research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 154-156

Crystal structure of dimanganese(II) zinc bis­­[ortho­phosphate(V)] monohydrate

aLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: g_alhakmi@yahoo.fr

Edited by M. Weil, Vienna University of Technology, Austria (Received 5 December 2014; accepted 7 January 2015; online 14 January 2015)

The title compound, Mn2Zn(PO4)2·H2O, was obtained under hydro­thermal conditions. The structure is isotypic with other transition metal phosphates of the type M3−xMx(PO4)2·H2O, but shows no statistical disorder of the three metallic sites. The principal building units are distorted [MnO6] and [MnO5(H2O)] octa­hedra, a distorted [ZnO5] square pyramid and two regular PO4 tetra­hedra. The connection of the polyhedra leads to a framework structure. Two types of layers parallel to (-101) can be distinguished in this framework. One layer contains [Zn2O8] dimers linked to PO4 tetra­hedra via common edges. The other layer is more corrugated and contains [Mn2O8(H2O)2] dimers and [MnO6] octa­hedra linked together by common edges. The PO4 tetra­hedra link the two types of layers into a framework structure with channels parallel to [101]. The H atoms of the water mol­ecules point into the channels and form O—H⋯O hydrogen bonds (one of which is bifurcated) with framework O atoms across the channels.

1. Chemical context

The great structural diversity of metal-based phosphates, associated with their physical properties makes this family of compounds inter­esting as potential functional materials, e.g. as catalysts (Viter & Nagornyi, 2009[Viter, V. N. & Nagornyi, P. G. (2009). Russ. J. Appl. Chem. 82, 935-939.]; Weng et al., 2009[Weng, W., Lin, Z., Dummer, N. F., Bartley, J. K., Hutchings, G. J. & Kiely, C. J. (2009). Microsc. Microanal. 15, 1438-1439.]) or ion-exchangers (Jignasa et al., 2006[Jignasa, A., Rakesh, T. & Uma, C. (2006). J. Chem. Sci. 118, 185-189.]). Among the wide variety of metal phosphates, one of our inter­ests is focused on mixed metallic orthophosphates of general formula M3−xM′x(PO4)2·H2O. The present communication reports the hydro­thermal synthesis and structural characterization of a new member of this family, Mn2Zn(PO4)2·H2O.

2. Structural commentary

The structure of the title compound is built up from four different types of building units: [MnO6] and [MnO5(H2O)] octa­hedra, [ZnO5] square pyramids and PO4 tetra­hedra, as shown in Fig. 1[link]. Whereas the [MnO6] octa­hedron is more or less regular with Mn—O distances in the range 2.1254 (13) to 2.2590 (13) Å, the [MnO5(H2O)] octa­hedron is significantly distorted with five equal Mn—O distances in the range 2.1191 (13) to 2.1556 (16) and one considerably longer Mn—O distance to the water ligand of 2.5163 (15) Å; the ZnO5 square pyramid is also distorted with four shorter Zn—O distances between 1.9546 (13) and 2.0347 (12) Å and one longer Zn—O distance, likewise to the water O atom [2.3093 (14) Å]; the two PO4 tetra­hedra are rather regular [P—O distances between 1.5322 (13) and 1.5570 (13) Å; O—P—O angles between 102.92 (7) and 111.62 (8)°]. These polyhedra are arranged in such a way as to build up two types of layers parallel to ([\overline{1}]01). One layer contains two [ZnO5] polyhedra linked together by edge-sharing into a [Zn2O8] dimer that in turn is linked to PO4 tetra­hedra. The other layer contains dimers of the type [Mn2O8(H2O)2] (also formed by edge-sharing of two [MnO5(H2O)] octa­hedra), connecting [MnO6] octa­hedra and PO4 tetra­hedra through common vertices. The two types of layers are linked by common edges and vertices into a framework structure with channels parallel to [101]. The water mol­ecules of the [MnO5(H2O)] octa­hedra protrude into these channels and develop hydrogen bonds (one bifurcated) of medium-to-weak strength to framework O atoms across the channels (Fig. 2[link]; Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H1⋯O7 0.89 1.97 2.7866 (19) 151
O9—H2⋯O5i 0.91 2.16 2.8687 (19) 134
O9—H2⋯O1ii 0.91 2.48 3.0494 (19) 120
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The principal building units in the structure of Mn2Zn(PO4)2·H2O. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are indicated by dashed lines. [Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]; (iii) −x + 2, −y + 1, −z + 1; (iv) −x + [{3\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (v) −x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}]; (vi) x − [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]; (vii) x − [{1\over 2}], −y + [{3\over 2}], z − [{1\over 2}]; (viii) −x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}].]
[Figure 2]
Figure 2
Polyhedral representation of Mn2Zn(PO4)2·H2O showing channels extending parallel to [101]. Hydrogen bonds are shown as dashed lines.

The title compound adopts the Fe3(PO4)2·H2O structure type (Moore & Araki, 1975[Moore, P. B. & Araki, T. (1975). Am. Mineral. 60, 454-459.]) and is isotypic with various structures of general formula M3−xM′x(PO4)2·H2O: CuMn2(PO4)2·H2O (Liao et al., 1995[Liao, J. H., Leroux, F., Guyomard, D., Piffard, Y. & Tournoux, M. (1995). Eur. J. Solid State Inorg. Chem. 32, 403-414.]); Co2.59Zn0.41(PO4)2·H2O (Sørensen et al., 2005[Sørensen, M. B., Hazell, R. G., Bentien, A., Bond, A. D. & Jensen, T. R. (2005). Dalton Trans. pp. 598-606.]); Co2.39Cu0.61(PO4)2·H2O (Assani et al., 2010[Assani, A., Saadi, M. & El Ammari, L. (2010). Acta Cryst. E66, i44.]); Mg1.65Cu1.35(PO4)2·H2O (Khmiyas et al. 2015[Khmiyas, J., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 55-57.]).

3. Synthesis and crystallization

Crystals of Mn2Zn(PO4)2·H2O were obtained by hydro­thermal treatment of zinc oxide (0.0406 g), metallic manganese (0.0824 g), phospho­ric acid (0.1 ml) and 12.5 ml of distilled water, in a proportion corresponding to the molar ratio Zn: Mn: P = 1: 3: 3. The hydro­thermal reaction was conducted in a 23 ml Teflon-lined autoclave under autogenous pressure at 493 K for five days. After being filtered, washed with deionized water and dried in air, the reaction product consisted of two types of crystals, the first as off-white parallelepipeds corresponding to Mn7(PO4)2(HPO4)4 (Riou et al., 1987[Riou, A., Cudennec, Y. & Gerault, Y. (1987). Acta Cryst. C43, 821-823.]) and the second as colourless parallelepipeds corres­ponding to the title compound.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The O-bound H atoms were initially located in a difference map. In the last refinement cycle the distances were fixed at 0.89 and 0.91 Å, respectively, and the H atoms refined in the riding-model approximation with Uiso(H) set to 1.5Ueq(O). The highest peak and the deepest hole in the final Fourier map are at 0.32 Å and 0.30 Å, respectively, from Mn1 and Zn1.

Table 2
Experimental details

Crystal data
Chemical formula Mn2Zn(PO4)2·H2O
Mr 383.21
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 8.1784 (2), 10.1741 (2), 9.0896 (2)
β (°) 114.142 (1)
V3) 690.17 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 7.54
Crystal size (mm) 0.32 × 0.27 × 0.19
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.574, 0.748
No. of measured, independent and observed [I > 2σ(I)] reflections 11327, 2407, 2305
Rint 0.023
(sin θ/λ)max−1) 0.746
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.052, 1.11
No. of reflections 2407
No. of parameters 127
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.94, −0.84
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

The great structural diversity of metal-based phosphates, associated with their physical properties makes this family of compounds inter­esting as potential functional materials, e.g. as catalysts (Viter & Nagornyi, 2009; Weng et al., 2009) or ion-exchangers (Jignasa et al., 2006). Among the wide variety of metal phosphates, one of our inter­ests is focused on mixed metallic orthophosphates of general formula M3-xM'x(PO4)2·H2O. The present communication reports the hydro­thermal synthesis and structural characterization of a new member of this family, Mn2Zn(PO4)2·H2O.

Structural commentary top

The structure of the title compound is built up from four different types of building units: [MnO6] and [MnO5(H2O)] o­cta­hedra, [ZnO5] square pyramids and PO4 tetra­hedra, as shown in Fig. 1. Whereas the [MnO6] o­cta­hedron is more or less regular with Mn—O distances in the range 2.1254 (13) to 2.2590 (13) Å, the [MnO5(H2O)] o­cta­hedron is significantly distorted with five equal Mn—O distances in the range 2.1191 (13) to 2.1556 (16) and one considerably longer Mn—O distance to the water ligand of 2.5163 (15) Å; the ZnO5 square pyramid is also distorted with four shorter Zn—O distances between 1.9546 (13) and 2.0347 (12) Å and one longer Zn—O distance, likewise to the water O atom [2.3093 (14) Å]; the two PO4 tetra­hedra are rather regular [P—O distances between 1.5322 (13) and 1.5570 (13) Å; O—P—O angles between 102.92 (7) and 111.62 (8)°]. These polyhedra are arranged in such a way as to build up two types of layers parallel to (101). One layer contains two [ZnO5] polyhedra linked together by edge-sharing into a [Zn2O8] dimer that in turn is linked to PO4 tetra­hedra. The other layer contains dimers of the type [Mn2O8(H2O)2] (also formed by edge-sharing of two [MnO5(H2O)] o­cta­hedra), connecting [MnO6] o­cta­hedra and PO4 tetra­hedra through common vertices. The two types of layers are linked by common edges and vertices into a framework structure with channels parallel to [101]. The water molecules of the [MnO5(H2O)] o­cta­hedra protrude into these channels and develop hydrogen bonds (one bifurcated) of medium-to-weak strength to framework O atoms across the channels (Fig 2; Table 1).

The title compound adopts the Fe3(PO4)2·H2O structure type (Moore & Araki, 1975) and is isotypic with various structures of general formula M3-xM'x(PO4)2·H2O: CuMn2(PO4)2·H2O (Liao et al., 1995); Co2.59Zn0.41(PO4)2·H2O (Sørensen et al., 2005); Co2.39Cu0.61(PO4)2·H2O (Assani et al., 2010); Mg1.65Cu1.35(PO4)2·H2O (Khmiyas et al. 2015).

Synthesis and crystallization top

Crystals of Mn2Zn(PO4)2·H2O were obtained by hydro­thermal treatment of of zinc oxide (0.0406 g), metallic manganese (0.0824 g), phospho­ric acid (0.1 ml) and 12.5 ml of distilled water, in a proportion corresponding to the molar ratio Zn: Mn: P = 1: 3: 3. The hydro­thermal reaction was conducted in a 23 ml Teflon-lined autoclave under autogenous pressure at 493 K for five days. After being filtered, washed with deionized water and dried in air, the reaction product consisted of two types of crystals, the first as off-white parallelepipeds corresponding to Mn7(PO4)2(HPO4)4 (Riou et al., 1987) and the second as colourless parallelepipeds corresponding to the title compound.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The O-bound H atoms were initially located in a difference map. In the last refinement cycle the distances were fixed at 0.89 and 0.91 Å, respectively, and the H atoms refined in the riding-model approximation with Uiso(H) set to 1.5Ueq(O). The highest peak and the deepest hole in the final Fourier map are at 0.32 Å and 0.30 Å, respectively, from Mn1 and Zn1.

Related literature top

For related literature, see: Assani et al. (2010); Jignasa et al. (2006); Khmiyas et al. (2015); Liao et al. (1995); Moore & Araki (1975); Riou et al. (1987); Sørensen et al. (2005); Viter & Nagornyi (2009); Weng et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The principal building units in the structure of Mn2Zn(PO4)2·H2O. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are indicated by dashed lines. [Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x + 1/2, -y + 1/2, z + 1/2; (iii) -x + 2, -y + 1, -z + 1; (iv) -x + 3/2, y + 1/2, -z + 1/2; (v) -x + 1/2, y - 1/2, -z + 1/2; (vi) x - 1/2, -y + 1/2, z - 1/2; (vii) x - 1/2, -y + 3/2, z - 1/2; (viii) -x + 1/2, y + 1/2, -z + 1/2.]
[Figure 2] Fig. 2. Polyhedral representation of Mn2Zn(PO4)2·H2O showing channels extending parallel to [101]. Hydrogen bonds are shown as dashed lines.
Dimanganese(II) zinc bis[orthophosphate(V)] monohydrate top
Crystal data top
Mn2Zn(PO4)2·H2OF(000) = 736
Mr = 383.21Dx = 3.688 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2407 reflections
a = 8.1784 (2) Åθ = 2.8–32.0°
b = 10.1741 (2) ŵ = 7.54 mm1
c = 9.0896 (2) ÅT = 296 K
β = 114.142 (1)°Parallelepiped, off-white
V = 690.17 (3) Å30.32 × 0.27 × 0.19 mm
Z = 4
Data collection top
Bruker X8 APEX
diffractometer
2407 independent reflections
Radiation source: fine-focus sealed tube2305 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 32.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.574, Tmax = 0.748k = 1415
11327 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0248P)2 + 1.0141P]
where P = (Fo2 + 2Fc2)/3
2407 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.94 e Å3
0 restraintsΔρmin = 0.84 e Å3
Crystal data top
Mn2Zn(PO4)2·H2OV = 690.17 (3) Å3
Mr = 383.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.1784 (2) ŵ = 7.54 mm1
b = 10.1741 (2) ÅT = 296 K
c = 9.0896 (2) Å0.32 × 0.27 × 0.19 mm
β = 114.142 (1)°
Data collection top
Bruker X8 APEX
diffractometer
2407 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2305 reflections with I > 2σ(I)
Tmin = 0.574, Tmax = 0.748Rint = 0.023
11327 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.052H-atom parameters constrained
S = 1.11Δρmax = 0.94 e Å3
2407 reflectionsΔρmin = 0.84 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.88638 (3)0.35884 (3)0.46580 (3)0.00768 (6)
Mn20.48057 (3)0.38305 (3)0.21880 (3)0.00726 (6)
Zn10.12609 (3)0.62028 (2)0.06179 (2)0.00934 (6)
P10.70438 (5)0.08456 (4)0.32706 (5)0.00553 (8)
P20.38560 (5)0.67442 (4)0.36388 (5)0.00613 (8)
O10.58212 (17)0.03301 (13)0.40831 (15)0.0102 (2)
O20.87050 (16)0.15076 (13)0.45546 (15)0.0094 (2)
O30.59293 (17)0.18429 (12)0.19887 (15)0.0092 (2)
O40.76145 (17)0.03217 (12)0.25178 (15)0.0092 (2)
O50.23736 (18)0.77279 (13)0.26723 (16)0.0123 (2)
O60.36400 (17)0.63194 (13)0.51688 (15)0.0104 (2)
O70.57269 (16)0.73311 (13)0.41028 (15)0.0110 (2)
O80.35411 (17)0.55914 (13)0.24330 (15)0.0107 (2)
O90.88135 (18)0.58568 (14)0.57419 (16)0.0130 (2)
H10.78760.62030.49230.019*
H20.87930.59690.67310.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.00519 (11)0.00776 (11)0.00860 (11)0.00070 (8)0.00129 (8)0.00274 (8)
Mn20.00657 (11)0.00704 (11)0.00777 (11)0.00016 (8)0.00254 (9)0.00025 (8)
Zn10.00839 (10)0.00949 (10)0.00884 (9)0.00028 (6)0.00219 (7)0.00093 (6)
P10.00538 (16)0.00594 (17)0.00519 (16)0.00046 (13)0.00209 (13)0.00030 (13)
P20.00556 (16)0.00676 (17)0.00569 (16)0.00008 (13)0.00193 (13)0.00044 (13)
O10.0107 (5)0.0111 (5)0.0126 (5)0.0015 (4)0.0087 (5)0.0025 (4)
O20.0079 (5)0.0105 (5)0.0073 (5)0.0020 (4)0.0008 (4)0.0025 (4)
O30.0099 (5)0.0080 (5)0.0081 (5)0.0022 (4)0.0020 (4)0.0013 (4)
O40.0083 (5)0.0091 (5)0.0099 (5)0.0017 (4)0.0033 (4)0.0027 (4)
O50.0121 (5)0.0135 (6)0.0108 (5)0.0070 (5)0.0041 (4)0.0035 (4)
O60.0106 (5)0.0137 (6)0.0071 (5)0.0006 (4)0.0038 (4)0.0016 (4)
O70.0081 (5)0.0129 (6)0.0120 (5)0.0031 (4)0.0041 (4)0.0030 (4)
O80.0107 (5)0.0093 (5)0.0099 (5)0.0011 (4)0.0021 (4)0.0035 (4)
O90.0109 (5)0.0181 (6)0.0106 (5)0.0020 (5)0.0051 (4)0.0007 (5)
Geometric parameters (Å, º) top
Mn1—O6i2.1191 (13)Zn1—O1vi2.0242 (13)
Mn1—O22.1208 (14)Zn1—O1viii2.0347 (12)
Mn1—O3ii2.1464 (12)Zn1—O52.3093 (14)
Mn1—O9iii2.1504 (14)P1—O31.5327 (13)
Mn1—O4iv2.1556 (13)P1—O41.5355 (13)
Mn1—O92.5163 (15)P1—O21.5377 (13)
Mn2—O82.1254 (13)P1—O11.5570 (13)
Mn2—O5v2.1533 (13)P2—O71.5322 (13)
Mn2—O4iv2.1921 (13)P2—O61.5340 (13)
Mn2—O2vi2.2126 (13)P2—O51.5401 (13)
Mn2—O6i2.2166 (13)P2—O81.5532 (13)
Mn2—O32.2590 (13)O9—H10.8939
Zn1—O7vii1.9546 (13)O9—H20.9131
Zn1—O82.0174 (13)
O6i—Mn1—O290.23 (5)O4iv—Mn2—O387.66 (5)
O6i—Mn1—O3ii109.27 (5)O2vi—Mn2—O376.87 (5)
O2—Mn1—O3ii81.31 (5)O6i—Mn2—O387.34 (5)
O6i—Mn1—O9iii161.48 (5)O7vii—Zn1—O8132.60 (5)
O2—Mn1—O9iii107.27 (5)O7vii—Zn1—O1vi100.19 (6)
O3ii—Mn1—O9iii80.06 (5)O8—Zn1—O1vi99.81 (5)
O6i—Mn1—O4iv81.32 (5)O7vii—Zn1—O1viii117.98 (5)
O2—Mn1—O4iv118.14 (5)O8—Zn1—O1viii107.48 (5)
O3ii—Mn1—O4iv158.49 (5)O1vi—Zn1—O1viii80.41 (5)
O9iii—Mn1—O4iv84.99 (5)O7vii—Zn1—O587.57 (5)
O6i—Mn1—O976.07 (5)O8—Zn1—O567.61 (5)
O2—Mn1—O9157.28 (5)O1vi—Zn1—O5167.20 (5)
O3ii—Mn1—O986.18 (5)O1viii—Zn1—O5105.05 (5)
O9iii—Mn1—O989.00 (5)O3—P1—O4111.58 (7)
O4iv—Mn1—O978.15 (5)O3—P1—O2110.68 (7)
O8—Mn2—O5v89.03 (5)O4—P1—O2109.99 (7)
O8—Mn2—O4iv98.10 (5)O3—P1—O1106.62 (7)
O5v—Mn2—O4iv167.53 (5)O4—P1—O1108.79 (7)
O8—Mn2—O2vi104.14 (5)O2—P1—O1109.08 (7)
O5v—Mn2—O2vi90.14 (5)O7—P2—O6109.42 (7)
O4iv—Mn2—O2vi97.96 (5)O7—P2—O5111.62 (8)
O8—Mn2—O6i91.85 (5)O6—P2—O5110.15 (7)
O5v—Mn2—O6i91.25 (5)O7—P2—O8110.32 (7)
O4iv—Mn2—O6i78.36 (5)O6—P2—O8112.31 (8)
O2vi—Mn2—O6i163.97 (5)O5—P2—O8102.92 (7)
O8—Mn2—O3173.90 (5)H1—O9—H2114.6
O5v—Mn2—O384.95 (5)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x+2, y+1, z+1; (iv) x+3/2, y+1/2, z+1/2; (v) x+1/2, y1/2, z+1/2; (vi) x1/2, y+1/2, z1/2; (vii) x1/2, y+3/2, z1/2; (viii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H1···O70.891.972.7866 (19)151
O9—H2···O5ix0.912.162.8687 (19)134
O9—H2···O1ii0.912.483.0494 (19)120
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (ix) x+1/2, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H1···O70.891.972.7866 (19)150.7
O9—H2···O5i0.912.162.8687 (19)134.2
O9—H2···O1ii0.912.483.0494 (19)120.4
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaMn2Zn(PO4)2·H2O
Mr383.21
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.1784 (2), 10.1741 (2), 9.0896 (2)
β (°) 114.142 (1)
V3)690.17 (3)
Z4
Radiation typeMo Kα
µ (mm1)7.54
Crystal size (mm)0.32 × 0.27 × 0.19
Data collection
DiffractometerBruker X8 APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.574, 0.748
No. of measured, independent and
observed [I > 2σ(I)] reflections
11327, 2407, 2305
Rint0.023
(sin θ/λ)max1)0.746
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.052, 1.11
No. of reflections2407
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.94, 0.84

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and Mohammed V University, Rabat, Morocco, for financial support.

References

First citationAssani, A., Saadi, M. & El Ammari, L. (2010). Acta Cryst. E66, i44.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJignasa, A., Rakesh, T. & Uma, C. (2006). J. Chem. Sci. 118, 185–189.  Google Scholar
First citationKhmiyas, J., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 55–57.  Google Scholar
First citationLiao, J. H., Leroux, F., Guyomard, D., Piffard, Y. & Tournoux, M. (1995). Eur. J. Solid State Inorg. Chem. 32, 403–414.  CAS Google Scholar
First citationMoore, P. B. & Araki, T. (1975). Am. Mineral. 60, 454–459.  CAS Google Scholar
First citationRiou, A., Cudennec, Y. & Gerault, Y. (1987). Acta Cryst. C43, 821–823.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSørensen, M. B., Hazell, R. G., Bentien, A., Bond, A. D. & Jensen, T. R. (2005). Dalton Trans. pp. 598–606.  Google Scholar
First citationViter, V. N. & Nagornyi, P. G. (2009). Russ. J. Appl. Chem. 82, 935–939.  Web of Science CrossRef CAS Google Scholar
First citationWeng, W., Lin, Z., Dummer, N. F., Bartley, J. K., Hutchings, G. J. & Kiely, C. J. (2009). Microsc. Microanal. 15, 1438–1439.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 154-156
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds