research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 151-153

Crystal structure of bis­­(cyclo­hexyl­ammonium) di­phenyl­dioxalatostannate(IV)

aLaboratoire de Chimie Minérale et Analytique (LACHIMIA), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bICMUB UMR 6302, Université de Bourgogne, Faculté des Sciences, 9 avenue Alain Savary, 21000 Dijon, France
*Correspondence e-mail: hcattey@u-bourgogne.fr

Edited by M. Weil, Vienna University of Technology, Austria (Received 7 December 2014; accepted 19 December 2014; online 10 January 2015)

Reaction of oxalic acid and di­phenyl­tin dichloride in the presence of cyclo­hexyl­amine led to the formation of the title salt, (C6H14N)2[Sn(C6H5)2(C2O4)2]. The dianion is made up from an Sn(C6H5)2 moiety cis-coordinated by two chelating oxalate anions, leading to an overall distorted octa­hedral coordination geometry of the SnIV atom. The negative charges are compensated by two surrounding cyclo­hexyl­ammonium cations adopting chair conformations each. In the crystal, anions and cations are linked via a network of N—H⋯O hydrogen bonds into a layered arrangement parallel to (101).

1. Chemical context

Organotin(IV) complexes are particularly investigated for their catalytic applications as well as for their potential biocidal properties (Davies et al., 2008[Davies, A. G., Gielen, M., Pannell, K. H. & Tiekink, E. R. T. (2008). Tin Chemistry, Fundamentals, Frontiers, and Applications. Chichester: John Wiley & Sons Ltd.]). Thus, numerous studies have been carried out in order to determine the biological properties of organotin(IV) compounds against bacteria, fungi or cancer cell lines (Gielen, 2002[Gielen, M. (2002). Appl. Organomet. Chem. 16, 481-494.]). In this context, and in the course of our ongoing studies on organotin(IV) chemistry (Gueye et al., 1993[Gueye, O., Qamar, H., Diop, L., Diop, C. A. & Russo, U. (1993). Main Group Met. Chem. 12, 1245-1249.]; Kane et al., 2009[Kane, H. Q. H., Okio, K. Y. A., Diop, L. & Mahieu, B. (2009). Main Group Met. Chem. 32, 229-233.]; Fall, Okio et al., 2010[Fall, A., Okio, K., Diop, L., Jouen, S. & Hannoyer, B. (2010). Main Group Met. Chem. 33, 227-231.]; Fall, Sow et al., 2010[Fall, A., Sow, Y., Diop, L., Diop, C. A. K. & Russo, U. (2010). Main Group Met. Chem. 33, 233-240.]), we have isolated the title stannate as colourless crystals from the reaction of oxalic acid and di­phenyl­tin dichloride in the presence of cyclo­hexyl­amine. To date, several organotin(IV) oxalates have been characterized by X-ray crystallographic analysis showing cis- and trans-coordination of the oxalate anion, depending on the nature of the σ-bonded carbon ligand that is linked to SnIV (Ng, 1996[Ng, S. W. (1996). Acta Cryst. C52, 2990-2992.], 1999[Ng, S. W. (1999). J. Organomet. Chem. 585, 12-17.]; Ng et al., 1992[Ng, S. W., Kumar Das, V. G., Gielen, M. & Tiekink, E. R. T. (1992). Appl. Organomet. Chem. 6, 19-25.]; Ng & Hook, 1999[Ng, S. W. & Hook, J. M. (1999). Acta Cryst. C55, 310-312.]; Ng & Rae, 2000[Ng, S. W. & Rae, A. D. (2000). Z. Kristallogr. 215, 199-204.]; Xu et al., 2003a[Xu, T., Yang, S.-Y., Xie, Z.-X. & Ng, S. W. (2003a). Acta Cryst. E59, m870-m872.],b[Xu, T., Yang, S.-Y., Xie, Z.-X. & Ng, S. W. (2003b). Acta Cryst. E59, m873-m875.]; Gueye et al., 2010[Gueye, N., Diop, L., Molloy, K. C. K. & Kociok-Köhn, G. (2010). Acta Cryst. E66, m1645-m1646.], 2012[Gueye, N., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2012). Acta Cryst. E68, m854-m855.]; Reichelt & Reuter, 2014[Reichelt, M. & Reuter, H. (2014). Acta Cryst. E70, m133.]).

[Scheme 1]

2. Structural comment

In the title salt, 2(C6H14N)+[Sn(C6H5)2(C2O4)2]2− or 2(CyNH3)+[Sn(Ph2)(C2O4)2]2− (Cy is cyclo­hexyl; Ph is phen­yl), the SnPh2 moiety is chelated by two oxalate anions, leading to a cis arrangement within the distorted octa­hedral coordination sphere of the SnIV atom. The Sn—C distances and angles of the SnPh2 moiety [Sn—C5 = 2.1388 (15) Å, Sn—C11 = 2.1486 (15) Å with a C5—Sn—C11 angle of 106.94 (6)°] are similar to those previously reported for analogous di­phenyl­tin(IV) derivatives (Xu et al., 2003a[Xu, T., Yang, S.-Y., Xie, Z.-X. & Ng, S. W. (2003a). Acta Cryst. E59, m870-m872.],b[Xu, T., Yang, S.-Y., Xie, Z.-X. & Ng, S. W. (2003b). Acta Cryst. E59, m873-m875.]; Ng & Rae, 2000[Ng, S. W. & Rae, A. D. (2000). Z. Kristallogr. 215, 199-204.]). The chelation of both oxalate anions is relatively symmetrical [Sn—O1 = 2.2005 (10) Å and Sn—O3 2.1267 (10) Å; Sn—O5 2.1883 (10) Å and Sn—O7 2.1396 (10) Å]. However, the oxalate anions are slightly distorted with O1—C1—C2—O3 and O5—C3—C4—O7 torsion angles of −4.0 (2) and −9.98 (19)°, respectively. They form a dihedral angle of 77.40 (8)° between their least-squares planes. The mol­ecular structure of the title compound, showing the atom-numbering scheme, is depicted in Fig. 1[link].

[Figure 1]
Figure 1
The mol­ecular components of the title salt, showing the atom labelling and with displacement ellipsoids drawn at the 30% probability level. Colour code: Sn = light blue, O = red, N = blue, C = grey and H = white.

3. Supra­molecular features

From a supra­molecular point of view, anions and cations of the title salt exhibit inter­molecular inter­actions through N—H⋯O hydrogen-bonding contacts. Both coordinating and non-coordinating oxygen atoms of both oxalate anions are involved in these inter­actions (Table 1[link]). Compared to the related structures of bis­(diiso­propyl­ammonium) [di­phenyl­dioxalatostannates(IV)] (Xu et al., 2003a[Xu, T., Yang, S.-Y., Xie, Z.-X. & Ng, S. W. (2003a). Acta Cryst. E59, m870-m872.],b[Xu, T., Yang, S.-Y., Xie, Z.-X. & Ng, S. W. (2003b). Acta Cryst. E59, m873-m875.]) where the supra­molecular arrangement defines infinite zigzag chains, the cyclo­hexyl­ammonium cations in the title structure lead to a layer-like arrangement parallel to (101) (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2 0.91 1.90 2.7851 (18) 163
N2—H2B⋯O6i 0.91 2.20 2.8885 (17) 132
N2—H2B⋯O8i 0.91 2.23 3.0583 (18) 151
N2—H2C⋯O6ii 0.91 2.68 3.2403 (18) 121
N2—H2C⋯O8ii 0.91 2.01 2.8970 (18) 164
N1—H1A⋯O6i 0.91 1.98 2.8842 (17) 177
N1—H1B⋯O3iii 0.91 2.31 2.9393 (16) 126
N1—H1B⋯O4iii 0.91 2.35 3.2550 (18) 177
N1—H1C⋯O4 0.91 2.13 3.0076 (18) 163
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z+1; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal packing of the title compound, viewed approximately along the b axis, showing the layer-like arrangement parallel (101) via hydrogen-bonding inter­actions (dashed orange lines). H atoms not involved in hydrogen bonding have been omitted for clarity. Colour code: Sn = light blue, C = dark grey, H = white, N = dark blue and O = red.

4. Synthesis and crystallization

Chemicals were purchased from Sigma–Aldrich, and used without further purification. The title compound was obtained by reacting [(CyNH3)2C2O4]·1.5H2O – obtained previously in crystalline form by mixing CyNH2 with oxalic acid (C2O4H2) in a 2:1 molar ratio in water and evaporation at 333 K – with SnPh2Cl2 in methanol (molar ratio 2:1). Colourless single crystals suitable for X-ray diffraction analysis were obtained by slow solvent evaporation at room temperature.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms bonded to C or N atoms were placed at calculated positions using a riding model with C—H = 0.95 (aromatic), 0.99 (methyl­ene) or N—H = 0.91 Å (amine) and with Uiso(H) = 1.2Ueq(C or N).

Table 2
Experimental details

Crystal data
Chemical formula (C6H14N)2[Sn(C6H5)2(C2O2)2]
Mr 649.29
Crystal system, space group Monoclinic, P21/n
Temperature (K) 115
a, b, c (Å) 16.0084 (6), 8.9010 (3), 20.8060 (8)
β (°) 90.288 (1)
V3) 2964.63 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.91
Crystal size (mm) 0.50 × 0.30 × 0.23
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.652, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 30318, 6831, 6077
Rint 0.025
(sin θ/λ)max−1) 0.652
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.048, 1.05
No. of reflections 6831
No. of parameters 354
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.38
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Chemical context top

Organotin(IV) complexes are particularly investigated for their catalytic applications as well as for their potential biocidal properties (Davies et al., 2008). Thus, numerous studies have been carried out in order to determine the biological properties of organotin(IV) compounds against bacteria, fungi or cancer cell lines (Gielen, 2002). In this context, and in the course of our ongoing studies on organotin(IV) chemistry (Gueye et al., 1993; Kane et al., 2009; Fall, Okio et al., 2010; Fall, Sow et al., 2010), we have isolated the title stannate as colourless crystals from the reaction of oxalic acid and di­phenyl­tin dichloride in the presence of cyclo­hexyl­amine. To date, several organotin(IV) oxalates have been characterized by X-ray crystallographic analysis showing cis- and trans-coordination of the oxalate anion, depending on the nature of the σ-bonded carbon ligand that is linked to SnIV (Ng, 1996, 1999; Ng et al., 1992; Ng & Hook, 1999; Ng & Rae, 2000; Xu et al., 2003a,b; Gueye et al., 2010, 2012; Reichelt & Reuter, 2014).

Structural comment top

In the title salt, 2(C6H14N)+[Sn(C6H5)2(C2O4)2]2- or 2(CyNH3)+[Sn(Ph2)(C2O4)2]2- (Cy is cyclo­hexyl; Ph is phenyl), the SnPh2 moiety is chelated by two oxalate anions, leading to a cis arrangement within the distorted o­cta­hedral coordination sphere of the SnIV atom. The Sn—C distances and angles of the SnPh2 moiety [Sn—C5 = 2.1388 (15) Å, Sn—C11 = 2.1486 (15) Å with a C5—Sn—C11 angle of 106.94 (6)°] are similar to those previously reported for analogous di­phenyl­tin(IV) derivatives (Xu et al., 2003a,b; Ng & Rae, 2000). The chelation of both oxalate anions is relatively symmetrical [Sn—O1 = 2.2005 (10) Å and Sn—O3 2.1267 (10) Å; Sn—O5 2.1883 (10) Å and Sn—O7 2.1396 (10) Å]. However, the oxalate anions are slightly distorted with O1—C1—C2—O3 and O5—C3—C4—O7 torsion angles of -4.0 (2) and -9.98 (19)°, respectively. They form a dihedral angle of 77.40 (8)° between their least-squares planes. The molecular structure of the title compound, showing the atom-numbering scheme, is depicted in Fig. 1.

Supra­molecular features top

From a supra­molecular point of view, anions and cations of the title salt exhibit inter­molecular inter­actions through N—H···O hydrogen-bonding contacts. Both coordinating and non-coordinating oxygen atoms of both oxalate anions are involved in these inter­actions (Table 1). Compared to the related structure of bis­(diiso­propyl­ammonium) [di­phenyl­dioxalatostannates(IV)] (Xu et al., 2003a,b) where the supra­molecular arrangement defines infinite zigzag chains, the cyclo­hexyl­ammonium cations in the title structure lead to a layer-like arrangement parallel to (101) (Fig. 2).

Synthesis and crystallization top

Chemicals were purchased from Sigma–Aldrich, and used without further purification. The title compound was obtained by reacting [(CyNH3)2C2O4]·32H2O – obtained previously in crystalline form by mixing CyNH2 with oxalic acid (C2O4H2) in a 2:1 molar ratio in water and evaporation at 333 K – with SnPh2Cl2 in methanol (molar ratio 2:1). Colourless single crystals suitable for X-ray diffraction analysis were obtained by slow solvent evaporation at room temperature.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms bonded to C or N atoms were placed at calculated positions using a riding model with C—H = 0.95 (aromatic), 0.99 (methyl­ene) or N—H = 0.91 Å (amine) and with Uiso(H) = 1.2Ueq(C or N).

Related literature top

For related literature, see: Davies et al. (2008); Fall, Okio, Diop, Jouen & Hannoyer (2010); Fall, Sow, Diop, Diop & Russo (2010); Gielen (2002); Gueye et al. (1993, 2010, 2012); Kane et al. (2009); Ng (1996, 1999); Ng & Hook (1999); Ng & Rae (2000); Ng et al. (1992); Reichelt & Reuter (2014); Xu, Yang, Xie & Ng (2003, 2003).

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular components of the title salt, showing the atom labelling and with displacement ellipsoids drawn at the 30% probability level. Colour code: Sn = light blue, O = red, N = blue, C = grey and H = white.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed approximately along the b axis, showing the layer-like arrangement parallel (101) via hydrogen-bonding interactions (dashed orange lines). H atoms not involved in hydrogen bonding have been omitted for clarity. Colour code: Sn = light blue, C = dark grey, H = white, N = dark blue and O = red.
Bis(cyclohexylammonium) diphenyldioxalatostannate(IV) top
Crystal data top
(C6H14N)2[Sn(C6H5)2(C2O2)2]F(000) = 1336
Mr = 649.29Dx = 1.455 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9926 reflections
a = 16.0084 (6) Åθ = 2.5–27.6°
b = 8.9010 (3) ŵ = 0.91 mm1
c = 20.8060 (8) ÅT = 115 K
β = 90.288 (1)°Prism, colourless
V = 2964.63 (19) Å30.50 × 0.30 × 0.23 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
6077 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.025
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 27.6°, θmin = 2.6°
Tmin = 0.652, Tmax = 0.746h = 1920
30318 measured reflectionsk = 1111
6831 independent reflectionsl = 2726
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.0188P)2 + 1.6859P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.003
6831 reflectionsΔρmax = 0.37 e Å3
354 parametersΔρmin = 0.38 e Å3
0 restraints
Crystal data top
(C6H14N)2[Sn(C6H5)2(C2O2)2]V = 2964.63 (19) Å3
Mr = 649.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.0084 (6) ŵ = 0.91 mm1
b = 8.9010 (3) ÅT = 115 K
c = 20.8060 (8) Å0.50 × 0.30 × 0.23 mm
β = 90.288 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
6831 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
6077 reflections with I > 2σ(I)
Tmin = 0.652, Tmax = 0.746Rint = 0.025
30318 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.048H-atom parameters constrained
S = 1.05Δρmax = 0.37 e Å3
6831 reflectionsΔρmin = 0.38 e Å3
354 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.51059 (2)0.63627 (2)0.26048 (2)0.01224 (3)
O10.53271 (6)0.48705 (12)0.34316 (5)0.0161 (2)
O20.60914 (8)0.28994 (15)0.37435 (6)0.0298 (3)
O30.62046 (6)0.51474 (12)0.23644 (5)0.0167 (2)
O40.70720 (7)0.33267 (14)0.26676 (6)0.0253 (3)
O50.59259 (6)0.77093 (12)0.32213 (5)0.0168 (2)
O60.58885 (7)0.92654 (13)0.40624 (5)0.0194 (2)
O70.42652 (6)0.74042 (12)0.32654 (5)0.0154 (2)
O80.42376 (7)0.85828 (12)0.42139 (5)0.0198 (2)
C10.59203 (9)0.39309 (18)0.33711 (8)0.0178 (3)
C20.64560 (9)0.41207 (18)0.27566 (7)0.0171 (3)
C30.55591 (9)0.83851 (16)0.36756 (7)0.0140 (3)
C40.46009 (9)0.81040 (16)0.37349 (7)0.0136 (3)
C50.41711 (9)0.48308 (17)0.22695 (7)0.0152 (3)
C60.43554 (11)0.33624 (18)0.20842 (8)0.0228 (3)
H60.49160.30130.21050.027*
C70.37264 (12)0.2402 (2)0.18690 (9)0.0296 (4)
H70.38590.14020.17470.035*
C80.29096 (11)0.2901 (2)0.18317 (8)0.0281 (4)
H80.24830.22470.16800.034*
C90.27154 (10)0.4346 (2)0.20153 (8)0.0256 (4)
H90.21540.46880.19930.031*
C100.33417 (10)0.53031 (19)0.22323 (8)0.0200 (3)
H100.32020.62980.23580.024*
C110.52458 (10)0.80526 (17)0.18759 (8)0.0169 (3)
C120.46483 (11)0.81749 (19)0.13879 (8)0.0229 (3)
H120.41930.74910.13750.027*
C130.47103 (13)0.9286 (2)0.09192 (9)0.0319 (4)
H130.42940.93650.05940.038*
C140.53748 (14)1.0273 (2)0.09269 (10)0.0371 (5)
H140.54151.10350.06090.045*
C150.59799 (13)1.0150 (2)0.13979 (10)0.0375 (5)
H150.64431.08170.13980.045*
C160.59177 (11)0.9056 (2)0.18728 (9)0.0268 (4)
H160.63350.89910.21980.032*
N20.48965 (9)0.17026 (15)0.45662 (6)0.0198 (3)
H2A0.52390.22740.43180.024*
H2B0.48930.07420.44160.024*
H2C0.50850.17120.49790.024*
C230.40312 (10)0.23265 (17)0.45409 (8)0.0176 (3)
H230.36560.16620.47980.021*
C240.40273 (10)0.38860 (18)0.48363 (8)0.0226 (3)
H24A0.44290.45360.46070.027*
H24B0.42040.38240.52920.027*
C250.31532 (12)0.4573 (2)0.47938 (10)0.0357 (5)
H25A0.27630.39810.50610.043*
H25B0.31670.56120.49630.043*
C260.28439 (11)0.4592 (2)0.41009 (11)0.0357 (5)
H26A0.22680.49950.40870.043*
H26B0.32040.52650.38440.043*
C270.28533 (12)0.3030 (2)0.38087 (10)0.0345 (5)
H27A0.26750.30870.33530.041*
H27B0.24530.23800.40400.041*
C280.37231 (11)0.23443 (19)0.38491 (8)0.0257 (4)
H28A0.37080.13050.36800.031*
H28B0.41130.29360.35820.031*
N10.73487 (8)0.05755 (15)0.34805 (6)0.0182 (3)
H1A0.68770.01870.36570.022*
H1B0.75310.00440.31630.022*
H1C0.72360.14990.33130.022*
C170.80130 (9)0.07153 (18)0.39886 (7)0.0171 (3)
H170.85330.11070.37830.021*
C180.81959 (12)0.0828 (2)0.42605 (9)0.0288 (4)
H18A0.84010.14930.39140.035*
H18B0.76760.12690.44340.035*
C190.88557 (14)0.0728 (2)0.47965 (10)0.0412 (5)
H19A0.89350.17330.49910.049*
H19B0.93950.04090.46100.049*
C200.85982 (12)0.0381 (2)0.53148 (9)0.0319 (4)
H20A0.80930.00050.55350.038*
H20B0.90510.04700.56380.038*
C210.84186 (12)0.1913 (2)0.50270 (9)0.0309 (4)
H21A0.89370.23270.48400.037*
H21B0.82310.26040.53700.037*
C220.77453 (11)0.18142 (19)0.45050 (8)0.0241 (4)
H22A0.72130.14770.46970.029*
H22B0.76550.28180.43120.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.01278 (5)0.01303 (5)0.01090 (5)0.00039 (4)0.00020 (3)0.00061 (4)
O10.0153 (5)0.0196 (5)0.0135 (5)0.0037 (4)0.0023 (4)0.0018 (4)
O20.0287 (6)0.0363 (7)0.0244 (7)0.0157 (5)0.0075 (5)0.0145 (6)
O30.0166 (5)0.0200 (5)0.0136 (5)0.0018 (4)0.0040 (4)0.0023 (4)
O40.0175 (6)0.0329 (7)0.0256 (7)0.0097 (5)0.0053 (5)0.0033 (5)
O50.0138 (5)0.0205 (6)0.0161 (6)0.0015 (4)0.0009 (4)0.0040 (4)
O60.0173 (5)0.0221 (6)0.0189 (6)0.0023 (4)0.0023 (4)0.0056 (5)
O70.0132 (5)0.0170 (5)0.0160 (5)0.0004 (4)0.0002 (4)0.0035 (4)
O80.0180 (5)0.0244 (6)0.0170 (6)0.0019 (4)0.0022 (4)0.0050 (5)
C10.0152 (7)0.0237 (8)0.0145 (7)0.0021 (6)0.0001 (6)0.0022 (6)
C20.0140 (7)0.0216 (8)0.0157 (7)0.0006 (6)0.0005 (6)0.0009 (6)
C30.0153 (7)0.0124 (7)0.0141 (7)0.0005 (5)0.0010 (6)0.0022 (6)
C40.0146 (7)0.0113 (6)0.0149 (7)0.0014 (5)0.0010 (6)0.0019 (6)
C50.0189 (7)0.0160 (7)0.0107 (7)0.0021 (6)0.0001 (6)0.0001 (6)
C60.0234 (8)0.0214 (8)0.0237 (9)0.0003 (6)0.0018 (7)0.0039 (7)
C70.0395 (10)0.0205 (8)0.0289 (10)0.0076 (7)0.0048 (8)0.0095 (7)
C80.0300 (9)0.0341 (10)0.0201 (9)0.0173 (8)0.0009 (7)0.0047 (7)
C90.0185 (8)0.0368 (10)0.0214 (9)0.0059 (7)0.0022 (6)0.0000 (8)
C100.0212 (8)0.0197 (8)0.0191 (8)0.0007 (6)0.0005 (6)0.0009 (6)
C110.0212 (8)0.0139 (7)0.0157 (8)0.0027 (6)0.0044 (6)0.0002 (6)
C120.0270 (9)0.0234 (8)0.0182 (8)0.0011 (7)0.0006 (7)0.0012 (7)
C130.0446 (11)0.0328 (10)0.0183 (9)0.0123 (9)0.0001 (8)0.0063 (8)
C140.0603 (13)0.0227 (9)0.0285 (10)0.0055 (9)0.0130 (9)0.0110 (8)
C150.0461 (12)0.0260 (10)0.0404 (12)0.0105 (9)0.0076 (9)0.0091 (9)
C160.0290 (9)0.0237 (8)0.0276 (9)0.0059 (7)0.0011 (7)0.0037 (7)
N20.0283 (7)0.0188 (7)0.0122 (6)0.0068 (5)0.0016 (5)0.0004 (5)
C230.0204 (8)0.0162 (7)0.0163 (8)0.0004 (6)0.0000 (6)0.0020 (6)
C240.0250 (8)0.0205 (8)0.0223 (8)0.0034 (6)0.0003 (7)0.0032 (7)
C250.0312 (10)0.0303 (10)0.0456 (12)0.0117 (8)0.0072 (9)0.0008 (9)
C260.0232 (9)0.0321 (10)0.0516 (13)0.0037 (8)0.0037 (9)0.0154 (9)
C270.0308 (10)0.0331 (10)0.0394 (12)0.0095 (8)0.0151 (8)0.0140 (9)
C280.0357 (10)0.0220 (8)0.0192 (8)0.0032 (7)0.0070 (7)0.0023 (7)
N10.0158 (6)0.0220 (7)0.0167 (7)0.0046 (5)0.0022 (5)0.0002 (5)
C170.0149 (7)0.0204 (8)0.0160 (8)0.0006 (6)0.0012 (6)0.0006 (6)
C180.0408 (10)0.0214 (8)0.0243 (9)0.0120 (8)0.0058 (8)0.0023 (7)
C190.0523 (13)0.0412 (12)0.0299 (11)0.0266 (10)0.0150 (9)0.0054 (9)
C200.0395 (11)0.0367 (10)0.0195 (9)0.0080 (8)0.0060 (8)0.0013 (8)
C210.0413 (11)0.0280 (9)0.0234 (9)0.0007 (8)0.0047 (8)0.0050 (8)
C220.0314 (9)0.0192 (8)0.0216 (9)0.0076 (7)0.0003 (7)0.0029 (7)
Geometric parameters (Å, º) top
Sn—O12.2005 (10)N2—H2C0.9100
Sn—O32.1267 (10)N2—C231.493 (2)
Sn—O52.1883 (10)C23—H231.0000
Sn—O72.1396 (10)C23—C241.518 (2)
Sn—C52.1388 (15)C23—C281.519 (2)
Sn—C112.1486 (15)C24—H24A0.9900
O1—C11.2721 (18)C24—H24B0.9900
O2—C11.2312 (19)C24—C251.529 (2)
O3—C21.2883 (19)C25—H25A0.9900
O4—C21.2280 (19)C25—H25B0.9900
O5—C31.2672 (18)C25—C261.522 (3)
O6—C31.2391 (18)C26—H26A0.9900
O7—C41.2751 (18)C26—H26B0.9900
O8—C41.2326 (18)C26—C271.517 (3)
C1—C21.552 (2)C27—H27A0.9900
C3—C41.560 (2)C27—H27B0.9900
C5—C61.395 (2)C27—C281.522 (3)
C5—C101.394 (2)C28—H28A0.9900
C6—H60.9500C28—H28B0.9900
C6—C71.393 (2)N1—H1A0.9100
C7—H70.9500N1—H1B0.9100
C7—C81.383 (3)N1—H1C0.9100
C8—H80.9500N1—C171.5009 (19)
C8—C91.378 (3)C17—H171.0000
C9—H90.9500C17—C181.514 (2)
C9—C101.389 (2)C17—C221.516 (2)
C10—H100.9500C18—H18A0.9900
C11—C121.396 (2)C18—H18B0.9900
C11—C161.398 (2)C18—C191.535 (3)
C12—H120.9500C19—H19A0.9900
C12—C131.393 (2)C19—H19B0.9900
C13—H130.9500C19—C201.521 (3)
C13—C141.380 (3)C20—H20A0.9900
C14—H140.9500C20—H20B0.9900
C14—C151.379 (3)C20—C211.516 (3)
C15—H150.9500C21—H21A0.9900
C15—C161.391 (3)C21—H21B0.9900
C16—H160.9500C21—C221.529 (2)
N2—H2A0.9100C22—H22A0.9900
N2—H2B0.9100C22—H22B0.9900
O3—Sn—O175.33 (4)C24—C23—H23108.7
O3—Sn—O585.53 (4)C24—C23—C28111.84 (13)
O3—Sn—O7153.52 (4)C28—C23—H23108.7
O3—Sn—C5100.20 (5)C23—C24—H24A109.6
O3—Sn—C1195.78 (5)C23—C24—H24B109.6
O5—Sn—O177.21 (4)C23—C24—C25110.36 (14)
O7—Sn—O181.88 (4)H24A—C24—H24B108.1
O7—Sn—O576.33 (4)C25—C24—H24A109.6
O7—Sn—C11102.60 (5)C25—C24—H24B109.6
C5—Sn—O188.84 (5)C24—C25—H25A109.5
C5—Sn—O5163.15 (5)C24—C25—H25B109.5
C5—Sn—O792.55 (5)H25A—C25—H25B108.1
C5—Sn—C11106.94 (6)C26—C25—C24110.63 (16)
C11—Sn—O1163.22 (5)C26—C25—H25A109.5
C11—Sn—O588.05 (5)C26—C25—H25B109.5
C1—O1—Sn115.90 (9)C25—C26—H26A109.3
C2—O3—Sn117.90 (9)C25—C26—H26B109.3
C3—O5—Sn114.73 (9)H26A—C26—H26B108.0
C4—O7—Sn116.08 (9)C27—C26—C25111.46 (16)
O1—C1—C2115.19 (13)C27—C26—H26A109.3
O2—C1—O1126.29 (15)C27—C26—H26B109.3
O2—C1—C2118.51 (14)C26—C27—H27A109.5
O3—C2—C1115.26 (13)C26—C27—H27B109.5
O4—C2—O3124.14 (14)C26—C27—C28110.87 (15)
O4—C2—C1120.59 (14)H27A—C27—H27B108.1
O5—C3—C4116.26 (13)C28—C27—H27A109.5
O6—C3—O5125.96 (14)C28—C27—H27B109.5
O6—C3—C4117.75 (13)C23—C28—C27110.43 (15)
O7—C4—C3115.39 (13)C23—C28—H28A109.6
O8—C4—O7126.13 (14)C23—C28—H28B109.6
O8—C4—C3118.47 (13)C27—C28—H28A109.6
C6—C5—Sn122.61 (12)C27—C28—H28B109.6
C10—C5—Sn119.36 (11)H28A—C28—H28B108.1
C10—C5—C6118.02 (14)H1A—N1—H1B109.5
C5—C6—H6119.7H1A—N1—H1C109.5
C7—C6—C5120.68 (16)H1B—N1—H1C109.5
C7—C6—H6119.7C17—N1—H1A109.5
C6—C7—H7119.9C17—N1—H1B109.5
C8—C7—C6120.20 (16)C17—N1—H1C109.5
C8—C7—H7119.9N1—C17—H17108.4
C7—C8—H8120.0N1—C17—C18108.84 (13)
C9—C8—C7119.91 (16)N1—C17—C22110.54 (12)
C9—C8—H8120.0C18—C17—H17108.4
C8—C9—H9120.0C18—C17—C22112.06 (14)
C8—C9—C10119.93 (16)C22—C17—H17108.4
C10—C9—H9120.0C17—C18—H18A109.6
C5—C10—H10119.4C17—C18—H18B109.6
C9—C10—C5121.24 (15)C17—C18—C19110.48 (16)
C9—C10—H10119.4H18A—C18—H18B108.1
C12—C11—Sn119.65 (11)C19—C18—H18A109.6
C12—C11—C16118.11 (15)C19—C18—H18B109.6
C16—C11—Sn122.24 (12)C18—C19—H19A109.3
C11—C12—H12119.5C18—C19—H19B109.3
C13—C12—C11120.91 (17)H19A—C19—H19B108.0
C13—C12—H12119.5C20—C19—C18111.41 (15)
C12—C13—H13119.9C20—C19—H19A109.3
C14—C13—C12120.11 (18)C20—C19—H19B109.3
C14—C13—H13119.9C19—C20—H20A109.5
C13—C14—H14120.1C19—C20—H20B109.5
C15—C14—C13119.77 (17)H20A—C20—H20B108.1
C15—C14—H14120.1C21—C20—C19110.81 (16)
C14—C15—H15119.7C21—C20—H20A109.5
C14—C15—C16120.53 (18)C21—C20—H20B109.5
C16—C15—H15119.7C20—C21—H21A109.4
C11—C16—H16119.7C20—C21—H21B109.4
C15—C16—C11120.54 (18)C20—C21—C22111.15 (15)
C15—C16—H16119.7H21A—C21—H21B108.0
H2A—N2—H2B109.5C22—C21—H21A109.4
H2A—N2—H2C109.5C22—C21—H21B109.4
H2B—N2—H2C109.5C17—C22—C21109.86 (14)
C23—N2—H2A109.5C17—C22—H22A109.7
C23—N2—H2B109.5C17—C22—H22B109.7
C23—N2—H2C109.5C21—C22—H22A109.7
N2—C23—H23108.7C21—C22—H22B109.7
N2—C23—C24109.37 (13)H22A—C22—H22B108.2
N2—C23—C28109.51 (13)
Sn—O1—C1—O2171.88 (14)C8—C9—C10—C50.0 (3)
Sn—O1—C1—C26.94 (17)C10—C5—C6—C70.0 (2)
Sn—O3—C2—O4178.78 (12)C11—C12—C13—C140.9 (3)
Sn—O3—C2—C11.22 (17)C12—C11—C16—C150.5 (3)
Sn—O5—C3—O6176.13 (12)C12—C13—C14—C150.4 (3)
Sn—O5—C3—C42.10 (16)C13—C14—C15—C161.2 (3)
Sn—O7—C4—O8168.51 (12)C14—C15—C16—C110.8 (3)
Sn—O7—C4—C312.63 (16)C16—C11—C12—C131.4 (2)
Sn—C5—C6—C7179.96 (13)N2—C23—C24—C25177.93 (14)
Sn—C5—C10—C9179.79 (12)N2—C23—C28—C27177.92 (13)
Sn—C11—C12—C13178.20 (13)C23—C24—C25—C2655.7 (2)
Sn—C11—C16—C15179.04 (14)C24—C23—C28—C2756.52 (18)
O1—C1—C2—O34.0 (2)C24—C25—C26—C2756.3 (2)
O1—C1—C2—O4176.02 (15)C25—C26—C27—C2856.5 (2)
O2—C1—C2—O3174.93 (15)C26—C27—C28—C2355.9 (2)
O2—C1—C2—O45.1 (2)C28—C23—C24—C2556.44 (19)
O5—C3—C4—O79.98 (19)N1—C17—C18—C19178.38 (14)
O5—C3—C4—O8171.06 (13)N1—C17—C22—C21178.56 (14)
O6—C3—C4—O7168.40 (13)C17—C18—C19—C2054.6 (2)
O6—C3—C4—O810.6 (2)C18—C17—C22—C2156.96 (19)
C5—C6—C7—C80.5 (3)C18—C19—C20—C2155.5 (2)
C6—C5—C10—C90.2 (2)C19—C20—C21—C2256.9 (2)
C6—C7—C8—C90.8 (3)C20—C21—C22—C1757.1 (2)
C7—C8—C9—C100.5 (3)C22—C17—C18—C1955.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O20.911.902.7851 (18)163
N2—H2B···O6i0.912.202.8885 (17)132
N2—H2B···O8i0.912.233.0583 (18)151
N2—H2C···O6ii0.912.683.2403 (18)121
N2—H2C···O8ii0.912.012.8970 (18)164
N1—H1A···O6i0.911.982.8842 (17)177
N1—H1B···O3iii0.912.312.9393 (16)126
N1—H1B···O4iii0.912.353.2550 (18)177
N1—H1C···O40.912.133.0076 (18)163
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x+3/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O20.911.902.7851 (18)163.0
N2—H2B···O6i0.912.202.8885 (17)132.4
N2—H2B···O8i0.912.233.0583 (18)151.3
N2—H2C···O6ii0.912.683.2403 (18)120.5
N2—H2C···O8ii0.912.012.8970 (18)164.3
N1—H1A···O6i0.911.982.8842 (17)177.1
N1—H1B···O3iii0.912.312.9393 (16)125.8
N1—H1B···O4iii0.912.353.2550 (18)177.0
N1—H1C···O40.912.133.0076 (18)163.0
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C6H14N)2[Sn(C6H5)2(C2O2)2]
Mr649.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)115
a, b, c (Å)16.0084 (6), 8.9010 (3), 20.8060 (8)
β (°) 90.288 (1)
V3)2964.63 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.91
Crystal size (mm)0.50 × 0.30 × 0.23
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2014)
Tmin, Tmax0.652, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
30318, 6831, 6077
Rint0.025
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.048, 1.05
No. of reflections6831
No. of parameters354
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.38

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

The authors gratefully acknowledge the Cheikh Anta Diop University of Dakar (Senegal), the Centre National de la Recherche Scientifique (CNRS, France) and the University of Burgundy (Dijon, France).

References

First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDavies, A. G., Gielen, M., Pannell, K. H. & Tiekink, E. R. T. (2008). Tin Chemistry, Fundamentals, Frontiers, and Applications. Chichester: John Wiley & Sons Ltd.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFall, A., Okio, K., Diop, L., Jouen, S. & Hannoyer, B. (2010). Main Group Met. Chem. 33, 227–231.  Google Scholar
First citationFall, A., Sow, Y., Diop, L., Diop, C. A. K. & Russo, U. (2010). Main Group Met. Chem. 33, 233–240.  Google Scholar
First citationGielen, M. (2002). Appl. Organomet. Chem. 16, 481–494.  Web of Science CrossRef CAS Google Scholar
First citationGueye, N., Diop, L., Molloy, K. C. K. & Kociok-Köhn, G. (2010). Acta Cryst. E66, m1645–m1646.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGueye, N., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2012). Acta Cryst. E68, m854–m855.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGueye, O., Qamar, H., Diop, L., Diop, C. A. & Russo, U. (1993). Main Group Met. Chem. 12, 1245–1249.  Google Scholar
First citationKane, H. Q. H., Okio, K. Y. A., Diop, L. & Mahieu, B. (2009). Main Group Met. Chem. 32, 229–233.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNg, S. W. (1996). Acta Cryst. C52, 2990–2992.  CSD CAS Web of Science Google Scholar
First citationNg, S. W. (1999). J. Organomet. Chem. 585, 12–17.  Web of Science CSD CrossRef CAS Google Scholar
First citationNg, S. W. & Hook, J. M. (1999). Acta Cryst. C55, 310–312.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNg, S. W., Kumar Das, V. G., Gielen, M. & Tiekink, E. R. T. (1992). Appl. Organomet. Chem. 6, 19–25.  CSD CrossRef CAS Web of Science Google Scholar
First citationNg, S. W. & Rae, A. D. (2000). Z. Kristallogr. 215, 199–204.  Web of Science CSD CrossRef CAS Google Scholar
First citationReichelt, M. & Reuter, H. (2014). Acta Cryst. E70, m133.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, T., Yang, S.-Y., Xie, Z.-X. & Ng, S. W. (2003a). Acta Cryst. E59, m870–m872.  Google Scholar
First citationXu, T., Yang, S.-Y., Xie, Z.-X. & Ng, S. W. (2003b). Acta Cryst. E59, m873–m875.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 151-153
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds