research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 124-127

Crystal structure of chlorido­{1-(2,3-di­methyl-5-oxido-1-phenyl-1H-pyrazol-2-ium-4-yl-κO)-2-[3-methyl-5-oxo-1-phenyl-4,5-di­hydro-1H-pyrazol-4-yl­­idene-κO]hydrazin-1-ido-κN1}copper(II) from laboratory X-ray powder data

aPeoples' Friendship University of Russia, 6 Miklukho-Mallaya, 117198 Moscow, Russia, bMoscow State University of Design and Technology, 33 Sadovnicheskaya, 117997 Moscow, Russia, and cGeorgian Technical University, 77 Kostava, 0175 Tbilisi, Georgia
*Correspondence e-mail: okovalchukova@mail.ru

Edited by A. Van der Lee, Université de Montpellier II, France (Received 1 December 2014; accepted 17 December 2014; online 3 January 2015)

In the title compound, [Cu(C21H19N6O2)Cl], the CuII atom is in a slightly distorted square-planar coordination involving two O atoms from the pyrazolone rings [Cu—O = 2.088 (10) and 1.975 (10) Å], an N atom of the azo group [Cu—N = 2.048 (13) Å] and a chloride anion [Cu—Cl = 2.183 (5) Å]. The organic anions act as tridentate chelating ligands. The mol­ecules stack in columns along the c axis.

1. Chemical context

Derivatives of 3-methyl-1-phenyl-4-hydrazopyrazolin-5-one and their metal complexes are well known dyes and possess a wide spectrum of biological activity (Wiley & Wiley, 2008[Wiley, R. H. & Wiley, P. (2008). Chemistry of Heterocyclic Compounds: Pyrazolones, Pyrazolidones, and Derivatives, Vol. 20, pp. 152-154. New York: John Wiley & Sons, Inc.]; Liu et al., 2007[Liu, S., Ma, J. & Zhao, D. (2007). Dyes Pigm. 75, 255-262.]; Hallas & Towns, 1996[Hallas, G. & Towns, A. D. (1996). Dyes Pigm. 31, 273-289.]). Despite the fact that quite a number of metal complexes are known to exist, the determination of their crystal structures is rather problematic because of the high dispersity of azo-dyes. Only few of them have been structurally characterized (El-Hefnawy et al., 1992[El-Hefnawy, G. B., El-Borari, M. A., El-Said, A. A. & Gabr, A. A. (1992). Indian J. Fibre Textile Res. 17, 87-91.]; Casas et al., 2007[Casas, J. S., Garcia-Tasende, M., Sanchez, A., Sordo, J. & Touceda, A. (2007). Coord. Chem. Rev. 251, 1561-1589.]; Emeleus et al., 2001[Emeleus, L. C., Cupertino, D. C., Harris, S. G., Owens, S., Swart, R. M., Tasker, P. A. & White, D. J. (2001). J. Chem. Soc. Dalton. Trans. 1, pp. 1239-1245.]; Zaitseva et al., 1981[Zaitseva, V. A., Zaitsev, B. E., Molodkin, A. K., Zhikharev, A. A. & Ezhov, A. I. (1981). Zh. Neorg. Khim. 26, 1144-1147.]; Kovalchukova et al., 2012[Kovalchukova, O. V., Polyakova, I. N., Sergienko, V. S., Strashnova, S. B., Volyanskii, O. V. & Korolev, O. V. (2012). Russ. J. Coord. Chem. 38, 484-490.]; Bansse et al., 1997[Bansse, W., Jager, N., Ludwig, E., Schilde, U., Uhlemann, E., Lehmann, A. & Mehner, H. (1997). Z. Naturforsch. Teil B, 52, 237-242.]; Lalor et al., 1995[Lalor, F. J., Desmond, T. J., Cotter, G. M., Shanahan, C. A., Ferguson, G., Parvez, M. & Ruhl, B. (1995). J. Chem. Soc. Dalton Trans. pp. 1709-1726.]). All of them show two similar coordination modes of the organic mol­ecules: bidentate chelating for those with no donating atoms in the aryl­azo fragment or tridentate chelating for ligands with an extra coordinating group.

[Scheme 1]

2. Structural commentary

The central CuII atom is in a square-planar coordination (Fig. 1[link]) by two O atoms from the pyrazolone rings, an N atom of the azo group, and a chloride anion. The coordination is slightly distorted in view of the two Cu—O bond lengths [2.088 (10) and 1.975 (10) Å], the Cu—Cl [2.183 (5) Å] and the Cu—N bond lengths [2.048 (13) Å]. The sum of the bond angles at the Cu atom [O10—Cu30—N15 = 90.9 (5), O10—Cu30—Cl31 94.0 (4), N15—Cu30—O20 = 83.0 (5), O20—Cu30—Cl31 92.0 (3)°] equals 359.9° which is indicative of the planarity of the CuII coordination. The organic anions act as tridentate chelating ligands. The N14—N15, N14—C13 and N15—C16 bond lengths [1.306 (17), 1.34 (2) and 1.39 (2) Å, respectively] are very close, thus indicating a strong conjunction of the two pyrazolone fragments which lie in one plane [maximum deviation 0.134 (13) Å for N14]. The benzene rings of the substituents are twisted around this plane by 83 (2) and 9(3)°.

[Figure 1]
Figure 1
View of the title compound showing the atomic numbering. H atoms are omitted for clarity.

3. Supra­molecular features

In the crystal, the mol­ecules are stacked in columns along the c axis in such a way that mol­ecules in neighboring columns at the same level are rotated by approximately 90° (Fig. 2[link]). No Cu⋯Cu inter­actions between CuII atoms of neighboring mol­ecules are found.

[Figure 2]
Figure 2
View of the crystal packing along the b axis.

4. Database survey

The crystal structures of metal complexes with azo­pyrazolone derivatives are described by El–Hefnawy et al. (1992[El-Hefnawy, G. B., El-Borari, M. A., El-Said, A. A. & Gabr, A. A. (1992). Indian J. Fibre Textile Res. 17, 87-91.]), Casas et al. (2007[Casas, J. S., Garcia-Tasende, M., Sanchez, A., Sordo, J. & Touceda, A. (2007). Coord. Chem. Rev. 251, 1561-1589.]), Emeleus et al. (2001[Emeleus, L. C., Cupertino, D. C., Harris, S. G., Owens, S., Swart, R. M., Tasker, P. A. & White, D. J. (2001). J. Chem. Soc. Dalton. Trans. 1, pp. 1239-1245.]), Zaitseva et al. (1981[Zaitseva, V. A., Zaitsev, B. E., Molodkin, A. K., Zhikharev, A. A. & Ezhov, A. I. (1981). Zh. Neorg. Khim. 26, 1144-1147.]), Kovalchukova et al. (2012[Kovalchukova, O. V., Polyakova, I. N., Sergienko, V. S., Strashnova, S. B., Volyanskii, O. V. & Korolev, O. V. (2012). Russ. J. Coord. Chem. 38, 484-490.]), Bansse et al. (1997[Bansse, W., Jager, N., Ludwig, E., Schilde, U., Uhlemann, E., Lehmann, A. & Mehner, H. (1997). Z. Naturforsch. Teil B, 52, 237-242.]) and Lalor et al. (1995[Lalor, F. J., Desmond, T. J., Cotter, G. M., Shanahan, C. A., Ferguson, G., Parvez, M. & Ruhl, B. (1995). J. Chem. Soc. Dalton Trans. pp. 1709-1726.]).

5. Synthesis and crystallization

The title compound was prepared by mixing equimolar ethanol solutions of the organic ligand and copper(II) chloride. The reaction mixture was stirred under reflux for three hours. After cooling, fine brown needles of the title complex precipitated. These were then filtered off, washed using a small amount of ethanol and dried over P2O5.

6. Refinement details

The X-ray powder diffraction data were collected using a Huber G670 Guinier camera (Cu-Kα1 radiation, λ = 1.54059 Å) equipped with an image-plate detector. The monoclinic unit-cell dimensions were determined using three indexing programs: TREOR90 (Werner et al., 1985[Werner, P.-E., Eriksson, L. & Westdahl, M. (1985). J. Appl. Cryst. 18, 367-370.]), ITO (Visser, 1969[Visser, J. W. (1969). J. Appl. Cryst. 2, 89-95.]) and AUTOX (Zlokazov, 1992[Zlokazov, V. B. (1992). J. Appl. Cryst. 25, 69-72.], 1995[Zlokazov, V. B. (1995). Comput. Phys. Commun. 85, 415-422.]). Based on systematic extinctions, the space group was determined to be P21/c. The unit-cell parameters and space group were further tested using a Pawley (1981[Pawley, G. S. (1981). J. Appl. Cryst. 14, 357-361.]) fit and confirmed by the crystal structure solution.

The crystal structure was solved with the use of a simulated annealing technique (Zhukov et al., 2001[Zhukov, S. G., Chernyshev, V. V., Babaev, E. V., Sonneveld, E. J. & Schenk, H. (2001). Z. Kristallogr. 216, 5-9.]). The initial mol­ecular model of the title complex was obtained using density functional theory (DFT) calculations in vacuo using the quantum-chemical code Priroda (Laikov, 1997[Laikov, D. N. (1997). Chem. Phys. Lett. 281, 151-156.], 2004[Laikov, D. N. (2004). Priroda. Moscow State University, Moscow.], 2005[Laikov, D. N. (2005). Chem. Phys. Lett. 416, 116-120.]; Laikov & Ustynyuk, 2005[Laikov, D. N. & Ustynyuk, Y. A. (2005). Izv. Akad. Nauk SSSR Ser. Khim. pp. 804-810.]) employing the generalized-gradient approximation (GGA) and PBE exchange correlation function (Perdew et al., 1996[Perdew, J. P., Burke, S. & Ernzerhof, M. (1996). Phys. Rev. Lett. 77, 3865-3868.]). In simulated annealing runs (without H atoms), the total number of varied degrees of freedom (DOF) was eight: three translational, three orientational and two torsional ones for the rotation of the two phenyl rings. The solution was fitted with the program MRIA (Zlokazov & Chernyshev, 1992[Zlokazov, V. B. & Chernyshev, V. V. (1992). J. Appl. Cryst. 25, 447-451.]) in a bond-restrained Rietveld refinement using a split-type pseudo-Voigt peak-profile function (Toraya, 1986[Toraya, H. (1986). J. Appl. Cryst. 19, 440-447.]) and symmetrized harmonics expansion up to the 4th order (Ahtee et al., 1989[Ahtee, M., Nurmela, M., Suortti, P. & Järvinen, M. (1989). J. Appl. Cryst. 22, 261-268.]; Järvinen, 1993[Järvinen, M. (1993). J. Appl. Cryst. 26, 525-531.]) for the texture formalism. Restraints were applied to the intra­molecular bond lengths and contacts (< 2.8 Å) where the strength of the restraints was a function of inter­atomic separation and, for intra­molecular bond lengths, corresponded to an r.m.s. deviation of 0.02 Å. Additional restraints were applied to the planarity of aromatic rings with the attached atoms, with a maximum allowed deviation from the mean plane of 0.03 Å. All non-H atoms were refined isotropically. H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and not refined. The experimental and calculated diffraction profile after the final bond-restrained Rietveld refinements is shown in Fig. 3[link]. Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula [Cu(C21H19N6O2)Cl]
Mr 486.41
Crystal system, space group Monoclinic, P21/c
Temperature (K) 298
a, b, c (Å) 15.1520 (18), 22.1306 (17), 6.7310 (14)
β (°) 101.80 (2)
V3) 2209.4 (6)
Z 4
Radiation type Cu Kα1, λ = 1.54059 Å
μ (mm−1) 2.76
Specimen shape, size (mm) Flat sheet, 15 × 1
 
Data collection
Diffractometer Guinier camera G670
Specimen mounting Thin layer in the specimen holder of the camera
Data collection mode Transmission
Scan method Continuous
2θ values (°) 2θmin = 4.00, 2θmax = 75.00, 2θstep = 0.01
 
Refinement
R factors and goodness of fit Rp = 0.019, Rwp = 0.024, Rexp = 0.019, RBragg = 0.088, χ2 = 1.734
No. of data points 7101
No. of parameters 155
No. of restraints 117
H-atom treatment H-atom parameters not refined
Computer programs: G670 Imaging Plate Guinier Camera Software (Huber, 2002[Huber (2002). Software for G670 Imaging Plate Guinier Camera. Huber Diffraktionstechnik GmbH. Rimsting, Germany.]), MRIA (Zlokazov & Chernyshev, 1992[Zlokazov, V. B. & Chernyshev, V. V. (1992). J. Appl. Cryst. 25, 447-451.]), (Zhukov et al., 2001[Zhukov, S. G., Chernyshev, V. V., Babaev, E. V., Sonneveld, E. J. & Schenk, H. (2001). Z. Kristallogr. 216, 5-9.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).
[Figure 3]
Figure 3
Final Rietveld plot. The experimental diffraction profile is indicated by black dots. The calculated diffraction profile is shown as the top red line, the difference profile is shown as the bottom blue line and the vertical green bars correspond to the positions of the Bragg reflections.

Supporting information


Chemical context top

Derivatives of 3-methyl-1-phenyl-4-hydrazopyrazolin-5-one and their metal complexes are well known dyes and possess a wide spectrum of biological activity (Wiley & Wiley, 2008; Liu et al., 2007; Hallas & Towns, 1996). Despite the fact that quite a number of metal complexes are known to exist, the determination of their crystal structures is rather problematic because of the high dispersity of azo-dyes. Only few of them have been structurally characterized (El-Hefnawy et al., 1992; Casas et al., 2007; Emeleus et al., 2001; Zaitseva et al., 1981; Kovalchukova et al., 2012; Bansse et al., 1997; Lalor et al., 1995). All of them show two similar coordination modes of the organic molecules: bidentate chelating for those with no donating atoms in the aryl­azo fragment or tridentate chelating for ligands with an extra coordinating group.

Structural commentary top

The central Cu atom is in a square-planar coordination (Fig. 1) by two O atoms from the pyrazolone rings, an N atom of the azo group, and a chloride anion. The coordination is slightly distorted in view of the two Cu—O bond lengths [2.088 (10) and 1.975 (10) Å], the Cu—Cl [2.183 (5) Å] and the Cu—N bond lengths [2.048 (13) Å]. The sum of the bond angles at the Cu atom [O10—Cu30—N15 = 90.9 (5), O10—Cu30—Cl31 94.0 (4), N15—Cu30—O20 = 83.0 (5), O20—Cu30—Cl31 92.0 (3)°] equals 359.9° which is indicative of the planarity of the Cu coordination. The organic anions act as tridentate chelating ligands. The N14—N15, N14—C13 and N15—C16 bond lengths [1.306 (17), 1.34 (2) and 1.39 (2) Å, respectively] are very close, thus indicating a strong conjunction of the two pyrazolone fragments which lie in one plane. The benzene rings of the substituents are twisted around this plane by 83 (2) and 9(3)°.

Supra­molecular features top

In the crystal, the molecules are stacked in columns along the c axis in such a way that molecules in neighboring columns at the same level are rotated by approximately 90° (Fig. 2). No Cu···Cu inter­actions between Cu atoms of neighboring molecules are found. Are there any significant inter­actions? hydrogen bonds, C—H···π, ππ?

Database survey top

The crystal structures of metal complexes with azo­pyrazolone derivatives are described by El–Hefnawy et al. (1992), Casas et al. (2007), Emeleus et al., (2001), Zaitseva et al. (1981), Kovalchukova et al., (2012), Bansse et al. (1997) and Lalor et al. (1995).

Synthesis and crystallization top

The title compound was prepared by mixing equimolar ethanol solutions of the organic ligand and copper(II) chloride. The reaction mixture was stirred under reflux for three hours. After cooling, fine brown needles of the title complex precipitated. These were then filtered off, washed using a small amount of ethanol and dried over P2O5.

Refinement details top

The X-ray powder diffraction data were collected using a Huber G670 Guinier camera (Cu-Kα1 radiation, λ = 1.54059 Å) equipped with an image-plate detector. The monoclinic unit-cell dimensions were determined using three indexing programs: TREOR90 (Werner et al., 1985), ITO (Visser, 1969) and AUTOX (Zlokazov, 1992, 1995). Based on systematic extinctions, the space group was determined to be P21/c. The unit-cell parameters and space group were further tested using a Pawley (1981) fit and confirmed by the crystal structure solution.

The crystal structure was solved with the use of a simulated annealing technique (Zhukov et al., 2001). The initial molecular model of the title complex was obtained using density functional theory (DFT) calculations in vacuo using the quantum-chemical code Priroda (Laikov, 1997, 2004, 2005; Laikov & Ustynyuk, 2005) employing the generalized-gradient approximation (GGA) and PBE exchange correlation function (Perdew et al., 1996). In simulated annealing runs (without H atoms), the total number of varied degrees of freedom (DOF) was eight: three translational, three orientational and two torsional ones for the rotation of the two phenyl rings. The solution was fitted with the program MRIA (Zlokazov & Chernyshev, 1992) in a bond-restrained Rietveld refinement using a split-type pseudo-Voigt peak-profile function (Toraya, 1986) and symmetrized harmonics expansion up to the 4th order (Ahtee et al., 1989; Järvinen, 1993) for the texture formalism. Restraints were applied to the intra­molecular bond lengths and contacts (< 2.8 Å) where the strength of the restraints was a function of inter­atomic separation and, for intra­molecular bond lengths, corresponded to an r.m.s. deviation of 0.02 Å. Additional restraints were applied to the planarity of aromatic rings with the attached atoms, with a maximum allowed deviation from the mean plane of 0.03 Å. All non-H atoms were refined isotropically. H atoms were positioned geometrically (C—H 0.93–0.96 Å) and not refined. The experimental and calculated diffraction profile after the final bond-restrained Rietveld refinements is shown in Fig. 3. Crystal data, data collection and structure refinement details are summarized in Table 1.

Related literature top

For related literature, see: Ahtee et al. (1989); Bansse et al. (1997); Casas et al. (2007); El–Hefnawy, El–Borari, El–Said & Gabr (1992); Emeleus et al. (2001); Hallas & Towns (1996); Järvinen (1993); Kovalchukova et al. (2012); Laikov (1997, 2004, 2005); Laikov & Ustynyuk (2005); Lalor et al. (1995); Liu et al. (2007); Pawley (1981); Perdew et al. (1996); Toraya (1986); Visser (1969); Werner et al. (1985); Wiley & Wiley (2008); Zaitseva et al. (1981); Zhukov et al. (2001); Zlokazov (1992, 1995); Zlokazov & Chernyshev (1992).

Computing details top

Data collection: G670 Imaging Plate Guinier Camera Software (Huber, 2002); cell refinement: MRIA (Zlokazov & Chernyshev, 1992); data reduction: G670 Imaging Plate Guinier Camera Software (Huber, 2002); program(s) used to solve structure: simulated annealing (Zhukov et al., 2001); program(s) used to refine structure: MRIA (Zlokazov & Chernyshev, 1992); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: MRIA (Zlokazov & Chernyshev, 1992) and SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atomic numbering. [Authors: please supply higher resolution figure, as requested by the Co-editor. Note that atom labels must not overlap atoms or bonds.]
[Figure 2] Fig. 2. View of the crystal packing along the b axis.
[Figure 3] Fig. 3. Final Rietveld plot. The experimental diffraction profile is indicated by black dots. The calculated diffraction profile is shown as the top red line, the difference profile is shown as the bottom blue line and the vertical green bars correspond to the positions of the Bragg peaks.
Chlorido{1-(2,3-dimethyl-5-oxido-1-phenyl-1H-pyrazol-2-ium-4-yl-κO)-2-[3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-ylidene-κO]hydrazin-1-ido-κN1}copper(II) top
Crystal data top
[Cu(C21H19N6O2)Cl]F(000) = 996
Mr = 486.41Dx = 1.462 Mg m3
Monoclinic, P21/cCu Kα1 radiation, λ = 1.54059 Å
Hall symbol: -P 2ybcµ = 2.76 mm1
a = 15.1520 (18) ÅT = 298 K
b = 22.1306 (17) ÅParticle morphology: needle
c = 6.7310 (14) Åbrown'
β = 101.80 (2)°flat sheet, 15 × 1 mm
V = 2209.4 (6) Å3Specimen preparation: Prepared at 298 K and 101 kPa
Z = 4
Data collection top
Guinier camera G670
diffractometer
Data collection mode: transmission
Radiation source: line-focus sealed tubeScan method: continuous
Curved Germanium (111) monochromator2θmin = 4.00°, 2θmax = 75.00°, 2θstep = 0.01°
Specimen mounting: thin layer in the specimen holder of the camera
Refinement top
Refinement on InetProfile function: split-type pseudo-Voigt (Toraya, 1986)
Least-squares matrix: full with fixed elements per cycle155 parameters
Rp = 0.019117 restraints
Rwp = 0.0240 constraints
Rexp = 0.019H-atom parameters not refined
RBragg = 0.088Weighting scheme based on measured s.u.'s
χ2 = 1.734(Δ/σ)max = 0.002
7101 data pointsBackground function: Chebyshev polynomial up to the 5th order
Excluded region(s): nonePreferred orientation correction: Symmetrized harmonics expansion up to the 4th order (Ahtee et al., 1989; Järvinen, 1993)
Crystal data top
[Cu(C21H19N6O2)Cl]V = 2209.4 (6) Å3
Mr = 486.41Z = 4
Monoclinic, P21/cCu Kα1 radiation, λ = 1.54059 Å
a = 15.1520 (18) ŵ = 2.76 mm1
b = 22.1306 (17) ÅT = 298 K
c = 6.7310 (14) Åflat sheet, 15 × 1 mm
β = 101.80 (2)°
Data collection top
Guinier camera G670
diffractometer
Scan method: continuous
Specimen mounting: thin layer in the specimen holder of the camera2θmin = 4.00°, 2θmax = 75.00°, 2θstep = 0.01°
Data collection mode: transmission
Refinement top
Rp = 0.0197101 data points
Rwp = 0.024155 parameters
Rexp = 0.019117 restraints
RBragg = 0.088H-atom parameters not refined
χ2 = 1.734
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5220 (10)0.5094 (8)0.264 (3)0.094 (8)*
H10.46330.50010.27480.113*
C20.5471 (9)0.5696 (8)0.249 (3)0.101 (9)*
H20.50480.60020.24530.121*
C30.5843 (10)0.4630 (7)0.262 (3)0.103 (9)*
H30.56690.42280.26800.123*
C40.6367 (10)0.5838 (8)0.240 (3)0.118 (9)*
C50.7003 (10)0.5375 (7)0.243 (3)0.096 (8)*
H50.75990.54670.23980.115*
N60.6604 (8)0.6455 (6)0.225 (2)0.105 (6)*
C70.7447 (11)0.6707 (8)0.238 (3)0.107 (9)*
C80.6730 (9)0.4775 (8)0.252 (3)0.098 (8)*
H80.71450.44660.25090.117*
N90.5931 (9)0.6898 (6)0.206 (2)0.119 (7)*
O100.8175 (6)0.6407 (5)0.2551 (17)0.087 (5)*
C110.6328 (11)0.7427 (8)0.206 (2)0.110 (8)*
C120.5804 (10)0.8000 (7)0.191 (3)0.091 (9)*
H12A0.51760.79090.18050.136*
H12B0.58820.82200.07310.136*
H12C0.60150.82400.31020.136*
C130.7285 (10)0.7352 (7)0.224 (2)0.093 (9)*
N140.7885 (8)0.7798 (6)0.226 (2)0.089 (6)*
N150.8735 (8)0.7646 (6)0.2574 (19)0.101 (7)*
C160.9368 (10)0.8107 (8)0.279 (3)0.106 (9)*
C171.0271 (10)0.7878 (7)0.304 (3)0.095 (9)*
C180.9411 (9)0.8733 (8)0.288 (3)0.101 (9)*
N191.0839 (8)0.8384 (6)0.327 (2)0.093 (7)*
O201.0518 (6)0.7337 (5)0.3047 (16)0.094 (6)*
N211.0321 (8)0.8895 (6)0.319 (2)0.104 (7)*
C220.8697 (10)0.9203 (8)0.268 (3)0.099 (8)*
H22A0.89710.95960.28290.149*
H22B0.83540.91450.37200.149*
H22C0.83060.91710.13730.149*
C231.1789 (10)0.8343 (7)0.394 (3)0.106 (9)*
C241.2315 (10)0.8204 (7)0.251 (3)0.097 (9)*
H241.20470.81520.11480.116*
C251.0666 (10)0.9483 (7)0.346 (3)0.095 (9)*
H25A1.13110.94700.36410.143*
H25B1.05020.96610.46310.143*
H25C1.04210.97200.22800.143*
C261.2192 (11)0.8450 (7)0.598 (3)0.111 (9)*
H261.18410.85490.69110.133*
C271.3248 (10)0.8145 (7)0.316 (3)0.098 (9)*
H271.36010.80380.22380.118*
C281.3126 (10)0.8405 (7)0.658 (3)0.108 (9)*
H281.34000.84820.79240.130*
C291.3654 (11)0.8246 (7)0.519 (3)0.110 (9)*
H291.42750.82070.56190.132*
Cu300.93520 (16)0.68180 (13)0.2845 (5)0.0760 (14)*
Cl311.0116 (3)0.5976 (2)0.3067 (8)0.084 (2)*
Geometric parameters (Å, º) top
C1—C21.40 (2)C16—C171.44 (2)
C1—C31.40 (2)C17—O201.255 (19)
C1—H10.93C17—N191.40 (2)
C2—C41.41 (2)C18—N211.398 (18)
C2—H20.93C18—C221.49 (2)
C3—C81.40 (2)N19—N211.372 (18)
C3—H30.93N19—C231.420 (19)
C4—C51.40 (2)O20—Cu302.088 (10)
C4—N61.42 (2)N21—C251.40 (2)
C5—C81.40 (2)C22—H22A0.96
C5—H50.93C22—H22B0.96
N6—C71.38 (2)C22—H22C0.96
N6—N91.401 (19)C23—C241.40 (3)
C7—O101.27 (2)C23—C261.40 (3)
C7—C131.45 (2)C24—C271.40 (2)
C8—H80.93C24—H240.93
N9—C111.32 (2)C25—H25A0.96
O10—Cu301.975 (10)C25—H25B0.96
C11—C131.44 (2)C25—H25C0.96
C11—C121.49 (2)C26—C281.39 (2)
C12—H12A0.96C26—H260.93
C12—H12B0.96C27—C291.40 (3)
C12—H12C0.96C27—H270.93
C13—N141.34 (2)C28—C291.39 (3)
N14—N151.306 (17)C28—H280.93
N15—C161.39 (2)C29—H290.93
N15—Cu302.048 (13)Cu30—Cl312.183 (5)
C16—C181.39 (2)
C2—C1—C3120.5 (15)N19—C17—C16106.3 (13)
C2—C1—H1119.7C16—C18—N21107.4 (13)
C3—C1—H1119.8C16—C18—C22131.9 (14)
C1—C2—C4119.7 (15)N21—C18—C22120.7 (14)
C1—C2—H2120.1N21—N19—C17108.7 (12)
C4—C2—H2120.1N21—N19—C23126.9 (12)
C1—C3—C8119.4 (15)C17—N19—C23122.9 (13)
C1—C3—H3120.3C17—O20—Cu30106.1 (9)
C8—C3—H3120.3N19—N21—C18109.5 (12)
C5—C4—C2120.1 (16)N19—N21—C25124.4 (12)
C5—C4—N6121.3 (14)C18—N21—C25126.1 (13)
C2—C4—N6118.6 (15)C18—C22—H22A109.5
C8—C5—C4119.1 (15)C18—C22—H22B109.5
C8—C5—H5120.5H22A—C22—H22B109.4
C4—C5—H5120.4C18—C22—H22C109.5
C7—N6—N9111.7 (13)H22A—C22—H22C109.5
C7—N6—C4128.9 (13)H22B—C22—H22C109.4
N9—N6—C4119.3 (12)C24—C23—C26120.8 (15)
O10—C7—N6124.7 (15)C24—C23—N19118.6 (15)
O10—C7—C13130.7 (15)C26—C23—N19120.6 (16)
N6—C7—C13104.6 (13)C27—C24—C23119.0 (17)
C5—C8—C3121.1 (15)C27—C24—H24120.5
C5—C8—H8119.4C23—C24—H24120.5
C3—C8—H8119.5N21—C25—H25A109.5
C11—N9—N6107.4 (13)N21—C25—H25B109.5
C7—O10—Cu30121.1 (10)H25A—C25—H25B109.5
N9—C11—C13110.5 (15)N21—C25—H25C109.5
N9—C11—C12121.3 (14)H25A—C25—H25C109.4
C13—C11—C12128.2 (15)H25B—C25—H25C109.5
C11—C12—H12A109.5C28—C26—C23119.1 (17)
C11—C12—H12B109.5C28—C26—H26120.4
H12A—C12—H12B109.5C23—C26—H26120.5
C11—C12—H12C109.5C24—C27—C29120.5 (18)
H12A—C12—H12C109.5C24—C27—H27119.8
H12B—C12—H12C109.5C29—C27—H27119.8
N14—C13—C11125.8 (15)C29—C28—C26120.7 (16)
N14—C13—C7128.3 (14)C29—C28—H28119.7
C11—C13—C7105.9 (14)C26—C28—H28119.7
N15—N14—C13117.2 (13)C28—C29—C27119.9 (14)
N14—N15—C16117.7 (13)C28—C29—H29120.1
N14—N15—Cu30131.5 (10)C27—C29—H29120.1
C16—N15—Cu30110.8 (10)O10—Cu30—N1590.9 (5)
N15—C16—C18139.8 (15)O10—Cu30—O20173.8 (4)
N15—C16—C17112.0 (14)N15—Cu30—O2083.0 (5)
C18—C16—C17108.2 (14)O10—Cu30—Cl3194.0 (4)
O20—C17—N19125.9 (13)N15—Cu30—Cl31174.8 (4)
O20—C17—C16127.9 (14)O20—Cu30—Cl3192.0 (3)

Experimental details

Crystal data
Chemical formula[Cu(C21H19N6O2)Cl]
Mr486.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)15.1520 (18), 22.1306 (17), 6.7310 (14)
β (°) 101.80 (2)
V3)2209.4 (6)
Z4
Radiation typeCu Kα1, λ = 1.54059 Å
µ (mm1)2.76
Specimen shape, size (mm)Flat sheet, 15 × 1
Data collection
DiffractometerGuinier camera G670
diffractometer
Specimen mountingThin layer in the specimen holder of the camera
Data collection modeTransmission
Scan methodContinuous
2θ values (°)2θmin = 4.00 2θmax = 75.00 2θstep = 0.01
Refinement
R factors and goodness of fitRp = 0.019, Rwp = 0.024, Rexp = 0.019, RBragg = 0.088, χ2 = 1.734
No. of data points7101
No. of parameters155
No. of restraints117
H-atom treatmentH-atom parameters not refined

Computer programs: G670 Imaging Plate Guinier Camera Software (Huber, 2002), simulated annealing (Zhukov et al., 2001), PLATON (Spek, 2009), MRIA (Zlokazov & Chernyshev, 1992) and SHELXL97 (Sheldrick, 2008).

 

Acknowledgements

The authors thank Dr V. V. Chernyshev (Lomonosov Moscow State University) for his kind assistance with the crystal structure determination. The research was supported by the Russian Foundation for Basic Research (grant 13–03–00079) and the Ministry of Education and Science of the Russian Federation (project 4.143.2014–K).

References

First citationAhtee, M., Nurmela, M., Suortti, P. & Järvinen, M. (1989). J. Appl. Cryst. 22, 261–268.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBansse, W., Jager, N., Ludwig, E., Schilde, U., Uhlemann, E., Lehmann, A. & Mehner, H. (1997). Z. Naturforsch. Teil B, 52, 237–242.  CAS Google Scholar
First citationCasas, J. S., Garcia-Tasende, M., Sanchez, A., Sordo, J. & Touceda, A. (2007). Coord. Chem. Rev. 251, 1561–1589.  CrossRef CAS Google Scholar
First citationEl-Hefnawy, G. B., El-Borari, M. A., El-Said, A. A. & Gabr, A. A. (1992). Indian J. Fibre Textile Res. 17, 87–91.  CAS Google Scholar
First citationEmeleus, L. C., Cupertino, D. C., Harris, S. G., Owens, S., Swart, R. M., Tasker, P. A. & White, D. J. (2001). J. Chem. Soc. Dalton. Trans. 1, pp. 1239–1245.  CSD CrossRef Google Scholar
First citationHallas, G. & Towns, A. D. (1996). Dyes Pigm. 31, 273–289.  CrossRef CAS Google Scholar
First citationHuber (2002). Software for G670 Imaging Plate Guinier Camera. Huber Diffraktionstechnik GmbH. Rimsting, Germany.  Google Scholar
First citationJärvinen, M. (1993). J. Appl. Cryst. 26, 525–531.  CrossRef Web of Science IUCr Journals Google Scholar
First citationKovalchukova, O. V., Polyakova, I. N., Sergienko, V. S., Strashnova, S. B., Volyanskii, O. V. & Korolev, O. V. (2012). Russ. J. Coord. Chem. 38, 484–490.  CAS Google Scholar
First citationLaikov, D. N. (1997). Chem. Phys. Lett. 281, 151–156.  Web of Science CrossRef CAS Google Scholar
First citationLaikov, D. N. (2004). Priroda. Moscow State University, Moscow.  Google Scholar
First citationLaikov, D. N. (2005). Chem. Phys. Lett. 416, 116–120.  Web of Science CrossRef CAS Google Scholar
First citationLaikov, D. N. & Ustynyuk, Y. A. (2005). Izv. Akad. Nauk SSSR Ser. Khim. pp. 804–810.  Google Scholar
First citationLalor, F. J., Desmond, T. J., Cotter, G. M., Shanahan, C. A., Ferguson, G., Parvez, M. & Ruhl, B. (1995). J. Chem. Soc. Dalton Trans. pp. 1709–1726.  CSD CrossRef Google Scholar
First citationLiu, S., Ma, J. & Zhao, D. (2007). Dyes Pigm. 75, 255–262.  CrossRef CAS Google Scholar
First citationPawley, G. S. (1981). J. Appl. Cryst. 14, 357–361.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPerdew, J. P., Burke, S. & Ernzerhof, M. (1996). Phys. Rev. Lett. 77, 3865–3868.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToraya, H. (1986). J. Appl. Cryst. 19, 440–447.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationVisser, J. W. (1969). J. Appl. Cryst. 2, 89–95.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWerner, P.-E., Eriksson, L. & Westdahl, M. (1985). J. Appl. Cryst. 18, 367–370.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWiley, R. H. & Wiley, P. (2008). Chemistry of Heterocyclic Compounds: Pyrazolones, Pyrazolidones, and Derivatives, Vol. 20, pp. 152–154. New York: John Wiley & Sons, Inc.  Google Scholar
First citationZaitseva, V. A., Zaitsev, B. E., Molodkin, A. K., Zhikharev, A. A. & Ezhov, A. I. (1981). Zh. Neorg. Khim. 26, 1144–1147.  CAS Google Scholar
First citationZhukov, S. G., Chernyshev, V. V., Babaev, E. V., Sonneveld, E. J. & Schenk, H. (2001). Z. Kristallogr. 216, 5–9.  Web of Science CrossRef CAS Google Scholar
First citationZlokazov, V. B. (1992). J. Appl. Cryst. 25, 69–72.  CrossRef Web of Science IUCr Journals Google Scholar
First citationZlokazov, V. B. (1995). Comput. Phys. Commun. 85, 415–422.  CrossRef CAS Web of Science Google Scholar
First citationZlokazov, V. B. & Chernyshev, V. V. (1992). J. Appl. Cryst. 25, 447–451.  CrossRef Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 124-127
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds