organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o81-o82

Crystal structure of ethyl 6-methyl-2-sulfanyl­­idene-4-(thio­phen-2-yl)-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate

aPG & Research Department of Chemistry, Jamal Mohamed College (Autonomous), Tiruchirappalli-20, India, bDepartment of Physics, Idhaya College for Women, Kumbakonam-1, India, cDepartment of Physics, Kunthavai Naachiar Government Arts College (W) (Autonomous), Thanjavur-7, India, and dCentre of Advanced study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai-25, India
*Correspondence e-mail: vasuki.arasi@yahoo.com

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 18 December 2014; accepted 19 December 2014; online 3 January 2015)

In the title compound, C12H14N2O2S2, the di­hydro­pyrimidine ring adopts a sofa conformation, with the C atom bearing the thienyl ring lying above the plane of the five remaining approximately coplanar (r.m.s. deviation = 0.0405 Å) atoms of the ring. The dihedral angle between the five near coplanar atoms of the ring and the thienyl ring is 89.78 (11)°. In the crystal, mol­ecules are linked into a supra­molecular chain along [100] via N—H⋯O(carbon­yl) hydrogen bonds. Inversion-related chains are linked into double chains via N—H⋯S(thione) hydrogen bonds. The three-dimensional architecture also features meth­yl–thienyl C—H⋯π inter­actions.

1. Related literature

For general background and the biological activity of di­hydro­pyrimidino­nes, see: Phucho et al. (2009[Phucho, I. T., Nongpiur, A., Tumtin, S., Nongrum, R. & Nongkhlaw, R. L. (2009). Rasayan J. Chem. 2, 662-676.]); Patil et al. (2011[Patil, S., Jadhav, S. D. & Deshmukh, M. B. (2011). Arch. Appl. Sci. Res. 3, 203-208.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C12H14N2O2S2

  • Mr = 282.37

  • Triclinic, [P \overline 1]

  • a = 7.3069 (1) Å

  • b = 8.3267 (1) Å

  • c = 11.2461 (1) Å

  • α = 90.109 (1)°

  • β = 95.156 (1)°

  • γ = 101.276 (1)°

  • V = 668.18 (1) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.10 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.925, Tmax = 0.962

  • 10188 measured reflections

  • 2762 independent reflections

  • 2325 reflections with I > 2σ(I)

  • Rint = 0.021

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.189

  • S = 1.06

  • 2762 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the S1/C1–C4 thio­phene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯S2i 0.86 2.63 3.408 (2) 151
N2—H2N2⋯O1ii 0.86 2.15 2.984 (3) 162
C12—H12BCg1iii 0.96 2.81 3.664 (6) 149
Symmetry codes: (i) -x+2, -y, -z+1; (ii) x+1, y, z; (iii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2008[Bruker (2008). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Structural commentary top

Pyrimidino­nes or di­hydro­pyrimidino­nes (DHPMs) are well known for their wide range of bioactivities and their applications in the field of drug research have stimulated the invention of a wide range of synthetic methods for their preparation and chemical transformations (Phucho et al., 2009). Several functionalized di­hydro­pyrimidino­nes are used as calcium channel modulators, Ca-antagonists, vasodilative and anti-hypertensive agents (Patil et al., 2011). Against this background and in order to obtain detailed information on its molecular conformation, the structure of the title compound has been determined and the results are presented herein.

The asymmetric unit of the title compound is illustrated in Fig. 1. The di­hydro­pyrimidine ring adopts a sofa conformation, with puckering parameters q2 = 0.283 Å, q3 = -0.102 Å, Q = 0.301 Å, Θ = 109.8° and Φ = 232.1°. The dihedral angle between the mean plane of the five essentially planar atoms (N1/C9/N2/C7/C6) of the di­hydro­pyrimidine ring [maximum deviation 0.1944 (18) Å for C5] and the thio­phene ring (C1—C4/S1) is 89.78 (11)°.

In the crystal, the molecules are linked via a pair of N—H···S hydrogen bonds forming an inversion dimers with R22(8) ring motif and form a chain parallel to the bc plane via N—H···O hydrogen bonds (Fig. 2). Additional stabilization to the structure is afforded by C—H···π contacts (Table 1, Figs 3 and 4).

Synthesis and crystallization top

A mixture of ethyl aceto­acetate (0.13 ml, 0.001 mol), thio­phene-2-carboxaldehyde (0.1 ml, 0.001 mol) and thio­urea (0.228 g, 0.003 mol) in ethanol (5 ml) was heated under reflux in the presence of cerium chloride heptahydrate (25%) for 1 h (monitored by TLC). After the completion of the reaction, the reaction mixture was cooled to room temperature and poured onto crushed ice and stirred for 5–10 min. The solid was separated and filtered under suction, washed with ice-cold water (50 ml), and then recrystallized from hot ethanol to afford pure product [m.pt: 421 K; yield: 98%].

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances fixed in the range 0.93–0.98 Å and N—H = 0.86 Å with Uiso(H) = 1.5Ueq(CH3) and 1.2Ueq(CH2,CH, NH).

Related literature top

For general background and the biological activity of dihydropyrimidinones, see: Phucho et al. (2009); Patil et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 and SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Partial crystal packing of the title compound, showing the R22(8) ring motif, viewed along the b axis. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Part of the crystal packing of the title compound, showing C—H···π interactions. Viewed along the a axis.
[Figure 4] Fig. 4. Image showing the C—H···π interactions.
Ethyl 6-methyl-2-sulfanylidene-4-(thiophen-2-yl)-1,2,3,4-tetrahydropyrimidine-5-carboxylate top
Crystal data top
C12H14N2O2S2Z = 2
Mr = 282.37F(000) = 296
Triclinic, P1Dx = 1.403 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3069 (1) ÅCell parameters from 2762 reflections
b = 8.3267 (1) Åθ = 1.8–26.5°
c = 11.2461 (1) ŵ = 0.39 mm1
α = 90.109 (1)°T = 293 K
β = 95.156 (1)°Block, colourless
γ = 101.276 (1)°0.20 × 0.15 × 0.10 mm
V = 668.18 (1) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2762 independent reflections
Radiation source: fine-focus sealed tube2325 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω and ϕ scanθmax = 26.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 99
Tmin = 0.925, Tmax = 0.962k = 1010
10188 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1181P)2 + 0.5067P]
where P = (Fo2 + 2Fc2)/3
2762 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C12H14N2O2S2γ = 101.276 (1)°
Mr = 282.37V = 668.18 (1) Å3
Triclinic, P1Z = 2
a = 7.3069 (1) ÅMo Kα radiation
b = 8.3267 (1) ŵ = 0.39 mm1
c = 11.2461 (1) ÅT = 293 K
α = 90.109 (1)°0.20 × 0.15 × 0.10 mm
β = 95.156 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2762 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2325 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 0.962Rint = 0.021
10188 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.189H-atom parameters constrained
S = 1.06Δρmax = 0.64 e Å3
2762 reflectionsΔρmin = 0.40 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8629 (5)0.6238 (4)0.4026 (3)0.0584 (9)
H10.91310.73490.41410.070*
C20.7502 (5)0.5376 (4)0.4750 (3)0.0534 (8)
H20.71430.58330.54250.064*
C30.6877 (4)0.3688 (3)0.4414 (2)0.0341 (5)
H30.60690.29220.48190.041*
C40.7703 (3)0.3372 (3)0.3350 (2)0.0338 (5)
C50.7577 (3)0.1734 (3)0.2747 (2)0.0336 (6)
H50.63140.10880.28030.040*
C91.0680 (4)0.0949 (3)0.3047 (2)0.0335 (5)
C70.9646 (4)0.1925 (4)0.1110 (2)0.0384 (6)
C81.0343 (5)0.2269 (5)0.0103 (3)0.0581 (9)
H8A0.93200.19600.07090.087*
H8B1.12950.16510.02160.087*
H8C1.08560.34170.01570.087*
C60.7909 (4)0.1904 (4)0.1437 (2)0.0371 (6)
C100.6280 (4)0.2135 (4)0.0657 (2)0.0439 (7)
C110.5131 (5)0.2937 (7)0.1262 (3)0.0817 (14)
H11A0.43030.18940.14650.098*
H11B0.44130.36550.09180.098*
C120.5900 (7)0.3646 (9)0.2304 (4)0.115 (2)
H12A0.65810.47380.21170.172*
H12B0.49060.36820.29160.172*
H12C0.67320.29960.25820.172*
N10.8939 (3)0.0838 (3)0.33419 (19)0.0359 (5)
H1N10.85860.02040.39160.043*
N21.1028 (3)0.1610 (3)0.1964 (2)0.0402 (5)
H2N21.21740.18480.17960.048*
O10.4710 (3)0.1889 (4)0.0948 (2)0.0673 (8)
O20.6667 (3)0.2699 (4)0.0409 (2)0.0718 (9)
S10.90646 (12)0.51126 (11)0.28681 (8)0.0557 (3)
S21.23669 (10)0.02700 (10)0.38956 (6)0.0442 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0543 (19)0.0410 (17)0.077 (2)0.0109 (14)0.0128 (17)0.0012 (16)
C20.0529 (19)0.059 (2)0.0520 (17)0.0243 (15)0.0017 (14)0.0055 (15)
C30.0345 (13)0.0374 (13)0.0329 (12)0.0136 (10)0.0015 (10)0.0007 (10)
C40.0287 (12)0.0411 (14)0.0324 (12)0.0089 (10)0.0026 (9)0.0086 (10)
C50.0271 (12)0.0441 (14)0.0303 (12)0.0075 (10)0.0045 (9)0.0077 (10)
C90.0328 (13)0.0345 (13)0.0340 (12)0.0074 (10)0.0051 (10)0.0073 (10)
C70.0320 (13)0.0538 (16)0.0308 (12)0.0105 (11)0.0058 (10)0.0089 (11)
C80.0421 (16)0.101 (3)0.0375 (15)0.0257 (17)0.0135 (12)0.0224 (16)
C60.0310 (13)0.0497 (16)0.0311 (13)0.0083 (11)0.0044 (10)0.0047 (11)
C100.0327 (14)0.0662 (19)0.0343 (13)0.0121 (12)0.0058 (11)0.0096 (12)
C110.0403 (18)0.156 (5)0.0490 (19)0.023 (2)0.0035 (15)0.034 (2)
C120.061 (3)0.214 (7)0.077 (3)0.041 (3)0.010 (2)0.066 (4)
N10.0350 (11)0.0430 (12)0.0333 (11)0.0128 (9)0.0101 (9)0.0120 (9)
N20.0272 (11)0.0596 (15)0.0360 (11)0.0117 (10)0.0077 (9)0.0138 (10)
O10.0319 (11)0.126 (2)0.0474 (12)0.0213 (13)0.0070 (9)0.0226 (14)
O20.0369 (12)0.138 (3)0.0425 (12)0.0217 (14)0.0055 (9)0.0377 (14)
S10.0519 (5)0.0531 (5)0.0613 (5)0.0053 (4)0.0108 (4)0.0143 (4)
S20.0372 (4)0.0567 (5)0.0429 (4)0.0181 (3)0.0060 (3)0.0170 (3)
Geometric parameters (Å, º) top
C1—C21.322 (5)C7—C81.508 (4)
C1—S11.691 (4)C8—H8A0.9600
C1—H10.9300C8—H8B0.9600
C2—C31.429 (4)C8—H8C0.9600
C2—H20.9300C6—C101.458 (4)
C3—C41.434 (3)C10—O11.200 (3)
C3—H30.9300C10—O21.323 (3)
C4—C51.505 (4)C11—C121.425 (6)
C4—S11.709 (3)C11—O21.454 (4)
C5—N11.472 (3)C11—H11A0.9700
C5—C61.516 (3)C11—H11B0.9700
C5—H50.9800C12—H12A0.9600
C9—N11.329 (3)C12—H12B0.9600
C9—N21.363 (3)C12—H12C0.9600
C9—S21.677 (3)N1—H1N10.8600
C7—C61.350 (4)N2—H2N20.8600
C7—N21.393 (3)
C2—C1—S1113.1 (3)H8A—C8—H8C109.5
C2—C1—H1123.5H8B—C8—H8C109.5
S1—C1—H1123.5C7—C6—C10126.4 (2)
C1—C2—C3114.9 (3)C7—C6—C5119.0 (2)
C1—C2—H2122.6C10—C6—C5114.5 (2)
C3—C2—H2122.6O1—C10—O2121.5 (3)
C2—C3—C4108.7 (3)O1—C10—C6124.0 (3)
C2—C3—H3125.7O2—C10—C6114.5 (2)
C4—C3—H3125.7C12—C11—O2108.3 (3)
C3—C4—C5126.9 (2)C12—C11—H11A110.0
C3—C4—S1111.2 (2)O2—C11—H11A110.0
C5—C4—S1121.73 (19)C12—C11—H11B110.0
N1—C5—C4110.9 (2)O2—C11—H11B110.0
N1—C5—C6109.0 (2)H11A—C11—H11B108.4
C4—C5—C6111.9 (2)C11—C12—H12A109.5
N1—C5—H5108.3C11—C12—H12B109.5
C4—C5—H5108.3H12A—C12—H12B109.5
C6—C5—H5108.3C11—C12—H12C109.5
N1—C9—N2115.7 (2)H12A—C12—H12C109.5
N1—C9—S2123.97 (19)H12B—C12—H12C109.5
N2—C9—S2120.33 (19)C9—N1—C5124.1 (2)
C6—C7—N2119.0 (2)C9—N1—H1N1118.0
C6—C7—C8128.0 (2)C5—N1—H1N1118.0
N2—C7—C8113.1 (2)C9—N2—C7124.1 (2)
C7—C8—H8A109.5C9—N2—H2N2117.9
C7—C8—H8B109.5C7—N2—H2N2117.9
H8A—C8—H8B109.5C10—O2—C11118.6 (2)
C7—C8—H8C109.5C1—S1—C492.16 (16)
S1—C1—C2—C30.2 (4)C5—C6—C10—O114.5 (5)
C1—C2—C3—C41.0 (4)C7—C6—C10—O212.6 (5)
C2—C3—C4—C5174.0 (2)C5—C6—C10—O2163.4 (3)
C2—C3—C4—S11.3 (3)N2—C9—N1—C516.3 (4)
C3—C4—C5—N181.0 (3)S2—C9—N1—C5166.1 (2)
S1—C4—C5—N193.8 (2)C4—C5—N1—C989.9 (3)
C3—C4—C5—C6157.1 (2)C6—C5—N1—C933.7 (3)
S1—C4—C5—C628.1 (3)N1—C9—N2—C710.0 (4)
N2—C7—C6—C10177.2 (3)S2—C9—N2—C7167.7 (2)
C8—C7—C6—C103.3 (5)C6—C7—N2—C914.3 (4)
N2—C7—C6—C57.0 (4)C8—C7—N2—C9166.2 (3)
C8—C7—C6—C5172.5 (3)O1—C10—O2—C113.4 (6)
N1—C5—C6—C727.6 (4)C6—C10—O2—C11178.7 (4)
C4—C5—C6—C795.4 (3)C12—C11—O2—C10176.3 (5)
N1—C5—C6—C10156.1 (2)C2—C1—S1—C40.5 (3)
C4—C5—C6—C1080.9 (3)C3—C4—S1—C11.1 (2)
C7—C6—C10—O1169.5 (3)C5—C4—S1—C1174.5 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the S1/C1–C4 thiophene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···S2i0.862.633.408 (2)151
N2—H2N2···O1ii0.862.152.984 (3)162
C12—H12B···Cg1iii0.962.813.664 (6)149
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the S1/C1–C4 thiophene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···S2i0.862.633.408 (2)151
N2—H2N2···O1ii0.862.152.984 (3)162
C12—H12B···Cg1iii0.962.813.664 (6)149
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPatil, S., Jadhav, S. D. & Deshmukh, M. B. (2011). Arch. Appl. Sci. Res. 3, 203–208.  CAS Google Scholar
First citationPhucho, I. T., Nongpiur, A., Tumtin, S., Nongrum, R. & Nongkhlaw, R. L. (2009). Rasayan J. Chem. 2, 662–676.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o81-o82
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds