: Enhance (Mo) X-ray Source3185 reflections with I > 2σ(I)
Detector resolution: 16.0560 pixels mm-1Rint = 0.032
phi and ω scansθmax = 27.0°, θmin = 2.4°
Absorption correction: multi-scan
(CrysAlis CCD; Oxford Diffraction, 2008)
h = 78
Tmin = 0.98, Tmax = 1.00k = 2121
6620 measured reflectionsl = 109
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0406P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3684 reflectionsΔρmax = 0.21 e Å3
216 parametersΔρmin = 0.29 e Å3
1 restraintAbsolute structure: Flack x determined using 1307 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack,2004)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (5)
Crystal data top
C17H24N2O3SV = 879.00 (17) Å3
Mr = 336.44Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.6198 (8) ŵ = 0.20 mm1
b = 16.8318 (18) ÅT = 173 K
c = 7.9506 (9) Å0.23 × 0.10 × 0.03 mm
β = 97.141 (11)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3684 independent reflections
Absorption correction: multi-scan
(CrysAlis CCD; Oxford Diffraction, 2008)
3185 reflections with I > 2σ(I)
Tmin = 0.98, Tmax = 1.00Rint = 0.032
6620 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091Δρmax = 0.21 e Å3
S = 1.01Δρmin = 0.29 e Å3
3684 reflectionsAbsolute structure: Flack x determined using 1307 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack,2004)
216 parametersAbsolute structure parameter: 0.02 (5)
1 restraint
Special details top

Experimental. Absorption correction: CrysAlis PRO, Agilent Technologies, Version 1.171.36.24 (release 03–12-2012 CrysAlis171. NET) (compiled Dec 3 2012,18:21:49) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.09218 (13)0.45682 (4)0.12604 (10)0.0211 (2)
O10.2056 (4)0.41202 (15)0.0179 (3)0.0301 (7)
O20.1089 (4)0.43231 (14)0.1507 (3)0.0328 (7)
O30.7126 (4)0.64917 (14)0.0645 (3)0.0263 (6)
N10.0612 (5)0.54744 (16)0.0481 (4)0.0201 (7)
N20.2410 (4)0.59285 (16)0.0665 (4)0.0190 (6)
C10.6011 (7)0.4966 (3)0.8060 (5)0.0363 (10)
H1A0.61210.55310.83470.054*
H1B0.73740.47460.80120.054*
H1C0.53580.46840.89260.054*
C20.4754 (6)0.4867 (2)0.6364 (5)0.0233 (8)
C40.4451 (5)0.4458 (2)0.3415 (4)0.0209 (8)
H40.50480.42490.24830.025*
C30.5595 (5)0.4551 (2)0.4991 (4)0.0233 (7)
H30.69860.43960.51330.028*
C50.2427 (5)0.46758 (19)0.3241 (4)0.0185 (7)
C60.1547 (6)0.4995 (2)0.4585 (5)0.0251 (8)
H60.01570.51510.44350.030*
C70.2701 (6)0.5084 (2)0.6137 (5)0.0277 (9)
H70.20950.52950.70630.033*
C80.2181 (5)0.66745 (19)0.0519 (4)0.0190 (7)
H80.08480.68890.02860.023*
C90.3979 (6)0.7225 (2)0.0708 (5)0.0206 (8)
C100.5880 (5)0.67705 (19)0.1474 (5)0.0199 (8)
C110.6049 (6)0.6771 (2)0.3399 (5)0.0229 (8)
H110.57660.62230.37940.027*
C120.8215 (6)0.7019 (2)0.4184 (5)0.0260 (9)
H120.92040.66890.36330.031*
C130.8553 (7)0.6835 (3)0.6095 (5)0.0462 (12)
H13A0.99660.69540.65440.069*
H13B0.82750.62710.62760.069*
H13C0.76330.71610.66810.069*
C140.8694 (6)0.7886 (2)0.3864 (5)0.0331 (10)
H14A0.77450.82270.43850.050*
H14B0.85550.79860.26410.050*
H14C1.00910.80050.43610.050*
C150.4298 (6)0.7325 (2)0.3774 (5)0.0283 (9)
H15A0.31130.70120.40400.034*
H15B0.47470.76770.47470.034*
C160.3749 (6)0.7811 (2)0.2166 (5)0.0282 (9)
H16A0.46830.82680.21320.034*
H16B0.23340.80110.20950.034*
C170.4217 (6)0.7612 (2)0.0986 (5)0.0296 (10)
H17A0.44030.72000.18230.044*
H17B0.54060.79640.08530.044*
H17C0.29940.79230.13720.044*
H1N0.051 (6)0.572 (2)0.079 (5)0.027 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0204 (5)0.0192 (4)0.0219 (4)0.0035 (4)0.0047 (3)0.0012 (4)
O10.0387 (18)0.0257 (13)0.0233 (14)0.0052 (12)0.0065 (13)0.0048 (11)
O20.0232 (16)0.0337 (15)0.0382 (16)0.0125 (11)0.0090 (12)0.0108 (12)
O30.0152 (14)0.0305 (14)0.0335 (15)0.0027 (11)0.0039 (12)0.0092 (12)
N10.0120 (16)0.0218 (16)0.0252 (17)0.0016 (12)0.0024 (13)0.0021 (13)
N20.0129 (16)0.0229 (15)0.0209 (16)0.0022 (12)0.0005 (12)0.0003 (12)
C10.046 (3)0.032 (2)0.027 (2)0.004 (2)0.009 (2)0.0023 (18)
C20.029 (2)0.0184 (18)0.021 (2)0.0061 (15)0.0019 (17)0.0027 (14)
C40.0215 (19)0.0194 (19)0.0217 (17)0.0011 (16)0.0023 (14)0.0007 (15)
C30.0167 (17)0.0217 (16)0.0296 (18)0.0004 (17)0.0053 (14)0.0021 (19)
C50.0200 (18)0.0157 (18)0.0188 (16)0.0015 (14)0.0018 (14)0.0005 (14)
C60.020 (2)0.0289 (19)0.026 (2)0.0013 (16)0.0034 (17)0.0025 (16)
C70.034 (2)0.028 (2)0.021 (2)0.0013 (17)0.0071 (18)0.0025 (16)
C80.0119 (18)0.0218 (18)0.0229 (18)0.0016 (14)0.0008 (14)0.0003 (15)
C90.0154 (19)0.0183 (18)0.029 (2)0.0004 (14)0.0039 (16)0.0001 (15)
C100.014 (2)0.0154 (17)0.031 (2)0.0055 (14)0.0051 (16)0.0030 (15)
C110.019 (2)0.0229 (19)0.027 (2)0.0016 (15)0.0032 (16)0.0008 (16)
C120.017 (2)0.035 (2)0.026 (2)0.0014 (15)0.0024 (17)0.0061 (17)
C130.037 (3)0.067 (3)0.034 (3)0.001 (2)0.000 (2)0.002 (2)
C140.021 (2)0.038 (2)0.041 (2)0.0060 (17)0.0044 (19)0.0082 (19)
C150.021 (2)0.035 (2)0.030 (2)0.0016 (17)0.0063 (17)0.0097 (18)
C160.020 (2)0.0221 (18)0.043 (2)0.0017 (15)0.0068 (18)0.0071 (17)
C170.024 (2)0.028 (2)0.037 (2)0.0000 (16)0.0047 (19)0.0094 (17)
Geometric parameters (Å, º) top
S—O11.426 (3)C9—C171.522 (5)
S—O21.431 (3)C9—C101.533 (5)
S—N11.649 (3)C9—C161.544 (5)
S—C51.765 (3)C10—C111.520 (5)
O3—C101.213 (4)C11—C151.546 (5)
N1—N21.407 (4)C11—C121.548 (5)
N1—H1N0.91 (4)C11—H111.0000
N2—C81.268 (4)C12—C141.522 (6)
C1—C21.503 (5)C12—C131.539 (5)
C1—H1A0.9800C12—H121.0000
C1—H1B0.9800C13—H13A0.9800
C1—H1C0.9800C13—H13B0.9800
C2—C31.391 (5)C13—H13C0.9800
C2—C71.398 (5)C14—H14A0.9800
C4—C51.380 (5)C14—H14B0.9800
C4—C31.390 (5)C14—H14C0.9800
C4—H40.9500C15—C161.523 (6)
C3—H30.9500C15—H15A0.9900
C5—C61.387 (5)C15—H15B0.9900
C6—C71.376 (5)C16—H16A0.9900
C6—H60.9500C16—H16B0.9900
C7—H70.9500C17—H17A0.9800
C8—C91.501 (5)C17—H17B0.9800
C8—H80.9500C17—H17C0.9800
O1—S—O2119.95 (16)O3—C10—C9123.9 (3)
O1—S—N1108.22 (16)C11—C10—C9110.7 (3)
O2—S—N1104.11 (16)C10—C11—C15103.4 (3)
O1—S—C5108.13 (16)C10—C11—C12110.8 (3)
O2—S—C5109.82 (16)C15—C11—C12116.0 (3)
N1—S—C5105.67 (15)C10—C11—H11108.8
N2—N1—S113.5 (2)C15—C11—H11108.8
N2—N1—H1N116 (2)C12—C11—H11108.8
S—N1—H1N113 (2)C14—C12—C13110.5 (3)
C8—N2—N1116.0 (3)C14—C12—C11113.1 (3)
C2—C1—H1A109.5C13—C12—C11110.9 (3)
C2—C1—H1B109.5C14—C12—H12107.3
H1A—C1—H1B109.5C13—C12—H12107.3
C2—C1—H1C109.5C11—C12—H12107.3
H1A—C1—H1C109.5C12—C13—H13A109.5
H1B—C1—H1C109.5C12—C13—H13B109.5
C3—C2—C7118.4 (3)H13A—C13—H13B109.5
C3—C2—C1121.0 (4)C12—C13—H13C109.5
C7—C2—C1120.6 (4)H13A—C13—H13C109.5
C5—C4—C3118.3 (3)H13B—C13—H13C109.5
C5—C4—H4120.8C12—C14—H14A109.5
C3—C4—H4120.8C12—C14—H14B109.5
C4—C3—C2121.6 (3)H14A—C14—H14B109.5
C4—C3—H3119.2C12—C14—H14C109.5
C2—C3—H3119.2H14A—C14—H14C109.5
C4—C5—C6121.4 (3)H14B—C14—H14C109.5
C4—C5—S119.7 (3)C16—C15—C11105.5 (3)
C6—C5—S118.8 (3)C16—C15—H15A110.6
C7—C6—C5119.5 (3)C11—C15—H15A110.6
C7—C6—H6120.2C16—C15—H15B110.6
C5—C6—H6120.2C11—C15—H15B110.6
C6—C7—C2120.7 (3)H15A—C15—H15B108.8
C6—C7—H7119.7C15—C16—C9104.6 (3)
C2—C7—H7119.7C15—C16—H16A110.8
N2—C8—C9121.2 (3)C9—C16—H16A110.8
N2—C8—H8119.4C15—C16—H16B110.8
C9—C8—H8119.4C9—C16—H16B110.8
C8—C9—C17110.1 (3)H16A—C16—H16B108.9
C8—C9—C10109.5 (3)C9—C17—H17A109.5
C17—C9—C10113.3 (3)C9—C17—H17B109.5
C8—C9—C16108.5 (3)H17A—C17—H17B109.5
C17—C9—C16114.9 (3)C9—C17—H17C109.5
C10—C9—C16100.0 (3)H17A—C17—H17C109.5
O3—C10—C11125.3 (3)H17B—C17—H17C109.5
O1—S—N1—N271.4 (3)N2—C8—C9—C1013.1 (5)
O2—S—N1—N2159.9 (2)N2—C8—C9—C16121.3 (3)
C5—S—N1—N244.2 (3)C8—C9—C10—O397.8 (4)
S—N1—N2—C8161.8 (3)C17—C9—C10—O325.6 (5)
C5—C4—C3—C20.9 (5)C16—C9—C10—O3148.4 (3)
C7—C2—C3—C40.7 (5)C8—C9—C10—C1186.2 (4)
C1—C2—C3—C4179.9 (3)C17—C9—C10—C11150.5 (3)
C3—C4—C5—C61.2 (5)C16—C9—C10—C1127.7 (4)
C3—C4—C5—S179.9 (3)O3—C10—C11—C15169.9 (3)
O1—S—C5—C410.2 (3)C9—C10—C11—C156.1 (4)
O2—S—C5—C4142.7 (3)O3—C10—C11—C1245.0 (5)
N1—S—C5—C4105.5 (3)C9—C10—C11—C12131.0 (3)
O1—S—C5—C6171.1 (3)C10—C11—C12—C1468.4 (4)
O2—S—C5—C638.5 (3)C15—C11—C12—C1449.0 (4)
N1—S—C5—C673.2 (3)C10—C11—C12—C13166.7 (3)
C4—C5—C6—C71.2 (5)C15—C11—C12—C1375.8 (4)
S—C5—C6—C7179.9 (3)C10—C11—C15—C1618.9 (4)
C5—C6—C7—C20.9 (6)C12—C11—C15—C16102.6 (4)
C3—C2—C7—C60.7 (5)C11—C15—C16—C937.0 (4)
C1—C2—C7—C6179.9 (3)C8—C9—C16—C1575.9 (4)
N1—N2—C8—C9179.3 (3)C17—C9—C16—C15160.4 (3)
N2—C8—C9—C17112.1 (4)C10—C9—C16—C1538.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.91 (4)2.03 (4)2.889 (4)158 (3)
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.91 (4)2.03 (4)2.889 (4)158 (3)
Symmetry code: (i) x1, y, z.
 

Acknowledgements

Financial support obtained from the Beilstein Institut is gratefully acknowledged

References

First citationBecker, J., Butt, L., von Kiedrowski, V., Mischler, E., Quentin, F. & Hiersemann, M. (2013). Org. Lett. 15, 5982–5985.  Web of Science CrossRef CAS PubMed Google Scholar
First citationElings, J. A., Lempers, H. E. B. & Sheldon, R. A. (2000). Eur. J. Org. Chem. pp. 1905–1911.  Google Scholar
First citationGille, A., Rehbein, J. & Hiersemann, M. (2011). Org. Lett. 13, 2122–2125.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHelmboldt, H., Köhler, D. & Hiersemann, M. (2006). Org. Lett. 8, 1573–1576.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNelson, B., Hiller, W., Pollex, A. & Hiersemann, M. (2011). Org. Lett. 13, 4438–4441.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationParsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, L. F. Jr (2002). Tetrahedron, 58, 9137–9161.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTymann, D., Klüppel, A., Hiller, W. & Hiersemann, M. (2014). Org. Lett. 16, 4062–4065.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o99-o100
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds