organic compounds
H-6-aminopurin-1-ium) hexafluoridosilicate(IV) dihydrate
of bis(9aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, 25000, Algeria, bDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria, cLaboratoire de Chimie de Coordination, UPR CNRS 8241, 205 route de Narbonne, 31077 Toulouse Cedex, France, and dUniversité Abdelmalek Essaadi, Faculté des Sciences, BP 2121 M'Hannech II, 93002 Tétouan, Morocco
*Correspondence e-mail: bouacida_sofiane@yahoo.fr
The 5H6N5+·SiF62−·2H2O, contains one adeninium cation, half of a hexafluoridosilicate anion located on an inversion centre and one lattice water molecule. The adeninium cations are connected through N—H⋯N hydrogen bonds involving one H atom of the –NH2 group and the H atom of the protonated N atom of the adenine ring system, forming centrosymmetric ring motifs of the type R22(10) and R22(8), respectively. The overall connection of the cation leads to the formation of planar ribbons parallel to (122). In the ribbons, slipped π–π stacking interactions, with a centroid-to-centroid distance of 3.6938 (9) Å, an interplanar distance of 3.455 Å and a slippage of 1.306 Å is observed. The hexafluoridosilicate anion and the water molecule are linked through O—H⋯F hydrogen bonds [ring motif R44(12)] into chains parallel to [100]. The cationic ribbons and anionic chains are finally connected through additional N—H⋯O, N—H⋯F and O—H⋯F hydrogen bonds into a three-dimensional network in which layers of adeninium cations and fluoridosilicate anions alternate parallel to (001).
of the title compound, 2CCCDC reference: 1038389
1. Related literature
The title compound was prepared as part of our ongoing studies of hydrogen-bonding interactions in the crystal structures of protonated et al., 2005a,b,c; 2006; Belhouas et al., 2012). For π–π stacking interactions, see: Janiak (2000).
(Bouacida2. Experimental
2.1. Crystal data
|
2.2. Data collection
|
2.3. Refinement
|
Data collection: COLLECT (Otwinowski & Minor, 1997); cell DIRAX/LSQ (Duisenberg et al., 2003); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR92 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 1038389
10.1107/S2056989014027005/wm5099sup1.cif
contains datablocks SiAde, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989014027005/wm5099Isup2.hkl
Crystals of the title compound were grown from aqueous solution by dissolving 1 mmol SiO2 and 2 mmol adenine in hydrofluoric acid (HF). The solutions were slowly evaporated to dryness for a couple of weeks. Some colourless crystals were isolated under a polarizing microscope for X-ray diffraction analysis.
All H atoms attached to C or N atoms were fixed geometrically and treated as riding with C—H = 0.93 Å and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C or N). H atoms of the water molecule were located in difference Fourier maps and included in the subsequent
using restraints (O—H= 0.82 (1) Å and H···H = 1.38 (2) Å) with Uiso(H) = 1.5Ueq(O).Data collection: COLLECT (Otwinowski & Minor, 1997); cell
DIRAX/LSQ (Duisenberg et al., 2003); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR92 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. The principal structural units in the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radius. Hydrogen bonds are shown as dashed lines. [Symmetry code: (i) -x, -y, 2 - z] | |
Fig. 2. Partial packing view of the title compound, showing the formation of R22(10) (A1) and R22(8) (A2) rings through N—H···N, N—H···O, N—H···F and O—H···F hydrogen bonds. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted. [Symmetry codes: (i) -x, y - 1/2, -z + 1/2; (ii) -x, y + 1/2, -z + 1/2; (iii) x, y - 1, z; (iv) -x, -y, -z + 1.]. | |
Fig. 3. Partial packing view showing chains formed between water molecules and fluoridosilicate anions through O—H···F hydrogen bonds. For the sake of clarity, the cationic counterparts have been omitted. [Symmetry code: (i) x + 1, y, z] | |
Fig. 4. Packing view in a projection aproximately along [100] showing the formation of layers parallel to (001). Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. |
2C5H6N5+·SiF62−·2H2O | Z = 1 |
Mr = 450.42 | F(000) = 230 |
Triclinic, P1 | Dx = 1.762 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.7500 (7) Å | Cell parameters from 2981 reflections |
b = 7.8504 (3) Å | θ = 5.2–27.5° |
c = 10.0884 (6) Å | µ = 0.24 mm−1 |
α = 79.141 (6)° | T = 295 K |
β = 84.534 (17)° | Lath, colourless |
γ = 71.774 (9)° | 0.55 × 0.12 × 0.07 mm |
V = 424.47 (6) Å3 |
Nonius KappaCCD diffractometer | 1757 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.018 |
Detector resolution: 9 pixels mm-1 | θmax = 27.5°, θmin = 5.2° |
CCD rotation images, thick slices scans | h = −6→7 |
4025 measured reflections | k = −10→10 |
1923 independent reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.082 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0373P)2 + 0.1468P] where P = (Fo2 + 2Fc2)/3 |
1923 reflections | (Δ/σ)max = 0.001 |
133 parameters | Δρmax = 0.28 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
2C5H6N5+·SiF62−·2H2O | γ = 71.774 (9)° |
Mr = 450.42 | V = 424.47 (6) Å3 |
Triclinic, P1 | Z = 1 |
a = 5.7500 (7) Å | Mo Kα radiation |
b = 7.8504 (3) Å | µ = 0.24 mm−1 |
c = 10.0884 (6) Å | T = 295 K |
α = 79.141 (6)° | 0.55 × 0.12 × 0.07 mm |
β = 84.534 (17)° |
Nonius KappaCCD diffractometer | 1757 reflections with I > 2σ(I) |
4025 measured reflections | Rint = 0.018 |
1923 independent reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.082 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.28 e Å−3 |
1923 reflections | Δρmin = −0.22 e Å−3 |
133 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Si1 | 0.0000 | 0.0000 | 1.0000 | 0.02519 (13) | |
F1 | 0.16598 (16) | −0.01595 (12) | 1.13081 (8) | 0.0417 (2) | |
F2 | −0.25721 (16) | 0.04669 (12) | 1.09945 (9) | 0.0432 (2) | |
F3 | −0.03226 (17) | 0.22671 (11) | 0.95904 (9) | 0.0410 (2) | |
O1W | 0.36312 (19) | 0.33709 (13) | 0.99720 (11) | 0.0411 (3) | |
H1W | 0.4831 | 0.2480 | 1.0279 | 0.062* | |
H2W | 0.2551 | 0.2970 | 0.9859 | 0.062* | |
N1 | 0.4082 (2) | 0.56497 (15) | 0.76571 (10) | 0.0304 (2) | |
H1 | 0.4261 | 0.4920 | 0.8417 | 0.036* | |
N7 | 0.7063 (2) | 0.69851 (15) | 0.44077 (11) | 0.0322 (3) | |
N9 | 0.3304 (2) | 0.89656 (15) | 0.41590 (11) | 0.0339 (3) | |
H9 | 0.2111 | 0.9840 | 0.3789 | 0.041* | |
N6 | 0.8149 (2) | 0.42421 (16) | 0.70564 (12) | 0.0384 (3) | |
H6A | 0.8298 | 0.3513 | 0.7817 | 0.046* | |
H6B | 0.9376 | 0.4154 | 0.6487 | 0.046* | |
N3 | 0.1313 (2) | 0.80786 (16) | 0.63114 (11) | 0.0344 (3) | |
C6 | 0.6057 (2) | 0.54850 (16) | 0.67661 (12) | 0.0277 (3) | |
C4 | 0.3254 (2) | 0.79502 (17) | 0.54071 (12) | 0.0287 (3) | |
C5 | 0.5581 (2) | 0.67381 (16) | 0.55526 (12) | 0.0268 (3) | |
C8 | 0.5605 (3) | 0.83344 (18) | 0.36060 (14) | 0.0347 (3) | |
H8 | 0.6093 | 0.8810 | 0.2748 | 0.042* | |
C2 | 0.1861 (3) | 0.68935 (19) | 0.74132 (13) | 0.0334 (3) | |
H2 | 0.0632 | 0.6901 | 0.8084 | 0.040* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Si1 | 0.0258 (2) | 0.0253 (2) | 0.0204 (2) | −0.00695 (18) | −0.00429 (17) | 0.00622 (16) |
F1 | 0.0428 (5) | 0.0461 (5) | 0.0328 (4) | −0.0095 (4) | −0.0160 (4) | 0.0021 (3) |
F2 | 0.0341 (4) | 0.0502 (5) | 0.0354 (4) | −0.0076 (4) | 0.0041 (3) | 0.0054 (4) |
F3 | 0.0494 (5) | 0.0291 (4) | 0.0412 (5) | −0.0126 (4) | −0.0109 (4) | 0.0080 (3) |
O1W | 0.0376 (6) | 0.0361 (5) | 0.0458 (6) | −0.0123 (4) | −0.0092 (4) | 0.0080 (4) |
N1 | 0.0364 (6) | 0.0310 (5) | 0.0209 (5) | −0.0091 (4) | −0.0034 (4) | 0.0016 (4) |
N7 | 0.0338 (6) | 0.0308 (5) | 0.0266 (5) | −0.0067 (5) | −0.0001 (4) | 0.0027 (4) |
N9 | 0.0354 (6) | 0.0298 (5) | 0.0279 (6) | −0.0023 (5) | −0.0052 (4) | 0.0050 (4) |
N6 | 0.0354 (6) | 0.0376 (6) | 0.0297 (6) | −0.0022 (5) | −0.0020 (5) | 0.0106 (5) |
N3 | 0.0323 (6) | 0.0355 (6) | 0.0286 (6) | −0.0024 (5) | −0.0022 (4) | −0.0017 (4) |
C6 | 0.0328 (6) | 0.0260 (6) | 0.0232 (6) | −0.0086 (5) | −0.0038 (5) | −0.0009 (4) |
C4 | 0.0328 (7) | 0.0265 (6) | 0.0244 (6) | −0.0061 (5) | −0.0044 (5) | −0.0021 (4) |
C5 | 0.0306 (6) | 0.0247 (5) | 0.0229 (6) | −0.0064 (5) | −0.0028 (5) | −0.0009 (4) |
C8 | 0.0380 (7) | 0.0332 (6) | 0.0270 (6) | −0.0079 (5) | −0.0013 (5) | 0.0049 (5) |
C2 | 0.0348 (7) | 0.0361 (7) | 0.0271 (6) | −0.0081 (5) | 0.0008 (5) | −0.0051 (5) |
Si1—F1 | 1.6646 (8) | N9—C4 | 1.3605 (16) |
Si1—F1i | 1.6646 (8) | N9—C8 | 1.3637 (19) |
Si1—F2 | 1.6867 (9) | N9—H9 | 0.8600 |
Si1—F2i | 1.6867 (9) | N6—C6 | 1.3080 (17) |
Si1—F3 | 1.7041 (8) | N6—H6A | 0.8600 |
Si1—F3i | 1.7041 (8) | N6—H6B | 0.8600 |
O1W—H1W | 0.8476 | N3—C2 | 1.3015 (17) |
O1W—H2W | 0.8046 | N3—C4 | 1.3632 (17) |
N1—C2 | 1.3543 (18) | C6—C5 | 1.4081 (16) |
N1—C6 | 1.3681 (17) | C4—C5 | 1.3803 (18) |
N1—H1 | 0.8600 | C8—H8 | 0.9300 |
N7—C8 | 1.3154 (17) | C2—H2 | 0.9300 |
N7—C5 | 1.3892 (16) | ||
F1—Si1—F1i | 180.000 (1) | C4—N9—H9 | 126.5 |
F1—Si1—F2 | 89.86 (5) | C8—N9—H9 | 126.5 |
F1i—Si1—F2 | 90.14 (5) | C6—N6—H6A | 120.0 |
F1—Si1—F2i | 90.14 (5) | C6—N6—H6B | 120.0 |
F1i—Si1—F2i | 89.86 (5) | H6A—N6—H6B | 120.0 |
F2—Si1—F2i | 180.0 | C2—N3—C4 | 112.33 (12) |
F1—Si1—F3 | 90.31 (4) | N6—C6—N1 | 120.97 (11) |
F1i—Si1—F3 | 89.69 (4) | N6—C6—C5 | 125.23 (12) |
F2—Si1—F3 | 89.68 (5) | N1—C6—C5 | 113.80 (11) |
F2i—Si1—F3 | 90.32 (5) | N9—C4—N3 | 127.47 (12) |
F1—Si1—F3i | 89.69 (4) | N9—C4—C5 | 105.20 (11) |
F1i—Si1—F3i | 90.31 (4) | N3—C4—C5 | 127.32 (11) |
F2—Si1—F3i | 90.32 (5) | C4—C5—N7 | 111.11 (11) |
F2i—Si1—F3i | 89.68 (5) | C4—C5—C6 | 117.64 (12) |
F3—Si1—F3i | 180.000 (1) | N7—C5—C6 | 131.23 (12) |
H1W—O1W—H2W | 107.5 | N7—C8—N9 | 113.25 (12) |
C2—N1—C6 | 123.90 (11) | N7—C8—H8 | 123.4 |
C2—N1—H1 | 118.1 | N9—C8—H8 | 123.4 |
C6—N1—H1 | 118.1 | N3—C2—N1 | 125.00 (13) |
C8—N7—C5 | 103.37 (11) | N3—C2—H2 | 117.5 |
C4—N9—C8 | 107.06 (11) | N1—C2—H2 | 117.5 |
Symmetry code: (i) −x, −y, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···F2ii | 0.85 | 1.88 | 2.7307 (14) | 178 |
O1W—H2W···F3 | 0.80 | 1.95 | 2.7553 (14) | 174 |
N1—H1···O1W | 0.86 | 1.88 | 2.7059 (15) | 162 |
N9—H9···N3iii | 0.86 | 2.13 | 2.9378 (17) | 157 |
N9—H9···F1iv | 0.86 | 2.54 | 3.0009 (14) | 115 |
N6—H6A···F3ii | 0.86 | 1.98 | 2.7917 (14) | 157 |
N6—H6A···F1v | 0.86 | 2.61 | 3.2906 (15) | 137 |
N6—H6B···N7vi | 0.86 | 2.15 | 2.9648 (18) | 159 |
Symmetry codes: (ii) x+1, y, z; (iii) −x, −y+2, −z+1; (iv) x, y+1, z−1; (v) −x+1, −y, −z+2; (vi) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···F2i | 0.85 | 1.88 | 2.7307 (14) | 178.2 |
O1W—H2W···F3 | 0.80 | 1.95 | 2.7553 (14) | 173.6 |
N1—H1···O1W | 0.86 | 1.88 | 2.7059 (15) | 161.7 |
N9—H9···N3ii | 0.86 | 2.13 | 2.9378 (17) | 157.3 |
N9—H9···F1iii | 0.86 | 2.54 | 3.0009 (14) | 114.5 |
N6—H6A···F3i | 0.86 | 1.98 | 2.7917 (14) | 157.4 |
N6—H6A···F1iv | 0.86 | 2.61 | 3.2906 (15) | 137.1 |
N6—H6B···N7v | 0.86 | 2.15 | 2.9648 (18) | 158.5 |
Symmetry codes: (i) x+1, y, z; (ii) −x, −y+2, −z+1; (iii) x, y+1, z−1; (iv) −x+1, −y, −z+2; (v) −x+2, −y+1, −z+1. |
Acknowledgements
We acknowledge MESRS and ATRST (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique Algérie) for financial support via the PNR programme.
References
Belhouas, R., Bouacida, S., Boudaren, C., Daran, J.-C. & Roisnel, T. (2012). Acta Cryst. E68, o1791–o1792. CSD CrossRef IUCr Journals Google Scholar
Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005a). Acta Cryst. E61, m1153–m1155. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005b). Acta Cryst. E61, m2072–m2074. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005c). Acta Cryst. E61, m577–m579. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bouacida, S., Merazig, H. & Benard-Rocherulle, P. (2006). Acta Cryst. E62, o838–o840. Web of Science CSD CrossRef IUCr Journals Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896. Web of Science CrossRef Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.