organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o72-o73

Crystal structure of bis­­(9H-6-amino­purin-1-ium) hexa­fluorido­silicate(IV) dihydrate

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, 25000, Algeria, bDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria, cLaboratoire de Chimie de Coordination, UPR CNRS 8241, 205 route de Narbonne, 31077 Toulouse Cedex, France, and dUniversité Abdelmalek Essaadi, Faculté des Sciences, BP 2121 M'Hannech II, 93002 Tétouan, Morocco
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

Edited by M. Weil, Vienna University of Technology, Austria (Received 29 November 2014; accepted 9 December 2014; online 3 January 2015)

The asymmetric unit of the title compound, 2C5H6N5+·SiF62−·2H2O, contains one adeninium cation, half of a hexa­fluorido­silicate anion located on an inversion centre and one lattice water mol­ecule. The adeninium cations are connected through N—H⋯N hydrogen bonds involving one H atom of the –NH2 group and the H atom of the protonated N atom of the adenine ring system, forming centrosymmetric ring motifs of the type R22(10) and R22(8), respectively. The overall connection of the cation leads to the formation of planar ribbons parallel to (122). In the ribbons, slipped ππ stacking inter­actions, with a centroid-to-centroid distance of 3.6938 (9) Å, an inter­planar distance of 3.455 Å and a slippage of 1.306 Å is observed. The hexa­fluorido­silicate anion and the water mol­ecule are linked through O—H⋯F hydrogen bonds [ring motif R44(12)] into chains parallel to [100]. The cationic ribbons and anionic chains are finally connected through additional N—H⋯O, N—H⋯F and O—H⋯F hydrogen bonds into a three-dimensional network in which layers of adeninium cations and fluorido­silicate anions alternate parallel to (001).

1. Related literature

The title compound was prepared as part of our ongoing studies of hydrogen-bonding inter­actions in the crystal structures of protonated amines (Bouacida et al., 2005a[Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005a). Acta Cryst. E61, m1153-m1155.],b[Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005b). Acta Cryst. E61, m2072-m2074.],c[Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005c). Acta Cryst. E61, m577-m579.]; 2006[Bouacida, S., Merazig, H. & Benard-Rocherulle, P. (2006). Acta Cryst. E62, o838-o840.]; Belhouas et al., 2012[Belhouas, R., Bouacida, S., Boudaren, C., Daran, J.-C. & Roisnel, T. (2012). Acta Cryst. E68, o1791-o1792.]). For ππ stacking inter­actions, see: Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • 2C5H6N5+·SiF62−·2H2O

  • Mr = 450.42

  • Triclinic, [P \overline 1]

  • a = 5.7500 (7) Å

  • b = 7.8504 (3) Å

  • c = 10.0884 (6) Å

  • α = 79.141 (6)°

  • β = 84.534 (17)°

  • γ = 71.774 (9)°

  • V = 424.47 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 295 K

  • 0.55 × 0.12 × 0.07 mm

2.2. Data collection

  • Nonius KappaCCD diffractometer

  • 4025 measured reflections

  • 1923 independent reflections

  • 1757 reflections with I > 2σ(I)

  • Rint = 0.018

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.082

  • S = 1.03

  • 1923 reflections

  • 133 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯F2i 0.85 1.88 2.7307 (14) 178
O1W—H2W⋯F3 0.80 1.95 2.7553 (14) 174
N1—H1⋯O1W 0.86 1.88 2.7059 (15) 162
N9—H9⋯N3ii 0.86 2.13 2.9378 (17) 157
N9—H9⋯F1iii 0.86 2.54 3.0009 (14) 115
N6—H6A⋯F3i 0.86 1.98 2.7917 (14) 157
N6—H6A⋯F1iv 0.86 2.61 3.2906 (15) 137
N6—H6B⋯N7v 0.86 2.15 2.9648 (18) 159
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+2, -z+1; (iii) x, y+1, z-1; (iv) -x+1, -y, -z+2; (v) -x+2, -y+1, -z+1.

Data collection: COLLECT (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); cell refinement: DIRAX/LSQ (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SIR92 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Related literature top

The title compound was prepared as part of our ongoing studies of hydrogen-bonding interactions in the crystal structures of protonated amines (Bouacida et al., 2005a,b,c; 2006; Belhouas et al., 2012). For ππ stacking interactions, see: Janiak (2000).

Experimental top

Crystals of the title compound were grown from aqueous solution by dissolving 1 mmol SiO2 and 2 mmol adenine in hydrofluoric acid (HF). The solutions were slowly evaporated to dryness for a couple of weeks. Some colourless crystals were isolated under a polarizing microscope for X-ray diffraction analysis.

Refinement top

All H atoms attached to C or N atoms were fixed geometrically and treated as riding with C—H = 0.93 Å and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C or N). H atoms of the water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O—H= 0.82 (1) Å and H···H = 1.38 (2) Å) with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: COLLECT (Otwinowski & Minor, 1997); cell refinement: DIRAX/LSQ (Duisenberg et al., 2003); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR92 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The principal structural units in the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radius. Hydrogen bonds are shown as dashed lines. [Symmetry code: (i) -x, -y, 2 - z]
[Figure 2] Fig. 2. Partial packing view of the title compound, showing the formation of R22(10) (A1) and R22(8) (A2) rings through N—H···N, N—H···O, N—H···F and O—H···F hydrogen bonds. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted. [Symmetry codes: (i) -x, y - 1/2, -z + 1/2; (ii) -x, y + 1/2, -z + 1/2; (iii) x, y - 1, z; (iv) -x, -y, -z + 1.].
[Figure 3] Fig. 3. Partial packing view showing chains formed between water molecules and fluoridosilicate anions through O—H···F hydrogen bonds. For the sake of clarity, the cationic counterparts have been omitted. [Symmetry code: (i) x + 1, y, z]
[Figure 4] Fig. 4. Packing view in a projection aproximately along [100] showing the formation of layers parallel to (001). Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
Bis(9H-6-aminopurin-1-ium) hexafluoridosilicate(IV) dihydrate top
Crystal data top
2C5H6N5+·SiF62·2H2OZ = 1
Mr = 450.42F(000) = 230
Triclinic, P1Dx = 1.762 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.7500 (7) ÅCell parameters from 2981 reflections
b = 7.8504 (3) Åθ = 5.2–27.5°
c = 10.0884 (6) ŵ = 0.24 mm1
α = 79.141 (6)°T = 295 K
β = 84.534 (17)°Lath, colourless
γ = 71.774 (9)°0.55 × 0.12 × 0.07 mm
V = 424.47 (6) Å3
Data collection top
Nonius KappaCCD
diffractometer
1757 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 5.2°
CCD rotation images, thick slices scansh = 67
4025 measured reflectionsk = 1010
1923 independent reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0373P)2 + 0.1468P]
where P = (Fo2 + 2Fc2)/3
1923 reflections(Δ/σ)max = 0.001
133 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
2C5H6N5+·SiF62·2H2Oγ = 71.774 (9)°
Mr = 450.42V = 424.47 (6) Å3
Triclinic, P1Z = 1
a = 5.7500 (7) ÅMo Kα radiation
b = 7.8504 (3) ŵ = 0.24 mm1
c = 10.0884 (6) ÅT = 295 K
α = 79.141 (6)°0.55 × 0.12 × 0.07 mm
β = 84.534 (17)°
Data collection top
Nonius KappaCCD
diffractometer
1757 reflections with I > 2σ(I)
4025 measured reflectionsRint = 0.018
1923 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.03Δρmax = 0.28 e Å3
1923 reflectionsΔρmin = 0.22 e Å3
133 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.00000.00001.00000.02519 (13)
F10.16598 (16)0.01595 (12)1.13081 (8)0.0417 (2)
F20.25721 (16)0.04669 (12)1.09945 (9)0.0432 (2)
F30.03226 (17)0.22671 (11)0.95904 (9)0.0410 (2)
O1W0.36312 (19)0.33709 (13)0.99720 (11)0.0411 (3)
H1W0.48310.24801.02790.062*
H2W0.25510.29700.98590.062*
N10.4082 (2)0.56497 (15)0.76571 (10)0.0304 (2)
H10.42610.49200.84170.036*
N70.7063 (2)0.69851 (15)0.44077 (11)0.0322 (3)
N90.3304 (2)0.89656 (15)0.41590 (11)0.0339 (3)
H90.21110.98400.37890.041*
N60.8149 (2)0.42421 (16)0.70564 (12)0.0384 (3)
H6A0.82980.35130.78170.046*
H6B0.93760.41540.64870.046*
N30.1313 (2)0.80786 (16)0.63114 (11)0.0344 (3)
C60.6057 (2)0.54850 (16)0.67661 (12)0.0277 (3)
C40.3254 (2)0.79502 (17)0.54071 (12)0.0287 (3)
C50.5581 (2)0.67381 (16)0.55526 (12)0.0268 (3)
C80.5605 (3)0.83344 (18)0.36060 (14)0.0347 (3)
H80.60930.88100.27480.042*
C20.1861 (3)0.68935 (19)0.74132 (13)0.0334 (3)
H20.06320.69010.80840.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0258 (2)0.0253 (2)0.0204 (2)0.00695 (18)0.00429 (17)0.00622 (16)
F10.0428 (5)0.0461 (5)0.0328 (4)0.0095 (4)0.0160 (4)0.0021 (3)
F20.0341 (4)0.0502 (5)0.0354 (4)0.0076 (4)0.0041 (3)0.0054 (4)
F30.0494 (5)0.0291 (4)0.0412 (5)0.0126 (4)0.0109 (4)0.0080 (3)
O1W0.0376 (6)0.0361 (5)0.0458 (6)0.0123 (4)0.0092 (4)0.0080 (4)
N10.0364 (6)0.0310 (5)0.0209 (5)0.0091 (4)0.0034 (4)0.0016 (4)
N70.0338 (6)0.0308 (5)0.0266 (5)0.0067 (5)0.0001 (4)0.0027 (4)
N90.0354 (6)0.0298 (5)0.0279 (6)0.0023 (5)0.0052 (4)0.0050 (4)
N60.0354 (6)0.0376 (6)0.0297 (6)0.0022 (5)0.0020 (5)0.0106 (5)
N30.0323 (6)0.0355 (6)0.0286 (6)0.0024 (5)0.0022 (4)0.0017 (4)
C60.0328 (6)0.0260 (6)0.0232 (6)0.0086 (5)0.0038 (5)0.0009 (4)
C40.0328 (7)0.0265 (6)0.0244 (6)0.0061 (5)0.0044 (5)0.0021 (4)
C50.0306 (6)0.0247 (5)0.0229 (6)0.0064 (5)0.0028 (5)0.0009 (4)
C80.0380 (7)0.0332 (6)0.0270 (6)0.0079 (5)0.0013 (5)0.0049 (5)
C20.0348 (7)0.0361 (7)0.0271 (6)0.0081 (5)0.0008 (5)0.0051 (5)
Geometric parameters (Å, º) top
Si1—F11.6646 (8)N9—C41.3605 (16)
Si1—F1i1.6646 (8)N9—C81.3637 (19)
Si1—F21.6867 (9)N9—H90.8600
Si1—F2i1.6867 (9)N6—C61.3080 (17)
Si1—F31.7041 (8)N6—H6A0.8600
Si1—F3i1.7041 (8)N6—H6B0.8600
O1W—H1W0.8476N3—C21.3015 (17)
O1W—H2W0.8046N3—C41.3632 (17)
N1—C21.3543 (18)C6—C51.4081 (16)
N1—C61.3681 (17)C4—C51.3803 (18)
N1—H10.8600C8—H80.9300
N7—C81.3154 (17)C2—H20.9300
N7—C51.3892 (16)
F1—Si1—F1i180.000 (1)C4—N9—H9126.5
F1—Si1—F289.86 (5)C8—N9—H9126.5
F1i—Si1—F290.14 (5)C6—N6—H6A120.0
F1—Si1—F2i90.14 (5)C6—N6—H6B120.0
F1i—Si1—F2i89.86 (5)H6A—N6—H6B120.0
F2—Si1—F2i180.0C2—N3—C4112.33 (12)
F1—Si1—F390.31 (4)N6—C6—N1120.97 (11)
F1i—Si1—F389.69 (4)N6—C6—C5125.23 (12)
F2—Si1—F389.68 (5)N1—C6—C5113.80 (11)
F2i—Si1—F390.32 (5)N9—C4—N3127.47 (12)
F1—Si1—F3i89.69 (4)N9—C4—C5105.20 (11)
F1i—Si1—F3i90.31 (4)N3—C4—C5127.32 (11)
F2—Si1—F3i90.32 (5)C4—C5—N7111.11 (11)
F2i—Si1—F3i89.68 (5)C4—C5—C6117.64 (12)
F3—Si1—F3i180.000 (1)N7—C5—C6131.23 (12)
H1W—O1W—H2W107.5N7—C8—N9113.25 (12)
C2—N1—C6123.90 (11)N7—C8—H8123.4
C2—N1—H1118.1N9—C8—H8123.4
C6—N1—H1118.1N3—C2—N1125.00 (13)
C8—N7—C5103.37 (11)N3—C2—H2117.5
C4—N9—C8107.06 (11)N1—C2—H2117.5
Symmetry code: (i) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···F2ii0.851.882.7307 (14)178
O1W—H2W···F30.801.952.7553 (14)174
N1—H1···O1W0.861.882.7059 (15)162
N9—H9···N3iii0.862.132.9378 (17)157
N9—H9···F1iv0.862.543.0009 (14)115
N6—H6A···F3ii0.861.982.7917 (14)157
N6—H6A···F1v0.862.613.2906 (15)137
N6—H6B···N7vi0.862.152.9648 (18)159
Symmetry codes: (ii) x+1, y, z; (iii) x, y+2, z+1; (iv) x, y+1, z1; (v) x+1, y, z+2; (vi) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···F2i0.851.882.7307 (14)178.2
O1W—H2W···F30.801.952.7553 (14)173.6
N1—H1···O1W0.861.882.7059 (15)161.7
N9—H9···N3ii0.862.132.9378 (17)157.3
N9—H9···F1iii0.862.543.0009 (14)114.5
N6—H6A···F3i0.861.982.7917 (14)157.4
N6—H6A···F1iv0.862.613.2906 (15)137.1
N6—H6B···N7v0.862.152.9648 (18)158.5
Symmetry codes: (i) x+1, y, z; (ii) x, y+2, z+1; (iii) x, y+1, z1; (iv) x+1, y, z+2; (v) x+2, y+1, z+1.
 

Acknowledgements

We acknowledge MESRS and ATRST (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique Algérie) for financial support via the PNR programme.

References

First citationBelhouas, R., Bouacida, S., Boudaren, C., Daran, J.-C. & Roisnel, T. (2012). Acta Cryst. E68, o1791–o1792.  CSD CrossRef IUCr Journals Google Scholar
First citationBouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005a). Acta Cryst. E61, m1153–m1155.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005b). Acta Cryst. E61, m2072–m2074.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005c). Acta Cryst. E61, m577–m579.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouacida, S., Merazig, H. & Benard-Rocherulle, P. (2006). Acta Cryst. E62, o838–o840.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o72-o73
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds