research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 244-247

Crystal structure of paddle-wheel sandwich-type [Cu2{(CH3)2CO}{μ-Fe(η5-C5H4C≡N)2}3](BF4)2·(CH3)2CO

aTechnische Universität Chemnitz, Fakultät für Naturwissenschaften, Institut für Chemie, Anorganische Chemie, D-09107 Chemnitz, Germany
*Correspondence e-mail: heinrich.lang@chemie.tu-chemnitz.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 9 December 2014; accepted 27 January 2015; online 31 January 2015)

The mol­ecular structure of (acetone-κO)tris­(μ-ferrocene-1,1′-dicarbo­nitrile-κ2N:N′)dicopper(I) bis­(tetra­fluorido­borate) acetone monosolvate, [Cu2Fe3(C6H4N)6(C3H6O)](BF4)2·C3H6O, consists of two CuI ions bridged by a ferrocene-1,1′-dicarbo­nitrile moiety in a paddle-wheel-architectured sandwich complex with two BF4 units as counter-ions. One of the latter is equally disordered over two sets of sites. The two CuI ions are complexed in a trigonal–planar manner by three nitrile N-donor atoms. Further inter­actions by the O atom of an acetone mol­ecule to one of the CuI atoms and a weak η2,π-inter­action of two atoms of a cyclo­penta­dienyl ring to the other CuI atom complete a distorted trigonal–pyramidal environment for each of the metal ions. A further acetone mol­ecule is also present as a solvent mol­ecule. The crystal packing is consolidated by several ππ inter­actions.

1. Chemical context

The electron-transfer properties of the acetyl­ide function have been investigated intensively by using bridging units of the type —C≡C—M—C≡C— (M = transition metal), showing moderate electron communication between two redox-active metallocenyl termini in the mixed-valence species (see, for example: Lang et al., 2006[Lang, H., Packheiser, R. & Walfort, B. (2006). Organometallics, 25, 1836-1850.]; Vives et al., 2006[Vives, G., Carella, A., Sistach, S., Launay, J.-P. & Rapenne, G. (2006). New J. Chem. 30, 1429-1438.]; Jakob et al., 2009[Jakob, A., Ecorchard, P., Linseis, M., Winter, R. F. & Lang, H. (2009). J. Organomet. Chem. 694, 655-666.]; Díez et al., 2008[Díez, A., Fernández, J., Lalinde, E., Moreno, M. T. & Sánchez, S. (2008). Dalton Trans. pp. 4926-4936.], 2009[Díez, Á., Lalinde, E., Moreno, M. T. & Sánchez, S. (2009). Dalton Trans. pp. 3434-3446.]; Osella et al., 1998[Osella, D., Gobetto, R., Nervi, C., Ravera, M., D'Amato, R. & Russo, M. V. (1998). Inorg. Chem. Commun. 1, 239-245.]; Packheiser et al., 2008[Packheiser, R., Lohan, M., Bräuer, B., Justaud, F., Lapinte, C. & Lang, H. (2008). J. Organomet. Chem. 693, 2898-2902.]; Burgun et al., 2013[Burgun, A., Gendron, F., Schauer, P. A., Skelton, B. W., Low, P. J., Costuas, K., Halet, J.-F., Bruce, M. I. & Lapinte, C. (2013). Organometallics, 32, 5015-5025.]). The nitrile group is isoelectronic with the acetyl­ide function; Bonniard et al. (2011[Bonniard, L., Kahlal, S., Diallo, A. K., Ornelas, C., Roisnel, T., Manca, G., Rodrigues, J., Ruiz, J., Astruc, D. & Saillard, J. Y. (2011). Inorg. Chem. 50, 114-124.]) described how an —N≡C—C6H4—C≡N— linkage between two iron fragments prohibits the electronic inter­action between the transition metal atoms, while the isoelectric di(acetyl­ene)–phenyl­ene bridge shows a moderate delocalization. In contrast, a weak electron transfer by generation of the mixed-valence species [Ru(N≡CFc)(NH3)5]3+ [Fc = Fe(η5-C5H4)(η5-C5H5)] has been described (Dowling et al., 1981[Dowling, N., Henry, P. M., Lewis, N. A. & Taube, H. (1981). Inorg. Chem. 20, 2345-2348.]). We recently reported on the synthesis, characterization and electrochemical properties of platinum and copper complexes containing a —C≡N—M—N≡C— (M = Cu or Pt) bridging unit between two redox-active ferrocenyl moieties (Strehler et al., 2013[Strehler, F., Hildebrandt, H., Korb, M. & Lang, H. (2013). Z. Anorg. Allg. Chem. 639, 1214-1219.], 2014[Strehler, F., Hildebrandt, H., Korb, M., Rüffer, T. & Lang, H. (2014). Organometallics, 33, 4279-4289.]) to achieve a direct comparison with the —C≡C—M—C≡C— building blocks. In addition, the coord­ination of ferrocene-1,1′-dicarbo­nitrile towards PtCl2 resulted in an oligomeric complex (Strehler et al., 2014[Strehler, F., Hildebrandt, H., Korb, M., Rüffer, T. & Lang, H. (2014). Organometallics, 33, 4279-4289.]). In a continuation of this work, we present herein the synthesis and crystal structure of [Cu2{(CH3)2CO}{μ-Fe(η5-C5H4C≡N)2}3](BF4)2·(CH3)2CO, (I)[link]. The synthesis of this compound was realized by comproportionation of elementary copper and a copper(II) salt in the presence of 1,1′-ferrocenediyl dicarbo­nitrile.

[Scheme 1]

2. Structural commentary

The title compound contains one penta­metallic Cu2Fe3 complex mol­ecule in the asymmetric unit consisting of two CuI ions bridged by three 1,1′-ferrocenediyl dicarbo­nitrile ligands that form a triangular paddle-wheel sandwich-type complex with iron⋯iron distances ranging from 9.1739 (13) (Fe2⋯Fe3) to 10.0385 (12) Å (Fe1ctdot;Fe2). The complex crystallizes with two BF4 counter-ions and two mol­ecules of acetone. One acetone mol­ecule coordinates with its oxygen atom to Cu1 [Cu1—O1 2.375 (2) Å], leading to an 18 VE complex and an overall distorted trigonal–pyramidal environment. The Cu2 ion exhibits a weak inter­molecular η2, π inter­action [3.1520 (6) Å; Table 1[link], Fig. 1[link]] with two atoms of an adjacent cyclo­penta­dienyl ring, and thus, only a 16 VE complex is present. The deviation from the N3 plane is increased for Cu1 [0.1883 (16) Å] as compared to Cu2 [0.0602 (16) Å] due to a stronger inter­action with the axial moiety. The Cu⋯Cu distance [3.3818 (7) Å] exceeds the sum of the van der Waals radii (Σ = 2.80 Å; Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]), indicating that the CuI ions do not inter­act with each other.

Table 1
ππ inter­actions (Å, °) for (I)[link]

The angle α is described by calculating the respective ππ bond relative to the centroid of the involved aromatic C5 ring.

Involved atoms distance α
Cu2 ⋯ C26A—C27A 3.1520 (6) 93.23 (1)
C26—C27⋯ Cu2B 3.1520 (6) 93.23 (1)
C23⋯C23C 3.167 (6) 92.2 (2)
Symmetry codes: (A) x − 1, y, z; (B) 1 + x, y, z; (C) −x, 1 − y, 1 − z.
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing inter­molecular η2, π inter­actions between Cu2 and the C26—C27 bond, and short inter­actions between C23 and its symmetry-generated equivalent (Table 1[link]), with displacement ellipsoids drawn at the 50% probability level. All H atoms, the BF4 ions and the non-coordinating acetone solvent mol­ecule have been omitted for clarity. [Symmetry codes: (A) x − 1, y, z; (B) 1 + x, y, z; (C) −x, 1 − y, 1 − z.]

The two faces of the sandwich-type complex consist of almost coplanar cyclo­penta­dienyl aromatics and central planes formed by three nitro­gen atoms that are also almost coplanar towards the C5 planes. However, one cyclo­penta­dienyl ring of each site deviates from coplanarity (Table 2[link]), which results in a slight bending of the whole complex (Fig. 2[link]). The ferrocenyl cyclo­penta­dienyl moieties virtually exhibit ecliptic conformations [4.5 (2) to 6.4 (2) °], with synperiplanar-oriented carbo­nitrile substituents towards each other. Maximum deviations from this plane are observed for N5 [0.289 (7) Å] and Cu2 [0.825 (9) Å].

Table 2
Plane inter­section angles (°) for (I)

p defines a plane calculated by the following atom sequence.

Cp⋯Cp α Cp⋯N3 α
p(C2–C6)⋯p(C14–C18) 11.7 (3) p(C2–C6)⋯p(N1–N3) 11.8 (2)
p(C14–C18)⋯p(C26–C30) 23.8 (2) p(C14–C18)⋯p(N1–N3) 18.2 (2)
p(C26–C30)⋯p(C2–C6) 13.3 (2) p(C26–C30)⋯p(N1–N3) 8.9 (2)
p(C8–C12)⋯p(C32–C36) 12.8 (2) p(C8–C12)⋯p(N4–N6) 8.5 (2)
p(C20–C24)⋯p(C32–C36) 23.7 (2) p(C20–C24)⋯p(N4–N6) 19.66 (19)
p(C20–C24)⋯p(C8–C12) 11.1 (2) p(C20–C24)⋯p(N4–N6) 5.3 (2)
[Figure 2]
Figure 2
Packing of mol­ecular layers in the crystal structure of (I)[link], with displacement ellipsoids drawn at the 30% probability level. All H atoms have been omitted for clarity. The disorder of one of the counter-anions is not shown.

3. Supra­molecular features

Besides the already noted inter­molecular inter­action between Cu2 and the mid-point of the C26—C27 bond, ππ inter­actions are present in the crystal packing between the C23 atom and its symmetry-generated equivalent [3.167 (6) Å; Table 1[link]]. All other π inter­actions occur almost perpendicular to the involved C5 ring [α C5⋯C23, 92.2 (2) °; α C5⋯Cu2, 93.23 (1) °; Table 1[link]]. Compound (I)[link] forms a layer-type structure parallel to (11[\overline{1}]) (Fig. 2[link]), in which the coordinating acetone mol­ecule is part of the overlaying layer. The second acetone mol­ecule is present in each layer and does not exhibit any notable inter­molecular inter­actions. The distances between two layers are in the range of the above-mentioned inter­actions.

4. Database survey

Since the first synthesis of 1,1′-di­cyano­ferrocene (Osgerby & Pauson, 1961[Osgerby, J. & Pauson, P. (1961). J. Chem. Soc. pp. 4604-4609.]), only one example of a crystal structure has been reported, that of the mol­ecule itself (Altmannshofer et al., 2008[Altmannshofer, S., Herdtweck, E., Köhler, F. H., Miller, R., Mölle, R., Scheidt, E.-W., Scherer, W. & Train, C. (2008). Chem. Eur. J. 14, 8013-8024.]) which exhibits a similar synperiplanar torsion (–2.2°) of the cyclo­penta­dienyl rings to that in (I)[link]. Further mol­ecules bearing one nitrilo substituent at the ferrocenyl backbone include a penta­carbonyl tungsten complex with the second nitrilo functionality involved in a 2,3-di­hydro-1,2,3-aza­diphosphete (Helten et al., 2010[Helten, H., Beckmann, M., Schnakenburg, G. & Streubel, R. (2010). Eur. J. Inorg. Chem. pp. 2337-2341.]) and recently published square-planar cis- and trans-platinum(II) complexes of cyano­ferrocene (Strehler et al., 2014[Strehler, F., Hildebrandt, H., Korb, M., Rüffer, T. & Lang, H. (2014). Organometallics, 33, 4279-4289.]).

Trigonal–planar (hetero-bimetallic) CuI complexes are well described in the literature (Lang et al., 1995[Lang, H., Köhler, K. & Blau, S. (1995). Coord. Chem. Rev. 143, 113-168.], 2000[Lang, H., George, D. S. A. & Rheinwald, G. (2000). Coord. Chem. Rev. 206-207, 101-197.], 2006[Lang, H., Packheiser, R. & Walfort, B. (2006). Organometallics, 25, 1836-1850.]; Buschbeck et al., 2011[Buschbeck, R., Low, P. J. & Lang, H. (2011). Coord. Chem. Rev. 255, 241-272.]; Ferrara et al., 1987[Ferrara, J. D., Tessier-Youngs, C. & Youngs, W. J. (1987). Organometallics, 6, 676-678.]; Köhler et al., 1998[Köhler, K., Pritzkow, H. & Lang, H. (1998). J. Organomet. Chem. 553, 31-38.]; Frosch et al., 2000[Frosch, W., Back, S., Rheinwald, G., Köhler, K., Pritzkow, H. & Lang, H. (2000). Organometallics, 19, 4016-4024.], 2001[Frosch, W., Back, S., Müller, H., Köhler, K., Driess, A., Schiemenz, B., Huttner, G. & Lang, H. (2001). J. Organomet. Chem. 619, 99-109.]; Janssen et al., 1995[Janssen, M. D., Herres, M., Zsolnai, L., Grove, D. M., Spek, A. L., Lang, H. & van Koten, G. (1995). Organometallics, 14, 1098-1100.]; Spek, 2007[Spek, A. L. (2007). Private communication (refcode YOSTOP01). CCDC, Cambridge, England.]). However, the coordination to a further carbon atom with similar short Cu⋯C distances has rarely been described (Cu⋯C distances are given in parentheses) [Dong et al., 2008[Dong, F.-Y., Li, Y.-T., Wu, Z.-Y., Sun, Y.-M., Sun, W., Liu, Z.-Q. & Song, Q.-L. (2008). J. Inorg. Organomet. Polym. 18, 398-406.] (3.538 and 3.583 Å); Chesnut et al., 1998[Chesnut, D. J., Kusnetzow, A. & Zubieta, J. (1998). J. Chem. Soc. Dalton Trans. pp. 4081-4084.] (3.126 Å); Fu et al., 2008[Fu, D.-W., Ye, H.-Y., Ye, Q., Pan, K.-J. & Xiong, R.-G. (2008). Dalton Trans. pp. 874-877.] (3.577 and 3.561 Å); Benmansour et al., 2009[Benmansour, S., Setifi, F., Triki, S., Thetiot, F., Sala-Pala, J., Gomez-Garcia, C.-J. & Colacio, E. (2009). Polyhedron, pp. 1308-1314.] (3.088 and 3.519 Å] compared to 3.1520 (6) Å in (I)[link]. They mainly contain cyanide mol­ecules acting as donating ligands that are partially replaced by aromatic N-donating mol­ecules.

Regarding nitriles as donating mol­ecules, a tris­(benzo­nitrilo)­copper(I) perchlorate complex (Bowmaker et al., 2004[Bowmaker, G. A., Gill, D. S., Skelton, B. W., Somers, N. & White, A. H. (2004). Z. Naturforsch. Teil B, pp. 1307-1313.]) has been reported, exhibiting a similar trigonal–planar coordination environment including the counter-ion acting as one axial ligand with a similar Cu—O distance of 2.404 (4) Å [compared to 2.375 (2) Å in (I)]. This results in a distorted trigonal-pyramidal environment with N—Cu—N angles slightly more varying [105.4 (2) to 130.4 (2)°] than in (I)[link] [113.63 (11) to 128.97 (11)°], but Cu—N distances [1.906 (4)–1.958 (4) Å] in the same range as in (I)[link] [1.911 (3)–1.960 (3) Å].

5. Synthesis and crystallization

Ferrocene-1,1′-dicarbo­nitrile was prepared according to a published procedure (Strehler et al., 2014[Strehler, F., Hildebrandt, H., Korb, M., Rüffer, T. & Lang, H. (2014). Organometallics, 33, 4279-4289.]). Synthesis of [Cu2{(CH3)2CO}{μ-Fe(η5-C5H4C≡N)2}3](BF4)2·(CH3)2CO: Copper powder (6 mg, 0.09 mmol), Cu(BF4)2·5H2O (12.5 mg, 0.05 mmol) and ferrocene-1,1′-dicarbo­nitrile (50.0 mg, 0.20 mmol) were stirred in 5 ml of di­chloro­methane at room temperature overnight. The resulting orange precipitate was filtered off using zeolite and washed several times with 20 ml of di­chloro­methane until the filtrate was colorless. The residue was taken up in acetone and this solution was evaporated to dryness using a rotary evaporator affording (I)[link] as an orange solid. The evaporation was stopped before dryness, small orange crystals of (I)[link] suitable for X-ray crystal structure analysis could be isolated. On further drying, the crystals decomposed due to evaporation of acetone from the crystal. Yield: 42 mg (0.04 mmol, 83% based on Cu[BF4]2·5H2O). IR (KBr, cm−1): ν = 2248 (CN). 1H NMR (500.3 MHz, acetone-d6, 298 K, p.p.m.) = 5.12 (s, 12H, C5H4), 4.82 (s, 12H, C5H4). 13C{1H} NMR: Data not available due to low solubility. HRMS (ESI–TOF): M+ C12H8N2CuFe (C24H16N4CuFe2): m/z = 534.9342 (calc. 534.9370); M+ C24H16N4CuFe2 (C12H8N2CuFe): m/z = 298.9342 (calc. 298.9333).

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bonded H atoms were placed in calculated positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) and a C—H distance of 0.93 Å for aromatic and Uiso(H) = 1.5Ueq(C) and a C—H distance of 0.96 Å for methyl H atoms. The F atoms of one of the two BF4 ions were refined as equally disordered over two sets of sites using DFIX [B—F 1.38 (2) Å] and DANG [F—F 2.25 (4) Å] instructions. Since some anisotropic displacement ellipsoids were rather elongated, DELU/SIMU/ISOR restraints were also applied (McArdle, 1995[McArdle, P. (1995). J. Appl. Cryst. 28, 65.]; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Table 3
Experimental details

Crystal data
Chemical formula [Cu2Fe3(C6H4N)6(C3H6O)](BF4)2·C3H6O
Mr 1125.02
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 110
a, b, c (Å) 7.9947 (6), 13.9384 (18), 19.923 (2)
α, β, γ (°) 72.942 (10), 82.968 (7), 87.936 (8)
V3) 2106.4 (4)
Z 2
Radiation type Cu Kα
μ (mm−1) 9.92
Crystal size (mm) 0.4 × 0.4 × 0.4
 
Data collection
Diffractometer Oxford Gemini CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.])
Tmin, Tmax 0.427, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 18279, 7318, 6793
Rint 0.042
(sin θ/λ)max−1) 0.593
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.107, 1.05
No. of reflections 7318
No. of parameters 623
No. of restraints 148
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.59, −0.49
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.]), SHELXS2013 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

The electron-transfer properties of the acetyl­ide function have been investigated intensively by using bridging units of the type —C C—M—CC— (M = transition metal), showing moderate electron communication between two redox-active metallocenyl termini in the mixed-valence species (see, for example: Lang et al., 2006; Vives et al., 2006; Jakob et al., 2009; Díez et al., 2008, 2009; Osella et al., 1998; Packheiser et al., 2008; Burgun et al., 2013). The nitrile group is isoelectronic with the acetyl­ide function; Bonniard et al. (2011) described how an —N C—C6H4—CN— linkage between two iron fragments prohibits the electronic inter­action between the transition metal atoms, while the isoelectric di(acetyl­ene)—phenyl­ene bridge shows a moderate delocalization. In contrast, a weak electron transfer by generation of the mixed-valence species [Ru(NCFc)(NH3)5]3+ [Fc = Fe(η5-C5H4)(η5-C5H5)] has been described (Dowling et al., 1981). We recently reported on the synthesis, characterization and electrochemical properties of platinum and copper complexes containing a —CN—M—NC— (M = Cu or Pt) bridging unit between two redox-active ferrocenyl moieties (Strehler et al., 2013, 2014) to achieve a direct comparison with the —CC—M—CC— building blocks. In addition, the coordination of ferrocene-1,1'-dicarbo­nitrile towards PtCl2 resulted in an oligomeric complex (Strehler et al., 2014). In a continuation of this work, we herein present the synthesis and crystal structure of [Cu2((CH3)2CO)(µ-Fe(η5-C5H4C N)2)3](BF4)2·(CH3)2CO, (I). The synthesis of this compound was realized by comproportionation of elementary copper and a copper(II) salt in the presence of 1,1'-ferrocenediyl dicarbo­nitrile.

Structural commentary top

The title compound contains one penta­metallic Cu2Fe3 complex molecule in the asymmetric unit consisting of two CuI ions bridged by three 1,1'-ferrocenediyl dicarbo­nitrile ligands that form a triangular paddle-wheel sandwich-type complex with iron···iron distances ranging from 9.1739 (13) (Fe2—Fe3) to 10.0385 (12) Å (Fe1—Fe2). The complex crystallizes with two BF4- counter-ions and two molecules of acetone. One acetone molecule coordinates with its oxygen atom to Cu1 [Cu1—O1 2.375 (2) Å], leading to an an 18 VE complex and an overall distorted trigonal–pyramidal environment. The Cu2 ion exhibits a weak inter­molecular η2, π inter­action [3.1520 (6) Å; Table 1, Fig. 1] with two atoms of an adjacent cyclo­penta­dienyl ring, and thus, only a 16 VE complex is present. The deviation from the N3 plane is increased for Cu1 [0.1883 (16) Å] as compared to Cu2 [0.0602 (16) Å] due to a stronger inter­action with the axial moiety. The Cu···Cu distance [3.3818 (7) Å] exceeds the sum of the van der Waals radii (Σ = 2.80 Å; Bondi, 1964), indicating that the CuI ions do not inter­act with each other.

The two faces of the sandwich-type complex consist of almost coplanar cyclo­penta­dienyl aromatics and central planes formed by three nitro­gen atoms that are also almost coplanar towards the C5 planes. However, one cyclo­penta­dienyl ring of each site deviates from coplanarity (Table 2), which results in a slight bending of the whole complex (Fig. 2). The ferrocenyl cyclo­penta­dienyl moieties virtually exhibit ecliptic conformations [4.5 (2) to 6.4 (2) °], with synperiplanar-oriented carbo­nitrile substituents towards each other. Maximum deviations from this plane are observed for N5 [0.289 (7) Å] and Cu2 [0.825 (9) Å].

Supra­molecular features top

Besides the already noted inter­molecular inter­action between Cu2 and the mid-point of the C26—C27 bond, ππ inter­actions are present in the crystal packing between the C23 atom and its symmetry-generated equivalent [3.167 (6) Å; Table 1]. All other π inter­actions occur almost perpendicular to the involved C5 ring (α C5···C23, 92.2 (2) °; α C5···Cu2, 93.23 (1) °; Table 1) . Compound (I) forms a layer-type structure parallel to (111) (Fig. 2), in which the coordinating acetone molecule is part of the overlaying layer. The second acetone molecule is present in each layer and does not exhibit any notable inter­molecular inter­actions. The distances between two layers are in the range of the above-mentioned inter­actions.

Database survey top

Since the first synthesis of 1,1'-di­cyano­ferrocene (Osgerby & Pauson, 1961), only one example of a crystal structure has been reported, that of the molecule itself (Altmannshofer et al., 2008) which exhibits a similar synperiplanar torsion (–2.2°) of the cyclo­penta­dienyl rings to that in (I). Further molecules bearing one nitrilo substituent at the ferrocenyl backbone include a penta­carbonyl tungsten complex with the second nitrilo functionality involved in a 2,3-di­hydro-1,2,3-aza­diphosphete (Helten et al., 2010) and recently published square-planar cis- and trans-platinum(II) complexes of cyano­ferrocene (Strehler et al., 2014).

Trigonal–planar (hetero-bimetallic) CuI complexes are well described in the literature (Lang et al., 1995, 2000, 2006; Buschbeck et al., 2011; Ferrara et al., 1987; Köhler et al., 1998; Frosch et al., 2000, 2001; Janssen et al., 1995; Spek, 2007). However, the coordination to a further carbon atom with similar short Cu···C distances has rarely been described (Cu···C distances are given in parentheses) [Dong et al., 2008 (3.538 and 3.583 Å); Chesnut et al., 1998 (3.126 Å); Fu et al., 2008 (3.577 and 3.561 Å); Benmansour et al., 2009 (3.088 and 3.519 Å] compared to 3.1520 (6) Å in (I). They mainly contain cyanide molecules acting as donating ligands that are partially replaced by aromatic N-donating molecules.

Regarding nitriles as donating molecules, a tris­(benzo­nitrilo)­copper(I) perchlorate complex (Bowmaker et al., 2004) has been reported, exhibiting a similar trigonal–planar coordination environment including the counter-ion acting as one axial ligand with a similar Cu—O distance of 2.404 (4) Å [compared to 2.375 (2) Å in (I)]. This results in a distorted trigonal-pyramidal environment with N—Cu—N angles slightly more varying [105.4 (2) to 130.4 (2)°] than in (I) [113.63 (11) to 128.97 (11)°], but Cu—N distances [1.906 (4)–1.958 (4) Å] in the same range as in (I) [1.911 (3)–1.960 (3) Å].

Synthesis and crystallization top

Ferrocene-1,1'-dicarbo­nitrile was prepared according to a published procedure (Strehler et al., 2014). Synthesis of [Cu2(µ-(η5-C5H4CN)Fe(η5-C5H4CN))3][BF4]2 (I): Copper powder (6 mg, 0.09 mmol), Cu[BF4]2·5H2O (12.5 mg, 0.05 mmol) and ferrocene-1,1'-dicarbo­nitrile (50.0 mg, 0.20 mmol) were stirred in 5 ml of di­chloro­methane at room temperature overnight. The resulting orange precipitate was filtered off using zeolite and washed several times with 20 ml of di­chloro­methane until the filtrate was colorless. The residue was taken up in acetone and this solution was evaporated to dryness using a rotary evaporator affording (I) as an orange solid. The evaporation was stopped before dryness, small orange crystals of (I) suitable for X-ray crystal structure analysis could be isolated. On further drying, the crystals decomposed due to evaporation of acetone from the crystal. Yield: 42 mg (0.04 mmol, 83 % based on Cu[BF4]2·5H2O). IR (KBr, cm-1): ν = 2248 (CN). 1H NMR (500.3 MHz, acetone-d6, 298 K, p.p.m.) = 5.12 (s, 12H, C5H4), 4.82 (s, 12H, C5H4). 13C{1H} NMR: Data not available due to low solubility. HRMS (ESI–TOF): M+ – C12H8N2CuFe (C24H16N4CuFe2): m/z = 534.9342 (calc. 534.9370); M+ – C24H16N4CuFe2 (C12H8N2CuFe): m/z = 298.9342 (calc. 298.9333).

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 3. C-bonded H atoms were placed in calculated positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) and a C—H distance of 0.93 Å for aromatic and Uiso(H) = 1.5Ueq(C) and a C—H distance of 0.96 Å for methyl H atoms. The F atoms of one of the two BF4- ions were refined as equally disordered over two sets of sites using DFIX [B—F 1.38 (2) Å] and DANG [F—F 2.25 (4) Å] instructions. Since some anisotropic displacement ellipsoids were rather elongated, DELU/SIMU/ISOR restraints were also applied (McArdle, 1995; Sheldrick, 2008).

Related literature top

For related literature, see: Altmannshofer et al. (2008); Bonniard et al. (2011); Benmansour et al. (2009); Bondi (1964); Bowmaker et al. (2004); Burgun et al. (2013); Buschbeck et al. (2011); Chesnut et al. (1998); Díez et al. (2008); Dong et al. (2008); Ferrara et al. (1987); Frosch et al. (2000, 2001); Fu et al. (2008); Helten et al. (2010); Jakob et al. (2009); Janssen et al. (1995); Köhler et al. (1998); Díez et al. (2009); Lang et al. (1995, 2000, 2006); Dowling et al. (1981); McArdle (1995); Osella et al. (1998); Osgerby & Pauson (1961); Packheiser et al. (2008); Sheldrick (2008); Spek (2007); Strehler et al. (2013, 2014); Vives et al. (2006).

Structure description top

The electron-transfer properties of the acetyl­ide function have been investigated intensively by using bridging units of the type —C C—M—CC— (M = transition metal), showing moderate electron communication between two redox-active metallocenyl termini in the mixed-valence species (see, for example: Lang et al., 2006; Vives et al., 2006; Jakob et al., 2009; Díez et al., 2008, 2009; Osella et al., 1998; Packheiser et al., 2008; Burgun et al., 2013). The nitrile group is isoelectronic with the acetyl­ide function; Bonniard et al. (2011) described how an —N C—C6H4—CN— linkage between two iron fragments prohibits the electronic inter­action between the transition metal atoms, while the isoelectric di(acetyl­ene)—phenyl­ene bridge shows a moderate delocalization. In contrast, a weak electron transfer by generation of the mixed-valence species [Ru(NCFc)(NH3)5]3+ [Fc = Fe(η5-C5H4)(η5-C5H5)] has been described (Dowling et al., 1981). We recently reported on the synthesis, characterization and electrochemical properties of platinum and copper complexes containing a —CN—M—NC— (M = Cu or Pt) bridging unit between two redox-active ferrocenyl moieties (Strehler et al., 2013, 2014) to achieve a direct comparison with the —CC—M—CC— building blocks. In addition, the coordination of ferrocene-1,1'-dicarbo­nitrile towards PtCl2 resulted in an oligomeric complex (Strehler et al., 2014). In a continuation of this work, we herein present the synthesis and crystal structure of [Cu2((CH3)2CO)(µ-Fe(η5-C5H4C N)2)3](BF4)2·(CH3)2CO, (I). The synthesis of this compound was realized by comproportionation of elementary copper and a copper(II) salt in the presence of 1,1'-ferrocenediyl dicarbo­nitrile.

The title compound contains one penta­metallic Cu2Fe3 complex molecule in the asymmetric unit consisting of two CuI ions bridged by three 1,1'-ferrocenediyl dicarbo­nitrile ligands that form a triangular paddle-wheel sandwich-type complex with iron···iron distances ranging from 9.1739 (13) (Fe2—Fe3) to 10.0385 (12) Å (Fe1—Fe2). The complex crystallizes with two BF4- counter-ions and two molecules of acetone. One acetone molecule coordinates with its oxygen atom to Cu1 [Cu1—O1 2.375 (2) Å], leading to an an 18 VE complex and an overall distorted trigonal–pyramidal environment. The Cu2 ion exhibits a weak inter­molecular η2, π inter­action [3.1520 (6) Å; Table 1, Fig. 1] with two atoms of an adjacent cyclo­penta­dienyl ring, and thus, only a 16 VE complex is present. The deviation from the N3 plane is increased for Cu1 [0.1883 (16) Å] as compared to Cu2 [0.0602 (16) Å] due to a stronger inter­action with the axial moiety. The Cu···Cu distance [3.3818 (7) Å] exceeds the sum of the van der Waals radii (Σ = 2.80 Å; Bondi, 1964), indicating that the CuI ions do not inter­act with each other.

The two faces of the sandwich-type complex consist of almost coplanar cyclo­penta­dienyl aromatics and central planes formed by three nitro­gen atoms that are also almost coplanar towards the C5 planes. However, one cyclo­penta­dienyl ring of each site deviates from coplanarity (Table 2), which results in a slight bending of the whole complex (Fig. 2). The ferrocenyl cyclo­penta­dienyl moieties virtually exhibit ecliptic conformations [4.5 (2) to 6.4 (2) °], with synperiplanar-oriented carbo­nitrile substituents towards each other. Maximum deviations from this plane are observed for N5 [0.289 (7) Å] and Cu2 [0.825 (9) Å].

Besides the already noted inter­molecular inter­action between Cu2 and the mid-point of the C26—C27 bond, ππ inter­actions are present in the crystal packing between the C23 atom and its symmetry-generated equivalent [3.167 (6) Å; Table 1]. All other π inter­actions occur almost perpendicular to the involved C5 ring (α C5···C23, 92.2 (2) °; α C5···Cu2, 93.23 (1) °; Table 1) . Compound (I) forms a layer-type structure parallel to (111) (Fig. 2), in which the coordinating acetone molecule is part of the overlaying layer. The second acetone molecule is present in each layer and does not exhibit any notable inter­molecular inter­actions. The distances between two layers are in the range of the above-mentioned inter­actions.

Since the first synthesis of 1,1'-di­cyano­ferrocene (Osgerby & Pauson, 1961), only one example of a crystal structure has been reported, that of the molecule itself (Altmannshofer et al., 2008) which exhibits a similar synperiplanar torsion (–2.2°) of the cyclo­penta­dienyl rings to that in (I). Further molecules bearing one nitrilo substituent at the ferrocenyl backbone include a penta­carbonyl tungsten complex with the second nitrilo functionality involved in a 2,3-di­hydro-1,2,3-aza­diphosphete (Helten et al., 2010) and recently published square-planar cis- and trans-platinum(II) complexes of cyano­ferrocene (Strehler et al., 2014).

Trigonal–planar (hetero-bimetallic) CuI complexes are well described in the literature (Lang et al., 1995, 2000, 2006; Buschbeck et al., 2011; Ferrara et al., 1987; Köhler et al., 1998; Frosch et al., 2000, 2001; Janssen et al., 1995; Spek, 2007). However, the coordination to a further carbon atom with similar short Cu···C distances has rarely been described (Cu···C distances are given in parentheses) [Dong et al., 2008 (3.538 and 3.583 Å); Chesnut et al., 1998 (3.126 Å); Fu et al., 2008 (3.577 and 3.561 Å); Benmansour et al., 2009 (3.088 and 3.519 Å] compared to 3.1520 (6) Å in (I). They mainly contain cyanide molecules acting as donating ligands that are partially replaced by aromatic N-donating molecules.

Regarding nitriles as donating molecules, a tris­(benzo­nitrilo)­copper(I) perchlorate complex (Bowmaker et al., 2004) has been reported, exhibiting a similar trigonal–planar coordination environment including the counter-ion acting as one axial ligand with a similar Cu—O distance of 2.404 (4) Å [compared to 2.375 (2) Å in (I)]. This results in a distorted trigonal-pyramidal environment with N—Cu—N angles slightly more varying [105.4 (2) to 130.4 (2)°] than in (I) [113.63 (11) to 128.97 (11)°], but Cu—N distances [1.906 (4)–1.958 (4) Å] in the same range as in (I) [1.911 (3)–1.960 (3) Å].

For related literature, see: Altmannshofer et al. (2008); Bonniard et al. (2011); Benmansour et al. (2009); Bondi (1964); Bowmaker et al. (2004); Burgun et al. (2013); Buschbeck et al. (2011); Chesnut et al. (1998); Díez et al. (2008); Dong et al. (2008); Ferrara et al. (1987); Frosch et al. (2000, 2001); Fu et al. (2008); Helten et al. (2010); Jakob et al. (2009); Janssen et al. (1995); Köhler et al. (1998); Díez et al. (2009); Lang et al. (1995, 2000, 2006); Dowling et al. (1981); McArdle (1995); Osella et al. (1998); Osgerby & Pauson (1961); Packheiser et al. (2008); Sheldrick (2008); Spek (2007); Strehler et al. (2013, 2014); Vives et al. (2006).

Synthesis and crystallization top

Ferrocene-1,1'-dicarbo­nitrile was prepared according to a published procedure (Strehler et al., 2014). Synthesis of [Cu2(µ-(η5-C5H4CN)Fe(η5-C5H4CN))3][BF4]2 (I): Copper powder (6 mg, 0.09 mmol), Cu[BF4]2·5H2O (12.5 mg, 0.05 mmol) and ferrocene-1,1'-dicarbo­nitrile (50.0 mg, 0.20 mmol) were stirred in 5 ml of di­chloro­methane at room temperature overnight. The resulting orange precipitate was filtered off using zeolite and washed several times with 20 ml of di­chloro­methane until the filtrate was colorless. The residue was taken up in acetone and this solution was evaporated to dryness using a rotary evaporator affording (I) as an orange solid. The evaporation was stopped before dryness, small orange crystals of (I) suitable for X-ray crystal structure analysis could be isolated. On further drying, the crystals decomposed due to evaporation of acetone from the crystal. Yield: 42 mg (0.04 mmol, 83 % based on Cu[BF4]2·5H2O). IR (KBr, cm-1): ν = 2248 (CN). 1H NMR (500.3 MHz, acetone-d6, 298 K, p.p.m.) = 5.12 (s, 12H, C5H4), 4.82 (s, 12H, C5H4). 13C{1H} NMR: Data not available due to low solubility. HRMS (ESI–TOF): M+ – C12H8N2CuFe (C24H16N4CuFe2): m/z = 534.9342 (calc. 534.9370); M+ – C24H16N4CuFe2 (C12H8N2CuFe): m/z = 298.9342 (calc. 298.9333).

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 3. C-bonded H atoms were placed in calculated positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) and a C—H distance of 0.93 Å for aromatic and Uiso(H) = 1.5Ueq(C) and a C—H distance of 0.96 Å for methyl H atoms. The F atoms of one of the two BF4- ions were refined as equally disordered over two sets of sites using DFIX [B—F 1.38 (2) Å] and DANG [F—F 2.25 (4) Å] instructions. Since some anisotropic displacement ellipsoids were rather elongated, DELU/SIMU/ISOR restraints were also applied (McArdle, 1995; Sheldrick, 2008).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing intermolecular η2, ππ interactions between Cu2 and the C26—C27 bond, and short interactions between C23 and its symmetry-generated equivalent (Table 1), with displacement ellipsoids drawn at the 50% probability level. All H atoms, the BF4- ions and the non-coordinating acetone solvent molecule have been omitted for clarity. [Symmetry codes: (A) x - 1, y, z; (B) 1 + x, y, z; (C) -x, 1 - y, 1 - z.]
[Figure 2] Fig. 2. Packing of molecular layers in the crystal structure of (I), with displacement ellipsoids drawn at the 30% probability level. All H atoms have been omitted for clarity. The disorder of one of the counter-anions is not shown.
(Acetone-κO)tris(µ-ferrocene-1,1'-dicarbonitrile-κ2N:N')dicopper(I) bis(tetrafluoridoborate) acetone monosolvate top
Crystal data top
[Cu2Fe3(C6H4N)6(C3H6O)](BF4)2·C3H6OZ = 2
Mr = 1125.02F(000) = 1128
Triclinic, P1Dx = 1.774 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 7.9947 (6) ÅCell parameters from 8458 reflections
b = 13.9384 (18) Åθ = 3.3–69.0°
c = 19.923 (2) ŵ = 9.92 mm1
α = 72.942 (10)°T = 110 K
β = 82.968 (7)°Block, orange
γ = 87.936 (8)°0.4 × 0.4 × 0.4 mm
V = 2106.4 (4) Å3
Data collection top
Oxford Gemini CCD
diffractometer
7318 independent reflections
Radiation source: fine-focus sealed tube6793 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 66.0°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
h = 99
Tmin = 0.427, Tmax = 1.000k = 1616
18279 measured reflectionsl = 2223
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0708P)2 + 0.1006P]
where P = (Fo2 + 2Fc2)/3
7318 reflections(Δ/σ)max = 0.001
623 parametersΔρmax = 0.59 e Å3
148 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Cu2Fe3(C6H4N)6(C3H6O)](BF4)2·C3H6Oγ = 87.936 (8)°
Mr = 1125.02V = 2106.4 (4) Å3
Triclinic, P1Z = 2
a = 7.9947 (6) ÅCu Kα radiation
b = 13.9384 (18) ŵ = 9.92 mm1
c = 19.923 (2) ÅT = 110 K
α = 72.942 (10)°0.4 × 0.4 × 0.4 mm
β = 82.968 (7)°
Data collection top
Oxford Gemini CCD
diffractometer
7318 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
6793 reflections with I > 2σ(I)
Tmin = 0.427, Tmax = 1.000Rint = 0.042
18279 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041148 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.05Δρmax = 0.59 e Å3
7318 reflectionsΔρmin = 0.49 e Å3
623 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5468 (4)0.3054 (2)0.04318 (16)0.0185 (6)
C20.4808 (4)0.3038 (2)0.01919 (15)0.0174 (6)
C30.5066 (4)0.2253 (2)0.05327 (16)0.0200 (6)
H30.57180.16780.03930.024*
C40.4134 (4)0.2527 (2)0.11210 (15)0.0220 (6)
H40.40760.21600.14390.026*
C50.3303 (4)0.3449 (2)0.11466 (16)0.0221 (6)
H50.26090.37820.14840.027*
C60.3697 (4)0.3788 (2)0.05765 (16)0.0202 (6)
H60.33180.43720.04720.024*
C70.2033 (4)0.1972 (2)0.13847 (16)0.0181 (6)
C80.1377 (4)0.1837 (2)0.07864 (15)0.0179 (6)
C90.1813 (4)0.1037 (2)0.04685 (16)0.0207 (6)
H90.25180.04950.06310.025*
C100.0957 (4)0.1244 (2)0.01372 (17)0.0219 (6)
H100.09940.08480.04420.026*
C110.0026 (4)0.2154 (2)0.02100 (16)0.0227 (6)
H110.06350.24470.05690.027*
C120.0277 (4)0.2537 (2)0.03579 (16)0.0202 (6)
H120.01770.31230.04380.024*
C130.5338 (4)0.4709 (2)0.25231 (15)0.0188 (6)
C140.5060 (4)0.5502 (2)0.28328 (15)0.0182 (6)
C150.5993 (4)0.5645 (2)0.33724 (16)0.0224 (6)
H150.68640.52450.35730.027*
C160.5322 (4)0.6516 (2)0.35356 (18)0.0282 (8)
H160.56900.67910.38650.034*
C170.3998 (5)0.6902 (2)0.31161 (18)0.0288 (8)
H170.33550.74680.31260.035*
C180.3822 (4)0.6281 (2)0.26801 (16)0.0225 (7)
H180.30480.63640.23550.027*
C190.2308 (4)0.3458 (2)0.36694 (15)0.0172 (6)
C200.2118 (4)0.4172 (2)0.40581 (15)0.0164 (6)
C210.3173 (4)0.4224 (2)0.45839 (15)0.0179 (6)
H210.40100.37710.47590.022*
C220.2683 (4)0.5103 (2)0.47808 (15)0.0197 (6)
H220.31500.53240.51140.024*
C230.1375 (4)0.5588 (2)0.43916 (17)0.0218 (6)
H230.08440.61790.44260.026*
C240.1004 (4)0.5022 (2)0.39356 (16)0.0202 (6)
H240.01980.51740.36210.024*
C250.8920 (4)0.1538 (2)0.27510 (15)0.0161 (6)
C260.9887 (4)0.0779 (2)0.31755 (15)0.0160 (6)
C271.0231 (4)0.0708 (2)0.38812 (16)0.0180 (6)
H270.99010.11610.41340.022*
C281.1172 (4)0.0189 (2)0.41175 (16)0.0170 (6)
H281.15730.04230.45560.020*
C291.1401 (4)0.0672 (2)0.35708 (16)0.0188 (6)
H291.19740.12710.35950.023*
C301.0613 (4)0.0089 (2)0.29883 (16)0.0181 (6)
H301.05680.02340.25640.022*
C310.5433 (4)0.0322 (2)0.34912 (16)0.0173 (6)
C320.6342 (4)0.0514 (2)0.38813 (16)0.0171 (6)
C330.6779 (4)0.0651 (2)0.45801 (16)0.0205 (6)
H330.64740.02360.48650.025*
C340.7752 (4)0.1528 (2)0.47542 (16)0.0239 (7)
H340.81950.17990.51800.029*
C350.7953 (4)0.1936 (2)0.41705 (18)0.0233 (7)
H350.85530.25140.41520.028*
C360.7084 (4)0.1314 (2)0.36238 (16)0.0199 (6)
H360.70090.14050.31840.024*
C371.1665 (5)0.5108 (3)0.0935 (2)0.0435 (10)
H37A1.15660.51180.04570.065*
H37B1.26690.47510.10830.065*
H37C1.17260.57830.09590.065*
C381.0157 (4)0.4592 (2)0.14111 (18)0.0223 (6)
C391.0100 (5)0.4503 (3)0.2177 (2)0.0332 (8)
H39A0.90860.41610.24280.050*
H39B1.01170.51600.22380.050*
H39C1.10610.41290.23590.050*
C400.4543 (4)0.0511 (2)0.19261 (17)0.0247 (7)
H40A0.36260.07330.17400.037*
H40B0.41270.00550.21870.037*
H40C0.50520.10800.22340.037*
C410.5833 (4)0.0012 (2)0.13277 (17)0.0223 (7)
C420.7365 (5)0.0406 (3)0.1520 (2)0.0313 (8)
H42A0.80950.07200.10980.047*
H42B0.79500.01370.18170.047*
H42C0.70340.08900.17690.047*
N10.6008 (3)0.30829 (19)0.09341 (14)0.0196 (5)
N20.5629 (3)0.40839 (19)0.22584 (13)0.0216 (5)
N30.8167 (3)0.21500 (17)0.23846 (13)0.0179 (5)
N40.2546 (3)0.20846 (19)0.18660 (13)0.0202 (5)
N50.2515 (3)0.29064 (18)0.33446 (13)0.0196 (5)
N60.4698 (3)0.09815 (19)0.31814 (14)0.0204 (5)
Fe10.25591 (6)0.24050 (3)0.02036 (2)0.01424 (12)
Fe20.34679 (5)0.54574 (3)0.37176 (2)0.01361 (12)
Fe30.88811 (5)0.05035 (3)0.38612 (2)0.01260 (12)
Cu10.68186 (5)0.31536 (3)0.17936 (2)0.01732 (12)
Cu20.32370 (5)0.20644 (3)0.27549 (2)0.01731 (12)
O10.9045 (3)0.42672 (16)0.11721 (11)0.0229 (5)
O20.5640 (3)0.0100 (2)0.07178 (13)0.0372 (6)
F10.030 (3)0.3112 (14)0.8055 (12)0.053 (5)0.50
F20.1898 (14)0.2122 (16)0.7813 (11)0.037 (3)0.50
F30.031 (2)0.2441 (11)0.7154 (7)0.072 (3)0.50
F40.083 (2)0.1484 (11)0.8103 (7)0.077 (4)0.50
F1'0.015 (3)0.3066 (11)0.8136 (11)0.033 (2)0.50
F2'0.1857 (15)0.1996 (15)0.7868 (11)0.040 (4)0.50
F3'0.000 (2)0.2664 (12)0.7105 (5)0.094 (5)0.50
F4'0.062 (2)0.1452 (9)0.8301 (6)0.050 (2)0.50
F50.8995 (3)0.25555 (17)0.46188 (15)0.0480 (6)
F60.6375 (3)0.26511 (19)0.51557 (14)0.0479 (6)
F70.6937 (5)0.3401 (2)0.39964 (16)0.0729 (9)
F80.6880 (3)0.17002 (17)0.44066 (14)0.0445 (6)
B10.0191 (5)0.2297 (3)0.7814 (2)0.0320 (9)
B20.7293 (5)0.2580 (3)0.4537 (2)0.0270 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0139 (14)0.0180 (14)0.0234 (16)0.0030 (11)0.0033 (12)0.0076 (11)
C20.0149 (14)0.0196 (14)0.0176 (14)0.0046 (11)0.0017 (11)0.0063 (11)
C30.0185 (15)0.0218 (15)0.0200 (15)0.0030 (12)0.0044 (12)0.0089 (12)
C40.0248 (16)0.0269 (16)0.0152 (14)0.0084 (13)0.0054 (12)0.0096 (12)
C50.0252 (16)0.0232 (15)0.0143 (14)0.0065 (12)0.0011 (12)0.0007 (11)
C60.0223 (15)0.0171 (14)0.0196 (15)0.0049 (12)0.0016 (12)0.0039 (11)
C70.0163 (14)0.0168 (14)0.0189 (15)0.0050 (11)0.0042 (12)0.0035 (11)
C80.0162 (14)0.0215 (14)0.0144 (14)0.0068 (11)0.0038 (11)0.0041 (11)
C90.0229 (16)0.0164 (14)0.0225 (15)0.0083 (12)0.0009 (12)0.0056 (11)
C100.0217 (16)0.0228 (15)0.0246 (16)0.0100 (12)0.0005 (12)0.0119 (12)
C110.0165 (15)0.0300 (16)0.0212 (15)0.0064 (12)0.0018 (12)0.0063 (12)
C120.0141 (14)0.0239 (15)0.0224 (15)0.0031 (11)0.0035 (11)0.0083 (12)
C130.0171 (14)0.0176 (14)0.0182 (14)0.0028 (11)0.0065 (11)0.0026 (12)
C140.0207 (15)0.0153 (13)0.0163 (14)0.0039 (11)0.0073 (11)0.0044 (11)
C150.0158 (15)0.0268 (16)0.0240 (15)0.0105 (12)0.0051 (12)0.0083 (12)
C160.0331 (19)0.0252 (16)0.0265 (16)0.0184 (14)0.0137 (14)0.0128 (13)
C170.041 (2)0.0073 (13)0.0327 (17)0.0044 (13)0.0137 (15)0.0037 (12)
C180.0320 (17)0.0141 (14)0.0158 (14)0.0019 (12)0.0071 (12)0.0005 (11)
C190.0202 (15)0.0118 (13)0.0171 (14)0.0055 (11)0.0008 (11)0.0009 (11)
C200.0179 (14)0.0119 (13)0.0180 (14)0.0063 (11)0.0042 (11)0.0039 (10)
C210.0236 (15)0.0149 (13)0.0131 (13)0.0043 (11)0.0011 (11)0.0014 (10)
C220.0269 (16)0.0185 (14)0.0134 (13)0.0099 (12)0.0065 (12)0.0065 (11)
C230.0197 (15)0.0167 (14)0.0291 (16)0.0010 (11)0.0090 (12)0.0113 (12)
C240.0147 (14)0.0201 (14)0.0254 (15)0.0026 (11)0.0018 (12)0.0072 (12)
C250.0156 (14)0.0105 (13)0.0226 (14)0.0066 (11)0.0050 (12)0.0074 (11)
C260.0145 (14)0.0118 (13)0.0204 (14)0.0064 (11)0.0033 (11)0.0040 (11)
C270.0168 (14)0.0149 (13)0.0238 (15)0.0047 (11)0.0013 (11)0.0088 (11)
C280.0110 (13)0.0158 (13)0.0238 (15)0.0037 (10)0.0027 (11)0.0044 (11)
C290.0145 (14)0.0123 (13)0.0283 (16)0.0006 (11)0.0029 (12)0.0063 (11)
C300.0160 (14)0.0157 (14)0.0217 (14)0.0053 (11)0.0077 (11)0.0074 (11)
C310.0118 (13)0.0190 (15)0.0225 (15)0.0052 (12)0.0020 (11)0.0091 (12)
C320.0142 (14)0.0139 (13)0.0223 (15)0.0049 (11)0.0013 (11)0.0037 (11)
C330.0145 (14)0.0245 (15)0.0207 (15)0.0086 (12)0.0040 (11)0.0052 (12)
C340.0195 (15)0.0244 (16)0.0204 (15)0.0125 (12)0.0016 (12)0.0061 (12)
C350.0237 (16)0.0079 (13)0.0345 (17)0.0067 (11)0.0041 (13)0.0007 (12)
C360.0209 (15)0.0146 (14)0.0256 (15)0.0085 (11)0.0032 (12)0.0069 (11)
C370.033 (2)0.035 (2)0.061 (3)0.0126 (16)0.0047 (19)0.0136 (18)
C380.0209 (16)0.0117 (13)0.0349 (17)0.0032 (11)0.0052 (13)0.0072 (12)
C390.042 (2)0.0217 (16)0.038 (2)0.0033 (14)0.0168 (16)0.0066 (14)
C400.0247 (17)0.0257 (16)0.0241 (16)0.0031 (13)0.0010 (13)0.0089 (12)
C410.0249 (16)0.0146 (14)0.0269 (17)0.0030 (12)0.0007 (13)0.0068 (12)
C420.0324 (19)0.0250 (17)0.0369 (19)0.0083 (14)0.0026 (15)0.0092 (14)
N10.0155 (12)0.0221 (13)0.0229 (13)0.0025 (10)0.0018 (10)0.0090 (10)
N20.0237 (14)0.0190 (12)0.0215 (13)0.0030 (10)0.0030 (10)0.0074 (10)
N30.0210 (13)0.0127 (12)0.0197 (12)0.0035 (10)0.0003 (10)0.0051 (10)
N40.0203 (13)0.0214 (13)0.0182 (13)0.0024 (10)0.0016 (10)0.0058 (10)
N50.0236 (13)0.0154 (12)0.0194 (12)0.0031 (10)0.0006 (10)0.0050 (10)
N60.0160 (12)0.0210 (13)0.0256 (13)0.0004 (10)0.0021 (10)0.0093 (11)
Fe10.0156 (2)0.0142 (2)0.0135 (2)0.00296 (17)0.00021 (17)0.00528 (17)
Fe20.0160 (2)0.0091 (2)0.0157 (2)0.00264 (16)0.00292 (17)0.00522 (16)
Fe30.0128 (2)0.0089 (2)0.0161 (2)0.00297 (16)0.00034 (17)0.00383 (16)
Cu10.0201 (2)0.0150 (2)0.0186 (2)0.00069 (16)0.00220 (17)0.00767 (16)
Cu20.0195 (2)0.0161 (2)0.0179 (2)0.00040 (16)0.00213 (17)0.00739 (16)
O10.0236 (11)0.0205 (10)0.0259 (11)0.0038 (9)0.0005 (9)0.0093 (8)
O20.0411 (15)0.0443 (15)0.0246 (13)0.0013 (12)0.0053 (11)0.0067 (11)
F10.085 (9)0.046 (6)0.048 (8)0.032 (4)0.046 (5)0.035 (6)
F20.027 (4)0.044 (6)0.034 (5)0.008 (3)0.000 (4)0.006 (4)
F30.090 (7)0.079 (5)0.086 (6)0.045 (4)0.065 (5)0.069 (4)
F40.037 (5)0.090 (6)0.136 (10)0.027 (5)0.011 (7)0.088 (6)
F1'0.056 (5)0.022 (4)0.029 (4)0.014 (4)0.018 (6)0.015 (3)
F2'0.037 (5)0.044 (6)0.055 (9)0.015 (4)0.025 (5)0.034 (6)
F3'0.116 (10)0.155 (12)0.035 (4)0.107 (9)0.053 (4)0.059 (5)
F4'0.045 (5)0.043 (3)0.074 (5)0.018 (3)0.010 (4)0.032 (3)
F50.0255 (11)0.0393 (12)0.0848 (18)0.0003 (9)0.0047 (11)0.0275 (12)
F60.0439 (13)0.0476 (13)0.0608 (15)0.0020 (10)0.0085 (11)0.0348 (11)
F70.108 (3)0.0435 (15)0.0600 (17)0.0378 (16)0.0194 (16)0.0047 (12)
F80.0368 (12)0.0356 (11)0.0757 (16)0.0038 (9)0.0083 (11)0.0387 (11)
B10.038 (2)0.034 (2)0.036 (2)0.0115 (17)0.0196 (18)0.0245 (17)
B20.0236 (19)0.0181 (17)0.041 (2)0.0068 (14)0.0013 (16)0.0125 (15)
Geometric parameters (Å, º) top
C1—N11.149 (4)C26—C301.449 (4)
C1—C21.414 (4)C26—Fe32.027 (3)
C2—C31.444 (4)C27—C281.423 (4)
C2—C61.449 (4)C27—Fe32.049 (3)
C2—Fe12.037 (3)C27—H270.9300
C3—C41.416 (5)C28—C291.430 (4)
C3—Fe12.054 (3)C28—Fe32.056 (3)
C3—H30.9300C28—H280.9300
C4—C51.416 (5)C29—C301.412 (5)
C4—Fe12.055 (3)C29—Fe32.051 (3)
C4—H40.9300C29—H290.9300
C5—C61.423 (5)C30—Fe32.038 (3)
C5—Fe12.046 (3)C30—H300.9300
C5—H50.9300C31—N61.135 (4)
C6—Fe12.053 (3)C31—C321.426 (4)
C6—H60.9300C32—C331.434 (4)
C7—N41.141 (4)C32—C361.441 (4)
C7—C81.422 (4)C32—Fe32.026 (3)
C8—C121.445 (5)C33—C341.403 (5)
C8—C91.448 (4)C33—Fe32.045 (3)
C8—Fe12.023 (3)C33—H330.9300
C9—C101.411 (5)C34—C351.428 (5)
C9—Fe12.043 (3)C34—Fe32.056 (3)
C9—H90.9300C34—H340.9300
C10—C111.425 (5)C35—C361.417 (5)
C10—Fe12.064 (3)C35—Fe32.047 (3)
C10—H100.9300C35—H350.9300
C11—C121.423 (5)C36—Fe32.040 (3)
C11—Fe12.070 (3)C36—H360.9300
C11—H110.9300C37—C381.501 (5)
C12—Fe12.052 (3)C37—H37A0.9600
C12—H120.9300C37—H37B0.9600
C13—N21.148 (4)C37—H37C0.9600
C13—C141.414 (4)C38—O11.217 (4)
C14—C181.434 (4)C38—C391.489 (5)
C14—C151.444 (5)C39—H39A0.9600
C14—Fe22.031 (3)C39—H39B0.9600
C15—C161.417 (5)C39—H39C0.9600
C15—Fe22.052 (3)C40—C411.503 (4)
C15—H150.9300C40—H40A0.9600
C16—C171.422 (6)C40—H40B0.9600
C16—Fe22.054 (3)C40—H40C0.9600
C16—H160.9300C41—O21.214 (4)
C17—C181.415 (5)C41—C421.496 (5)
C17—Fe22.048 (3)C42—H42A0.9600
C17—H170.9300C42—H42B0.9600
C18—Fe22.039 (3)C42—H42C0.9600
C18—H180.9300N1—Cu11.933 (3)
C19—N51.137 (4)N2—Cu11.960 (3)
C19—C201.423 (4)N3—Cu11.934 (3)
C20—C241.437 (4)N4—Cu21.911 (3)
C20—C211.442 (4)N5—Cu21.920 (3)
C20—Fe22.021 (3)N6—Cu21.931 (3)
C21—C221.421 (4)Cu1—O12.375 (2)
C21—Fe22.044 (3)F1—B11.385 (13)
C21—H210.9300F2—B11.378 (12)
C22—C231.411 (5)F3—B11.378 (11)
C22—Fe22.051 (3)F4—B11.362 (12)
C22—H220.9300F1'—B11.404 (11)
C23—C241.429 (4)F2'—B11.389 (12)
C23—Fe22.051 (3)F3'—B11.378 (9)
C23—H230.9300F4'—B11.407 (10)
C24—Fe22.039 (3)F5—B21.388 (5)
C24—H240.9300F6—B21.382 (5)
C25—N31.152 (4)F7—B21.371 (5)
C25—C261.417 (4)F8—B21.385 (4)
C26—C271.440 (4)
N1—C1—C2178.9 (3)C41—C40—H40A109.5
C1—C2—C3125.8 (3)C41—C40—H40B109.5
C1—C2—C6125.4 (3)H40A—C40—H40B109.5
C3—C2—C6108.7 (3)C41—C40—H40C109.5
C1—C2—Fe1124.0 (2)H40A—C40—H40C109.5
C3—C2—Fe169.98 (17)H40B—C40—H40C109.5
C6—C2—Fe169.87 (17)O2—C41—C42121.8 (3)
C4—C3—C2106.7 (3)O2—C41—C40121.2 (3)
C4—C3—Fe169.87 (18)C42—C41—C40117.0 (3)
C2—C3—Fe168.67 (17)C41—C42—H42A109.5
C4—C3—H3126.6C41—C42—H42B109.5
C2—C3—H3126.6H42A—C42—H42B109.5
Fe1—C3—H3126.4C41—C42—H42C109.5
C5—C4—C3109.0 (3)H42A—C42—H42C109.5
C5—C4—Fe169.46 (17)H42B—C42—H42C109.5
C3—C4—Fe169.81 (16)C1—N1—Cu1177.4 (2)
C5—C4—H4125.5C13—N2—Cu1162.7 (3)
C3—C4—H4125.5C25—N3—Cu1177.6 (2)
Fe1—C4—H4126.8C7—N4—Cu2170.5 (2)
C4—C5—C6109.4 (3)C19—N5—Cu2170.5 (3)
C4—C5—Fe170.15 (16)C31—N6—Cu2172.9 (2)
C6—C5—Fe169.96 (16)C8—Fe1—C2111.30 (12)
C4—C5—H5125.3C8—Fe1—C941.73 (12)
C6—C5—H5125.3C2—Fe1—C9122.57 (13)
Fe1—C5—H5126.2C8—Fe1—C5158.37 (13)
C5—C6—C2106.1 (3)C2—Fe1—C568.38 (12)
C5—C6—Fe169.42 (16)C9—Fe1—C5157.48 (13)
C2—C6—Fe168.65 (16)C8—Fe1—C1241.54 (13)
C5—C6—H6127.0C2—Fe1—C12128.56 (12)
C2—C6—H6127.0C9—Fe1—C1270.17 (13)
Fe1—C6—H6126.5C5—Fe1—C12120.54 (13)
N4—C7—C8179.4 (3)C8—Fe1—C6124.44 (12)
C7—C8—C12124.8 (3)C2—Fe1—C641.49 (13)
C7—C8—C9126.1 (3)C9—Fe1—C6159.97 (13)
C12—C8—C9108.9 (3)C5—Fe1—C640.62 (13)
C7—C8—Fe1121.6 (2)C12—Fe1—C6109.01 (13)
C12—C8—Fe170.32 (16)C8—Fe1—C3126.63 (13)
C9—C8—Fe169.87 (16)C2—Fe1—C341.35 (12)
C10—C9—C8106.4 (3)C9—Fe1—C3105.80 (13)
C10—C9—Fe170.70 (17)C5—Fe1—C368.44 (13)
C8—C9—Fe168.40 (16)C12—Fe1—C3165.74 (13)
C10—C9—H9126.8C6—Fe1—C369.84 (12)
C8—C9—H9126.8C8—Fe1—C4161.08 (13)
Fe1—C9—H9125.7C2—Fe1—C468.25 (12)
C9—C10—C11109.5 (3)C9—Fe1—C4121.35 (13)
C9—C10—Fe169.10 (16)C5—Fe1—C440.39 (13)
C11—C10—Fe170.05 (17)C12—Fe1—C4153.52 (13)
C9—C10—H10125.2C6—Fe1—C468.67 (12)
C11—C10—H10125.2C3—Fe1—C440.32 (13)
Fe1—C10—H10127.2C8—Fe1—C1068.17 (12)
C12—C11—C10108.7 (3)C2—Fe1—C10155.50 (13)
C12—C11—Fe169.15 (17)C9—Fe1—C1040.20 (13)
C10—C11—Fe169.60 (18)C5—Fe1—C10121.64 (13)
C12—C11—H11125.6C12—Fe1—C1068.45 (12)
C10—C11—H11125.6C6—Fe1—C10159.38 (13)
Fe1—C11—H11127.2C3—Fe1—C10117.83 (13)
C11—C12—C8106.5 (3)C4—Fe1—C10104.04 (12)
C11—C12—Fe170.46 (17)C8—Fe1—C1168.30 (12)
C8—C12—Fe168.14 (16)C2—Fe1—C11163.98 (13)
C11—C12—H12126.8C9—Fe1—C1168.58 (13)
C8—C12—H12126.8C5—Fe1—C11105.79 (13)
Fe1—C12—H12126.2C12—Fe1—C1140.39 (13)
N2—C13—C14177.1 (3)C6—Fe1—C11124.52 (13)
C13—C14—C18126.9 (3)C3—Fe1—C11152.10 (13)
C13—C14—C15124.6 (3)C4—Fe1—C11117.67 (13)
C18—C14—C15108.6 (3)C10—Fe1—C1140.35 (13)
C13—C14—Fe2125.5 (2)C20—Fe2—C14111.25 (12)
C18—C14—Fe269.70 (16)C20—Fe2—C18122.55 (13)
C15—C14—Fe270.07 (16)C14—Fe2—C1841.24 (13)
C16—C15—C14106.5 (3)C20—Fe2—C2441.45 (12)
C16—C15—Fe269.89 (18)C14—Fe2—C24127.62 (13)
C14—C15—Fe268.51 (16)C18—Fe2—C24106.96 (14)
C16—C15—H15126.7C20—Fe2—C2141.55 (12)
C14—C15—H15126.7C14—Fe2—C21123.44 (12)
Fe2—C15—H15126.4C18—Fe2—C21159.02 (12)
C15—C16—C17109.1 (3)C24—Fe2—C2169.95 (12)
C15—C16—Fe269.74 (17)C20—Fe2—C17155.36 (15)
C17—C16—Fe269.48 (18)C14—Fe2—C1768.43 (12)
C15—C16—H16125.4C18—Fe2—C1740.52 (14)
C17—C16—H16125.4C24—Fe2—C17117.82 (14)
Fe2—C16—H16126.9C21—Fe2—C17159.70 (14)
C18—C17—C16108.6 (3)C20—Fe2—C2368.72 (12)
C18—C17—Fe269.43 (16)C14—Fe2—C23162.87 (14)
C16—C17—Fe269.96 (18)C18—Fe2—C23123.29 (13)
C18—C17—H17125.7C24—Fe2—C2340.88 (13)
C16—C17—H17125.7C21—Fe2—C2368.70 (12)
Fe2—C17—H17126.5C17—Fe2—C23104.13 (13)
C17—C18—C14107.2 (3)C20—Fe2—C2268.55 (12)
C17—C18—Fe270.06 (17)C14—Fe2—C22156.78 (14)
C14—C18—Fe269.06 (16)C18—Fe2—C22159.14 (13)
C17—C18—H18126.4C24—Fe2—C2268.68 (13)
C14—C18—H18126.4C21—Fe2—C2240.59 (12)
Fe2—C18—H18126.1C17—Fe2—C22122.00 (13)
N5—C19—C20177.4 (3)C23—Fe2—C2240.24 (14)
C19—C20—C24126.1 (3)C20—Fe2—C15128.54 (13)
C19—C20—C21124.7 (3)C14—Fe2—C1541.43 (13)
C24—C20—C21108.8 (3)C18—Fe2—C1569.64 (14)
C19—C20—Fe2120.2 (2)C24—Fe2—C15166.46 (13)
C24—C20—Fe269.97 (16)C21—Fe2—C15108.26 (13)
C21—C20—Fe270.09 (16)C17—Fe2—C1568.68 (14)
C22—C21—C20106.5 (3)C23—Fe2—C15152.02 (13)
C22—C21—Fe269.97 (16)C22—Fe2—C15119.25 (13)
C20—C21—Fe268.35 (15)C20—Fe2—C16163.92 (15)
C22—C21—H21126.8C14—Fe2—C1668.29 (12)
C20—C21—H21126.8C18—Fe2—C1668.48 (14)
Fe2—C21—H21126.5C24—Fe2—C16151.81 (14)
C23—C22—C21109.4 (3)C21—Fe2—C16124.25 (14)
C23—C22—Fe269.87 (17)C17—Fe2—C1640.56 (16)
C21—C22—Fe269.44 (16)C23—Fe2—C16116.77 (13)
C23—C22—H22125.3C22—Fe2—C16105.22 (12)
C21—C22—H22125.3C15—Fe2—C1640.37 (14)
Fe2—C22—H22127.0C32—Fe3—C26111.01 (12)
C22—C23—C24108.7 (3)C32—Fe3—C30126.88 (13)
C22—C23—Fe269.89 (17)C26—Fe3—C3041.77 (12)
C24—C23—Fe269.12 (17)C32—Fe3—C3641.50 (12)
C22—C23—H23125.6C26—Fe3—C36123.05 (12)
C24—C23—H23125.6C30—Fe3—C36106.54 (12)
Fe2—C23—H23126.9C32—Fe3—C3341.23 (13)
C23—C24—C20106.7 (3)C26—Fe3—C33127.68 (12)
C23—C24—Fe269.99 (17)C30—Fe3—C33165.43 (13)
C20—C24—Fe268.58 (16)C36—Fe3—C3369.70 (12)
C23—C24—H24126.7C32—Fe3—C3568.46 (12)
C20—C24—H24126.7C26—Fe3—C35156.48 (13)
Fe2—C24—H24126.3C30—Fe3—C35118.37 (13)
N3—C25—C26177.5 (3)C36—Fe3—C3540.57 (13)
C25—C26—C27125.8 (3)C33—Fe3—C3568.51 (13)
C25—C26—C30125.7 (3)C32—Fe3—C27124.00 (12)
C27—C26—C30108.4 (3)C26—Fe3—C2741.37 (12)
C25—C26—Fe3123.5 (2)C30—Fe3—C2769.99 (12)
C27—C26—Fe370.12 (15)C36—Fe3—C27159.91 (13)
C30—C26—Fe369.51 (15)C33—Fe3—C27108.45 (12)
C28—C27—C26106.8 (3)C35—Fe3—C27158.82 (13)
C28—C27—Fe369.97 (16)C32—Fe3—C29161.44 (13)
C26—C27—Fe368.51 (16)C26—Fe3—C2968.70 (12)
C28—C27—H27126.6C30—Fe3—C2940.39 (13)
C26—C27—H27126.6C36—Fe3—C29121.97 (12)
Fe3—C27—H27126.5C33—Fe3—C29153.64 (13)
C27—C28—C29108.8 (3)C35—Fe3—C29104.07 (12)
C27—C28—Fe369.46 (16)C27—Fe3—C2968.91 (12)
C29—C28—Fe369.45 (17)C32—Fe3—C28157.65 (12)
C27—C28—H28125.6C26—Fe3—C2868.54 (12)
C29—C28—H28125.6C30—Fe3—C2868.72 (12)
Fe3—C28—H28127.1C36—Fe3—C28158.11 (12)
C30—C29—C28108.8 (3)C33—Fe3—C28120.10 (12)
C30—C29—Fe369.30 (16)C35—Fe3—C28121.38 (12)
C28—C29—Fe369.80 (16)C27—Fe3—C2840.57 (12)
C30—C29—H29125.6C29—Fe3—C2840.75 (12)
C28—C29—H29125.6C32—Fe3—C3468.04 (12)
Fe3—C29—H29126.9C26—Fe3—C34162.55 (13)
C29—C30—C26107.1 (3)C30—Fe3—C34153.04 (13)
C29—C30—Fe370.31 (16)C36—Fe3—C3468.66 (13)
C26—C30—Fe368.72 (15)C33—Fe3—C3440.01 (13)
C29—C30—H30126.4C35—Fe3—C3440.72 (14)
C26—C30—H30126.4C27—Fe3—C34123.56 (13)
Fe3—C30—H30126.1C29—Fe3—C34118.09 (13)
N6—C31—C32179.4 (3)C28—Fe3—C34105.38 (12)
C31—C32—C33125.2 (3)N1—Cu1—N3126.02 (11)
C31—C32—C36126.1 (3)N1—Cu1—N2116.24 (11)
C33—C32—C36108.6 (3)N3—Cu1—N2114.92 (11)
C31—C32—Fe3122.43 (19)N1—Cu1—O193.09 (9)
C33—C32—Fe370.08 (17)N3—Cu1—O197.54 (9)
C36—C32—Fe369.77 (17)N2—Cu1—O196.17 (9)
C34—C33—C32107.3 (3)N4—Cu2—N5128.97 (11)
C34—C33—Fe370.43 (17)N4—Cu2—N6117.11 (11)
C32—C33—Fe368.69 (16)N5—Cu2—N6113.63 (11)
C34—C33—H33126.4C38—O1—Cu1128.4 (2)
C32—C33—H33126.4F4—B1—F392.2 (9)
Fe3—C33—H33126.1F4—B1—F2116.4 (12)
C33—C34—C35108.9 (3)F3—B1—F2111.8 (12)
C33—C34—Fe369.56 (16)F4—B1—F3'108.4 (10)
C35—C34—Fe369.30 (16)F3—B1—F3'16.2 (13)
C33—C34—H34125.5F2—B1—F3'103.2 (12)
C35—C34—H34125.5F4—B1—F1113.4 (12)
Fe3—C34—H34127.2F3—B1—F1109.4 (13)
C36—C35—C34108.6 (3)F2—B1—F1112.0 (14)
C36—C35—Fe369.45 (16)F3'—B1—F1101.9 (13)
C34—C35—Fe369.97 (17)F4—B1—F2'109.0 (12)
C36—C35—H35125.7F3—B1—F2'114.6 (13)
C34—C35—H35125.7F2—B1—F2'7.4 (16)
Fe3—C35—H35126.5F3'—B1—F2'107.6 (10)
C35—C36—C32106.6 (3)F1—B1—F2'115.9 (16)
C35—C36—Fe369.99 (17)F4—B1—F1'113.5 (11)
C32—C36—Fe368.74 (16)F3—B1—F1'117.8 (13)
C35—C36—H36126.7F2—B1—F1'105.5 (15)
C32—C36—H36126.7F3'—B1—F1'109.3 (11)
Fe3—C36—H36126.1F1—B1—F1'9 (2)
C38—C37—H37A109.5F2'—B1—F1'108.8 (12)
C38—C37—H37B109.5F4—B1—F4'18.1 (9)
H37A—C37—H37B109.5F3—B1—F4'110.3 (8)
C38—C37—H37C109.5F2—B1—F4'106.7 (11)
H37A—C37—H37C109.5F3'—B1—F4'126.5 (10)
H37B—C37—H37C109.5F1—B1—F4'106.5 (13)
O1—C38—C39122.5 (3)F2'—B1—F4'99.3 (11)
O1—C38—C37120.6 (3)F1'—B1—F4'104.1 (9)
C39—C38—C37116.9 (3)F7—B2—F6108.5 (3)
C38—C39—H39A109.5F7—B2—F8110.9 (4)
C38—C39—H39B109.5F6—B2—F8109.7 (3)
H39A—C39—H39B109.5F7—B2—F5110.4 (3)
C38—C39—H39C109.5F6—B2—F5108.7 (3)
H39A—C39—H39C109.5F8—B2—F5108.7 (3)
H39B—C39—H39C109.5
N1—C1—C2—C3141 (17)C13—C14—Fe2—C2450.2 (3)
N1—C1—C2—C642 (17)C18—C14—Fe2—C2471.3 (2)
N1—C1—C2—Fe1130 (17)C15—C14—Fe2—C24169.03 (18)
C1—C2—C3—C4177.9 (3)C13—C14—Fe2—C2139.3 (3)
C6—C2—C3—C40.5 (3)C18—C14—Fe2—C21160.74 (19)
Fe1—C2—C3—C459.8 (2)C15—C14—Fe2—C2179.6 (2)
C1—C2—C3—Fe1118.1 (3)C13—C14—Fe2—C17159.4 (3)
C6—C2—C3—Fe159.32 (19)C18—C14—Fe2—C1737.9 (2)
C2—C3—C4—C50.5 (3)C15—C14—Fe2—C1781.8 (2)
Fe1—C3—C4—C558.5 (2)C13—C14—Fe2—C2392.4 (5)
C2—C3—C4—Fe159.03 (19)C18—C14—Fe2—C2329.1 (5)
C3—C4—C5—C60.4 (3)C15—C14—Fe2—C23148.7 (4)
Fe1—C4—C5—C659.1 (2)C13—C14—Fe2—C2279.1 (4)
C3—C4—C5—Fe158.7 (2)C18—C14—Fe2—C22159.5 (3)
C4—C5—C6—C20.1 (3)C15—C14—Fe2—C2239.8 (4)
Fe1—C5—C6—C259.15 (19)C13—C14—Fe2—C15118.9 (4)
C4—C5—C6—Fe159.2 (2)C18—C14—Fe2—C15119.7 (3)
C1—C2—C6—C5177.7 (3)C13—C14—Fe2—C16156.9 (3)
C3—C2—C6—C50.3 (3)C18—C14—Fe2—C1681.7 (2)
Fe1—C2—C6—C559.65 (19)C15—C14—Fe2—C1638.0 (2)
C1—C2—C6—Fe1118.1 (3)C17—C18—Fe2—C20155.9 (2)
C3—C2—C6—Fe159.38 (19)C14—C18—Fe2—C2085.6 (2)
N4—C7—C8—C1229 (33)C17—C18—Fe2—C14118.4 (3)
N4—C7—C8—C9157 (32)C17—C18—Fe2—C24113.2 (2)
N4—C7—C8—Fe1116 (32)C14—C18—Fe2—C24128.34 (19)
C7—C8—C9—C10175.9 (3)C17—C18—Fe2—C21168.7 (3)
C12—C8—C9—C101.1 (3)C14—C18—Fe2—C2150.2 (4)
Fe1—C8—C9—C1060.8 (2)C14—C18—Fe2—C17118.4 (3)
C7—C8—C9—Fe1115.0 (3)C17—C18—Fe2—C2371.4 (2)
C12—C8—C9—Fe159.71 (19)C14—C18—Fe2—C23170.15 (18)
C8—C9—C10—C110.9 (3)C17—C18—Fe2—C2238.7 (5)
Fe1—C9—C10—C1158.5 (2)C14—C18—Fe2—C22157.2 (3)
C8—C9—C10—Fe159.34 (19)C17—C18—Fe2—C1580.6 (2)
C9—C10—C11—C120.3 (3)C14—C18—Fe2—C1537.82 (19)
Fe1—C10—C11—C1258.2 (2)C17—C18—Fe2—C1637.3 (2)
C9—C10—C11—Fe157.9 (2)C14—C18—Fe2—C1681.2 (2)
C10—C11—C12—C80.4 (3)C23—C24—Fe2—C20118.1 (3)
Fe1—C11—C12—C858.89 (19)C23—C24—Fe2—C14162.39 (18)
C10—C11—C12—Fe158.5 (2)C20—C24—Fe2—C1479.5 (2)
C7—C8—C12—C11175.8 (3)C23—C24—Fe2—C18121.63 (19)
C9—C8—C12—C111.0 (3)C20—C24—Fe2—C18120.30 (18)
Fe1—C8—C12—C1160.38 (19)C23—C24—Fe2—C2180.26 (19)
C7—C8—C12—Fe1115.4 (3)C20—C24—Fe2—C2137.80 (18)
C9—C8—C12—Fe159.43 (19)C23—C24—Fe2—C1779.2 (2)
N2—C13—C14—C18113 (7)C20—C24—Fe2—C17162.76 (18)
N2—C13—C14—C1568 (7)C20—C24—Fe2—C23118.1 (3)
N2—C13—C14—Fe2157 (7)C23—C24—Fe2—C2236.76 (18)
C13—C14—C15—C16179.9 (3)C20—C24—Fe2—C2281.31 (19)
C18—C14—C15—C160.6 (3)C23—C24—Fe2—C15165.1 (5)
Fe2—C14—C15—C1659.9 (2)C20—C24—Fe2—C1547.0 (6)
C13—C14—C15—Fe2120.0 (3)C23—C24—Fe2—C1645.7 (4)
C18—C14—C15—Fe259.27 (19)C20—C24—Fe2—C16163.8 (3)
C14—C15—C16—C170.5 (3)C22—C21—Fe2—C20118.0 (3)
Fe2—C15—C16—C1758.4 (2)C22—C21—Fe2—C14157.19 (19)
C14—C15—C16—Fe258.96 (19)C20—C21—Fe2—C1484.8 (2)
C15—C16—C17—C180.3 (3)C22—C21—Fe2—C18165.4 (3)
Fe2—C16—C17—C1858.9 (2)C20—C21—Fe2—C1847.4 (4)
C15—C16—C17—Fe258.6 (2)C22—C21—Fe2—C2480.3 (2)
C16—C17—C18—C140.1 (3)C20—C21—Fe2—C2437.71 (17)
Fe2—C17—C18—C1459.29 (19)C22—C21—Fe2—C1736.1 (5)
C16—C17—C18—Fe259.2 (2)C20—C21—Fe2—C17154.1 (4)
C13—C14—C18—C17179.7 (3)C22—C21—Fe2—C2336.46 (19)
C15—C14—C18—C170.4 (3)C20—C21—Fe2—C2381.53 (19)
Fe2—C14—C18—C1759.9 (2)C20—C21—Fe2—C22118.0 (3)
C13—C14—C18—Fe2119.8 (3)C22—C21—Fe2—C15113.9 (2)
C15—C14—C18—Fe259.50 (19)C20—C21—Fe2—C15128.08 (18)
N5—C19—C20—C24100 (7)C22—C21—Fe2—C1672.2 (2)
N5—C19—C20—C2172 (7)C20—C21—Fe2—C16169.85 (18)
N5—C19—C20—Fe213 (7)C18—C17—Fe2—C2055.6 (4)
C19—C20—C21—C22173.5 (3)C16—C17—Fe2—C20175.6 (3)
C24—C20—C21—C220.4 (3)C18—C17—Fe2—C1438.6 (2)
Fe2—C20—C21—C2259.90 (18)C16—C17—Fe2—C1481.4 (2)
C19—C20—C21—Fe2113.6 (3)C16—C17—Fe2—C18119.9 (3)
C24—C20—C21—Fe259.47 (19)C18—C17—Fe2—C2483.7 (2)
C20—C21—C22—C230.3 (3)C16—C17—Fe2—C24156.37 (19)
Fe2—C21—C22—C2358.6 (2)C18—C17—Fe2—C21168.3 (3)
C20—C21—C22—Fe258.86 (18)C16—C17—Fe2—C2148.4 (5)
C21—C22—C23—C240.1 (3)C18—C17—Fe2—C23125.2 (2)
Fe2—C22—C23—C2458.4 (2)C16—C17—Fe2—C23114.8 (2)
C21—C22—C23—Fe258.3 (2)C18—C17—Fe2—C22164.8 (2)
C22—C23—C24—C200.2 (3)C16—C17—Fe2—C2275.3 (2)
Fe2—C23—C24—C2059.03 (19)C18—C17—Fe2—C1583.2 (2)
C22—C23—C24—Fe258.8 (2)C16—C17—Fe2—C1536.71 (19)
C19—C20—C24—C23173.3 (3)C18—C17—Fe2—C16119.9 (3)
C21—C20—C24—C230.4 (3)C22—C23—Fe2—C2081.53 (18)
Fe2—C20—C24—C2359.94 (19)C24—C23—Fe2—C2038.82 (18)
C19—C20—C24—Fe2113.4 (3)C22—C23—Fe2—C14174.8 (4)
C21—C20—C24—Fe259.55 (19)C24—C23—Fe2—C1454.5 (5)
N3—C25—C26—C27153 (7)C22—C23—Fe2—C18162.68 (18)
N3—C25—C26—C3031 (7)C24—C23—Fe2—C1877.0 (2)
N3—C25—C26—Fe3119 (7)C22—C23—Fe2—C24120.3 (2)
C25—C26—C27—C28177.3 (3)C22—C23—Fe2—C2136.77 (17)
C30—C26—C27—C280.6 (3)C24—C23—Fe2—C2183.57 (19)
Fe3—C26—C27—C2859.75 (19)C22—C23—Fe2—C17123.27 (19)
C25—C26—C27—Fe3117.6 (3)C24—C23—Fe2—C17116.4 (2)
C30—C26—C27—Fe359.15 (18)C24—C23—Fe2—C22120.3 (2)
C26—C27—C28—C290.4 (3)C22—C23—Fe2—C1552.3 (3)
Fe3—C27—C28—C2958.43 (19)C24—C23—Fe2—C15172.6 (3)
C26—C27—C28—Fe358.82 (19)C22—C23—Fe2—C1681.9 (2)
C27—C28—C29—C300.0 (3)C24—C23—Fe2—C16157.75 (19)
Fe3—C28—C29—C3058.5 (2)C23—C22—Fe2—C2082.00 (19)
C27—C28—C29—Fe358.43 (19)C21—C22—Fe2—C2039.00 (18)
C28—C29—C30—C260.3 (3)C23—C22—Fe2—C14176.1 (3)
Fe3—C29—C30—C2659.11 (18)C21—C22—Fe2—C1455.1 (4)
C28—C29—C30—Fe358.8 (2)C23—C22—Fe2—C1844.3 (4)
C25—C26—C30—C29177.3 (3)C21—C22—Fe2—C18165.3 (3)
C27—C26—C30—C290.6 (3)C23—C22—Fe2—C2437.33 (18)
Fe3—C26—C30—C2960.12 (19)C21—C22—Fe2—C2483.67 (19)
C25—C26—C30—Fe3117.2 (3)C23—C22—Fe2—C21121.0 (3)
C27—C26—C30—Fe359.53 (19)C23—C22—Fe2—C1773.0 (2)
N6—C31—C32—C33109 (33)C21—C22—Fe2—C17166.0 (2)
N6—C31—C32—C3677 (33)C21—C22—Fe2—C23121.0 (3)
N6—C31—C32—Fe3164 (100)C23—C22—Fe2—C15154.83 (18)
C31—C32—C33—C34176.4 (3)C21—C22—Fe2—C1584.2 (2)
C36—C32—C33—C340.8 (3)C23—C22—Fe2—C16113.6 (2)
Fe3—C32—C33—C3460.14 (19)C21—C22—Fe2—C16125.4 (2)
C31—C32—C33—Fe3116.3 (3)C16—C15—Fe2—C20163.7 (2)
C36—C32—C33—Fe359.3 (2)C14—C15—Fe2—C2078.3 (2)
C32—C33—C34—C350.8 (3)C16—C15—Fe2—C14118.0 (3)
Fe3—C33—C34—C3558.2 (2)C16—C15—Fe2—C1880.4 (2)
C32—C33—C34—Fe359.03 (19)C14—C15—Fe2—C1837.66 (18)
C33—C34—C35—C360.5 (3)C16—C15—Fe2—C24158.1 (5)
Fe3—C34—C35—C3658.9 (2)C14—C15—Fe2—C2440.1 (6)
C33—C34—C35—Fe358.4 (2)C16—C15—Fe2—C21121.8 (2)
C34—C35—C36—C320.0 (3)C14—C15—Fe2—C21120.20 (18)
Fe3—C35—C36—C3259.24 (19)C16—C15—Fe2—C1736.9 (2)
C34—C35—C36—Fe359.2 (2)C14—C15—Fe2—C1781.1 (2)
C31—C32—C36—C35176.1 (3)C16—C15—Fe2—C2343.0 (4)
C33—C32—C36—C350.5 (3)C14—C15—Fe2—C23161.0 (2)
Fe3—C32—C36—C3560.0 (2)C16—C15—Fe2—C2278.8 (2)
C31—C32—C36—Fe3116.0 (3)C14—C15—Fe2—C22163.18 (17)
C33—C32—C36—Fe359.52 (19)C14—C15—Fe2—C16118.0 (3)
C2—C1—N1—Cu181 (18)C15—C16—Fe2—C2052.6 (5)
C14—C13—N2—Cu121 (7)C17—C16—Fe2—C20173.3 (4)
C26—C25—N3—Cu1135 (6)C15—C16—Fe2—C1438.96 (19)
C8—C7—N4—Cu295 (33)C17—C16—Fe2—C1481.8 (2)
C20—C19—N5—Cu216 (9)C15—C16—Fe2—C1883.5 (2)
C32—C31—N6—Cu254 (34)C17—C16—Fe2—C1837.24 (19)
C7—C8—Fe1—C25.3 (3)C15—C16—Fe2—C24169.4 (3)
C12—C8—Fe1—C2124.68 (18)C17—C16—Fe2—C2448.6 (4)
C9—C8—Fe1—C2115.53 (19)C15—C16—Fe2—C2177.6 (2)
C7—C8—Fe1—C9120.8 (3)C17—C16—Fe2—C21161.72 (18)
C12—C8—Fe1—C9119.8 (3)C15—C16—Fe2—C17120.7 (3)
C7—C8—Fe1—C579.6 (4)C15—C16—Fe2—C23159.01 (19)
C12—C8—Fe1—C539.8 (4)C17—C16—Fe2—C2380.3 (2)
C9—C8—Fe1—C5159.6 (3)C15—C16—Fe2—C22117.5 (2)
C7—C8—Fe1—C12119.4 (3)C17—C16—Fe2—C22121.8 (2)
C9—C8—Fe1—C12119.8 (3)C17—C16—Fe2—C15120.7 (3)
C7—C8—Fe1—C639.7 (3)C31—C32—Fe3—C264.0 (3)
C12—C8—Fe1—C679.7 (2)C33—C32—Fe3—C26123.73 (18)
C9—C8—Fe1—C6160.49 (19)C36—C32—Fe3—C26116.59 (18)
C7—C8—Fe1—C349.7 (3)C31—C32—Fe3—C3048.7 (3)
C12—C8—Fe1—C3169.10 (17)C33—C32—Fe3—C30168.44 (17)
C9—C8—Fe1—C371.1 (2)C36—C32—Fe3—C3071.9 (2)
C7—C8—Fe1—C490.2 (4)C31—C32—Fe3—C36120.6 (3)
C12—C8—Fe1—C4150.4 (4)C33—C32—Fe3—C36119.7 (2)
C9—C8—Fe1—C430.6 (5)C31—C32—Fe3—C33119.7 (3)
C7—C8—Fe1—C10158.9 (3)C36—C32—Fe3—C33119.7 (2)
C12—C8—Fe1—C1081.70 (19)C31—C32—Fe3—C35158.8 (3)
C9—C8—Fe1—C1038.10 (19)C33—C32—Fe3—C3581.53 (19)
C7—C8—Fe1—C11157.5 (3)C36—C32—Fe3—C3538.15 (18)
C12—C8—Fe1—C1138.10 (18)C31—C32—Fe3—C2740.7 (3)
C9—C8—Fe1—C1181.7 (2)C33—C32—Fe3—C2779.0 (2)
C1—C2—Fe1—C81.4 (3)C36—C32—Fe3—C27161.30 (17)
C3—C2—Fe1—C8121.77 (18)C31—C32—Fe3—C2989.5 (4)
C6—C2—Fe1—C8118.40 (18)C33—C32—Fe3—C29150.8 (3)
C1—C2—Fe1—C944.1 (3)C36—C32—Fe3—C2931.1 (4)
C3—C2—Fe1—C976.3 (2)C31—C32—Fe3—C2880.4 (4)
C6—C2—Fe1—C9163.86 (17)C33—C32—Fe3—C2839.3 (4)
C1—C2—Fe1—C5158.1 (3)C36—C32—Fe3—C28159.0 (3)
C3—C2—Fe1—C581.50 (19)C31—C32—Fe3—C34157.2 (3)
C6—C2—Fe1—C538.34 (18)C33—C32—Fe3—C3437.54 (18)
C1—C2—Fe1—C1245.6 (3)C36—C32—Fe3—C3482.15 (19)
C3—C2—Fe1—C12165.98 (18)C25—C26—Fe3—C322.4 (3)
C6—C2—Fe1—C1274.2 (2)C27—C26—Fe3—C32118.05 (18)
C1—C2—Fe1—C6119.8 (3)C30—C26—Fe3—C32122.34 (19)
C3—C2—Fe1—C6119.8 (2)C25—C26—Fe3—C30120.0 (3)
C1—C2—Fe1—C3120.4 (3)C27—C26—Fe3—C30119.6 (3)
C6—C2—Fe1—C3119.8 (2)C25—C26—Fe3—C3642.6 (3)
C1—C2—Fe1—C4158.3 (3)C27—C26—Fe3—C36163.04 (18)
C3—C2—Fe1—C437.89 (18)C30—C26—Fe3—C3677.4 (2)
C6—C2—Fe1—C481.95 (19)C25—C26—Fe3—C3346.2 (3)
C1—C2—Fe1—C1082.5 (4)C27—C26—Fe3—C3374.2 (2)
C3—C2—Fe1—C1037.9 (4)C30—C26—Fe3—C33166.19 (18)
C6—C2—Fe1—C10157.8 (3)C25—C26—Fe3—C3581.7 (4)
C1—C2—Fe1—C1186.8 (5)C27—C26—Fe3—C35157.9 (3)
C3—C2—Fe1—C11152.8 (4)C30—C26—Fe3—C3538.3 (4)
C6—C2—Fe1—C1133.0 (5)C25—C26—Fe3—C27120.4 (3)
C10—C9—Fe1—C8117.5 (3)C30—C26—Fe3—C27119.6 (3)
C10—C9—Fe1—C2156.48 (18)C25—C26—Fe3—C29157.7 (3)
C8—C9—Fe1—C286.1 (2)C27—C26—Fe3—C2981.85 (19)
C10—C9—Fe1—C543.0 (4)C30—C26—Fe3—C2937.75 (18)
C8—C9—Fe1—C5160.4 (3)C25—C26—Fe3—C28158.4 (3)
C10—C9—Fe1—C1279.7 (2)C27—C26—Fe3—C2837.95 (17)
C8—C9—Fe1—C1237.71 (18)C30—C26—Fe3—C2881.65 (19)
C10—C9—Fe1—C6171.0 (3)C25—C26—Fe3—C3485.9 (5)
C8—C9—Fe1—C653.5 (4)C27—C26—Fe3—C3434.6 (5)
C10—C9—Fe1—C3114.64 (19)C30—C26—Fe3—C34154.2 (4)
C8—C9—Fe1—C3127.91 (19)C29—C30—Fe3—C32161.29 (17)
C10—C9—Fe1—C473.7 (2)C26—C30—Fe3—C3280.4 (2)
C8—C9—Fe1—C4168.84 (18)C29—C30—Fe3—C26118.3 (3)
C8—C9—Fe1—C10117.5 (3)C29—C30—Fe3—C36120.22 (18)
C10—C9—Fe1—C1136.48 (19)C26—C30—Fe3—C36121.44 (19)
C8—C9—Fe1—C1181.0 (2)C29—C30—Fe3—C33167.0 (4)
C4—C5—Fe1—C8174.9 (3)C26—C30—Fe3—C3348.7 (6)
C6—C5—Fe1—C854.3 (4)C29—C30—Fe3—C3578.0 (2)
C4—C5—Fe1—C281.4 (2)C26—C30—Fe3—C35163.69 (18)
C6—C5—Fe1—C239.14 (19)C29—C30—Fe3—C2780.63 (18)
C4—C5—Fe1—C942.4 (4)C26—C30—Fe3—C2737.70 (18)
C6—C5—Fe1—C9162.9 (3)C26—C30—Fe3—C29118.3 (3)
C4—C5—Fe1—C12155.58 (19)C29—C30—Fe3—C2837.16 (17)
C6—C5—Fe1—C1283.9 (2)C26—C30—Fe3—C2881.17 (19)
C4—C5—Fe1—C6120.6 (3)C29—C30—Fe3—C3444.9 (3)
C4—C5—Fe1—C336.79 (19)C26—C30—Fe3—C34163.3 (3)
C6—C5—Fe1—C383.8 (2)C35—C36—Fe3—C32117.9 (3)
C6—C5—Fe1—C4120.6 (3)C35—C36—Fe3—C26157.23 (19)
C4—C5—Fe1—C1073.5 (2)C32—C36—Fe3—C2684.8 (2)
C6—C5—Fe1—C10165.97 (19)C35—C36—Fe3—C30114.5 (2)
C4—C5—Fe1—C11114.4 (2)C32—C36—Fe3—C30127.53 (17)
C6—C5—Fe1—C11125.09 (19)C35—C36—Fe3—C3380.3 (2)
C11—C12—Fe1—C8117.8 (3)C32—C36—Fe3—C3337.63 (17)
C11—C12—Fe1—C2163.72 (18)C32—C36—Fe3—C35117.9 (3)
C8—C12—Fe1—C278.5 (2)C35—C36—Fe3—C27168.6 (3)
C11—C12—Fe1—C979.9 (2)C32—C36—Fe3—C2750.7 (4)
C8—C12—Fe1—C937.88 (18)C35—C36—Fe3—C2973.2 (2)
C11—C12—Fe1—C578.1 (2)C32—C36—Fe3—C29168.83 (17)
C8—C12—Fe1—C5164.09 (18)C35—C36—Fe3—C2840.6 (4)
C11—C12—Fe1—C6121.33 (19)C32—C36—Fe3—C28158.5 (3)
C8—C12—Fe1—C6120.88 (18)C35—C36—Fe3—C3437.4 (2)
C11—C12—Fe1—C3155.8 (5)C32—C36—Fe3—C3480.55 (19)
C8—C12—Fe1—C338.0 (6)C34—C33—Fe3—C32118.5 (3)
C11—C12—Fe1—C441.2 (4)C34—C33—Fe3—C26162.69 (19)
C8—C12—Fe1—C4159.0 (3)C32—C33—Fe3—C2678.8 (2)
C11—C12—Fe1—C1036.83 (19)C34—C33—Fe3—C30158.1 (4)
C8—C12—Fe1—C1080.95 (19)C32—C33—Fe3—C3039.6 (6)
C8—C12—Fe1—C11117.8 (3)C34—C33—Fe3—C3680.6 (2)
C5—C6—Fe1—C8158.71 (19)C32—C33—Fe3—C3637.86 (17)
C2—C6—Fe1—C883.6 (2)C34—C33—Fe3—C3537.1 (2)
C5—C6—Fe1—C2117.7 (3)C32—C33—Fe3—C3581.41 (19)
C5—C6—Fe1—C9160.8 (3)C34—C33—Fe3—C27120.6 (2)
C2—C6—Fe1—C943.2 (4)C32—C33—Fe3—C27120.92 (18)
C2—C6—Fe1—C5117.7 (3)C34—C33—Fe3—C2941.0 (4)
C5—C6—Fe1—C12115.1 (2)C32—C33—Fe3—C29159.5 (2)
C2—C6—Fe1—C12127.28 (18)C34—C33—Fe3—C2877.7 (2)
C5—C6—Fe1—C380.0 (2)C32—C33—Fe3—C28163.85 (16)
C2—C6—Fe1—C337.62 (17)C32—C33—Fe3—C34118.5 (3)
C5—C6—Fe1—C436.8 (2)C36—C35—Fe3—C3239.01 (19)
C2—C6—Fe1—C480.86 (19)C34—C35—Fe3—C3280.9 (2)
C5—C6—Fe1—C1035.9 (4)C36—C35—Fe3—C2654.4 (4)
C2—C6—Fe1—C10153.5 (3)C34—C35—Fe3—C26174.3 (3)
C5—C6—Fe1—C1172.9 (2)C36—C35—Fe3—C3082.3 (2)
C2—C6—Fe1—C11169.48 (17)C34—C35—Fe3—C30157.73 (19)
C4—C3—Fe1—C8161.02 (18)C34—C35—Fe3—C36119.9 (3)
C2—C3—Fe1—C880.8 (2)C36—C35—Fe3—C3383.5 (2)
C4—C3—Fe1—C2118.2 (2)C34—C35—Fe3—C3336.45 (19)
C4—C3—Fe1—C9120.14 (18)C36—C35—Fe3—C27169.2 (3)
C2—C3—Fe1—C9121.69 (18)C34—C35—Fe3—C2749.2 (4)
C4—C3—Fe1—C536.85 (18)C36—C35—Fe3—C29123.1 (2)
C2—C3—Fe1—C581.33 (19)C34—C35—Fe3—C29116.9 (2)
C4—C3—Fe1—C12168.4 (4)C36—C35—Fe3—C28163.49 (18)
C2—C3—Fe1—C1250.2 (5)C34—C35—Fe3—C2876.6 (2)
C4—C3—Fe1—C680.43 (19)C36—C35—Fe3—C34119.9 (3)
C2—C3—Fe1—C637.74 (17)C28—C27—Fe3—C32158.05 (17)
C2—C3—Fe1—C4118.2 (2)C26—C27—Fe3—C3283.6 (2)
C4—C3—Fe1—C1078.6 (2)C28—C27—Fe3—C26118.4 (2)
C2—C3—Fe1—C10163.25 (17)C28—C27—Fe3—C3080.30 (19)
C4—C3—Fe1—C1146.2 (3)C26—C27—Fe3—C3038.06 (18)
C2—C3—Fe1—C11164.4 (2)C28—C27—Fe3—C36163.8 (3)
C5—C4—Fe1—C8174.2 (3)C26—C27—Fe3—C3645.4 (4)
C3—C4—Fe1—C853.6 (4)C28—C27—Fe3—C33115.04 (18)
C5—C4—Fe1—C281.8 (2)C26—C27—Fe3—C33126.60 (18)
C3—C4—Fe1—C238.83 (17)C28—C27—Fe3—C3537.1 (4)
C5—C4—Fe1—C9162.41 (19)C26—C27—Fe3—C35155.4 (3)
C3—C4—Fe1—C977.0 (2)C28—C27—Fe3—C2937.05 (17)
C3—C4—Fe1—C5120.6 (3)C26—C27—Fe3—C2981.31 (18)
C5—C4—Fe1—C1253.0 (3)C26—C27—Fe3—C28118.4 (2)
C3—C4—Fe1—C12173.6 (2)C28—C27—Fe3—C3473.4 (2)
C5—C4—Fe1—C637.00 (19)C26—C27—Fe3—C34168.21 (18)
C3—C4—Fe1—C683.59 (19)C30—C29—Fe3—C3253.8 (4)
C5—C4—Fe1—C3120.6 (3)C28—C29—Fe3—C32174.2 (3)
C5—C4—Fe1—C10122.7 (2)C30—C29—Fe3—C2639.00 (17)
C3—C4—Fe1—C10116.68 (19)C28—C29—Fe3—C2681.42 (18)
C5—C4—Fe1—C1181.8 (2)C28—C29—Fe3—C30120.4 (2)
C3—C4—Fe1—C11157.58 (18)C30—C29—Fe3—C3677.5 (2)
C9—C10—Fe1—C839.52 (19)C28—C29—Fe3—C36162.05 (17)
C11—C10—Fe1—C881.74 (19)C30—C29—Fe3—C33172.7 (2)
C9—C10—Fe1—C254.2 (4)C28—C29—Fe3—C3352.3 (3)
C11—C10—Fe1—C2175.4 (3)C30—C29—Fe3—C35117.47 (18)
C11—C10—Fe1—C9121.3 (3)C28—C29—Fe3—C35122.11 (18)
C9—C10—Fe1—C5162.14 (19)C30—C29—Fe3—C2783.52 (18)
C11—C10—Fe1—C576.6 (2)C28—C29—Fe3—C2736.89 (17)
C9—C10—Fe1—C1284.4 (2)C30—C29—Fe3—C28120.4 (2)
C11—C10—Fe1—C1236.87 (18)C30—C29—Fe3—C34158.72 (18)
C9—C10—Fe1—C6171.2 (3)C28—C29—Fe3—C3480.86 (19)
C11—C10—Fe1—C650.0 (4)C27—C28—Fe3—C3254.6 (4)
C9—C10—Fe1—C381.5 (2)C29—C28—Fe3—C32175.1 (3)
C11—C10—Fe1—C3157.24 (18)C27—C28—Fe3—C2638.68 (17)
C9—C10—Fe1—C4122.3 (2)C29—C28—Fe3—C2681.86 (18)
C11—C10—Fe1—C4116.41 (19)C27—C28—Fe3—C3083.69 (18)
C9—C10—Fe1—C11121.3 (3)C29—C28—Fe3—C3036.85 (17)
C12—C11—Fe1—C839.15 (18)C27—C28—Fe3—C36165.1 (3)
C10—C11—Fe1—C881.39 (19)C29—C28—Fe3—C3644.5 (4)
C12—C11—Fe1—C252.6 (5)C27—C28—Fe3—C3383.4 (2)
C10—C11—Fe1—C2173.1 (4)C29—C28—Fe3—C33156.05 (17)
C12—C11—Fe1—C984.2 (2)C27—C28—Fe3—C35165.22 (18)
C10—C11—Fe1—C936.35 (18)C29—C28—Fe3—C3574.2 (2)
C12—C11—Fe1—C5118.85 (19)C29—C28—Fe3—C27120.5 (2)
C10—C11—Fe1—C5120.61 (19)C27—C28—Fe3—C29120.5 (2)
C10—C11—Fe1—C12120.5 (3)C27—C28—Fe3—C34124.06 (19)
C12—C11—Fe1—C678.6 (2)C29—C28—Fe3—C34115.40 (18)
C10—C11—Fe1—C6160.89 (18)C33—C34—Fe3—C3238.65 (19)
C12—C11—Fe1—C3167.5 (2)C35—C34—Fe3—C3282.0 (2)
C10—C11—Fe1—C347.0 (3)C33—C34—Fe3—C2651.7 (5)
C12—C11—Fe1—C4160.64 (18)C35—C34—Fe3—C26172.4 (4)
C10—C11—Fe1—C478.8 (2)C33—C34—Fe3—C30168.1 (3)
C12—C11—Fe1—C10120.5 (3)C35—C34—Fe3—C3047.4 (4)
C19—C20—Fe2—C142.4 (3)C33—C34—Fe3—C3683.5 (2)
C24—C20—Fe2—C14123.31 (19)C35—C34—Fe3—C3637.23 (19)
C21—C20—Fe2—C14116.92 (18)C35—C34—Fe3—C33120.7 (3)
C19—C20—Fe2—C1842.5 (3)C33—C34—Fe3—C35120.7 (3)
C24—C20—Fe2—C1878.5 (2)C33—C34—Fe3—C2778.5 (2)
C21—C20—Fe2—C18161.77 (18)C35—C34—Fe3—C27160.82 (19)
C19—C20—Fe2—C24120.9 (3)C33—C34—Fe3—C29160.70 (18)
C21—C20—Fe2—C24119.8 (2)C35—C34—Fe3—C2978.6 (2)
C19—C20—Fe2—C21119.3 (3)C33—C34—Fe3—C28118.76 (19)
C24—C20—Fe2—C21119.8 (2)C35—C34—Fe3—C28120.54 (19)
C19—C20—Fe2—C1782.0 (4)C1—N1—Cu1—N3136 (5)
C24—C20—Fe2—C1738.9 (4)C1—N1—Cu1—N223 (5)
C21—C20—Fe2—C17158.7 (3)C1—N1—Cu1—O1122 (5)
C19—C20—Fe2—C23159.2 (3)C25—N3—Cu1—N195 (6)
C24—C20—Fe2—C2338.30 (19)C25—N3—Cu1—N265 (6)
C21—C20—Fe2—C2381.47 (19)C25—N3—Cu1—O1165 (6)
C19—C20—Fe2—C22157.4 (3)C13—N2—Cu1—N1128.5 (8)
C24—C20—Fe2—C2281.6 (2)C13—N2—Cu1—N369.4 (8)
C21—C20—Fe2—C2238.12 (18)C13—N2—Cu1—O131.9 (8)
C19—C20—Fe2—C1546.4 (3)C7—N4—Cu2—N5112.1 (15)
C24—C20—Fe2—C15167.36 (18)C7—N4—Cu2—N661.3 (16)
C21—C20—Fe2—C1572.9 (2)C19—N5—Cu2—N4111.5 (15)
C19—C20—Fe2—C1687.6 (5)C19—N5—Cu2—N674.9 (15)
C24—C20—Fe2—C16151.5 (4)C31—N6—Cu2—N4123 (2)
C21—C20—Fe2—C1631.7 (5)C31—N6—Cu2—N551 (2)
C13—C14—Fe2—C205.9 (3)C39—C38—O1—Cu113.3 (4)
C18—C14—Fe2—C20115.6 (2)C37—C38—O1—Cu1166.6 (2)
C15—C14—Fe2—C20124.72 (19)N1—Cu1—O1—C38175.9 (3)
C13—C14—Fe2—C18121.5 (4)N3—Cu1—O1—C3848.9 (3)
C15—C14—Fe2—C18119.7 (3)N2—Cu1—O1—C3867.3 (3)
ππ interactions (Å, °) for (I). top
The angle α is described by calculating the respective ππ bond relative to the centroid of the involved aromatic C5 ring.
Involved atomsdistanceα
Cu2 ··· C26A—C27A3.1520 (6)93.23 (1)
C26—C27··· Cu2B3.1520 (6)93.23 (1)
C23···C23C3.167 (6)92.2 (2)
Symmetry codes: (A) x - 1, y, z; (B) 1 + x, y, z; (C) -x, 1 -y, 1 - z.
Plane intersection angles (°) for (I) top
p defines a plane calculated by the following atom sequence.
Cp···CpαCp···N3α
p(C2–C6)···p(C14–C18)11.7 (3)p(C2–C6)···p(N1–N3)11.8 (2)
p(C14–C18)···p(C26–C30)23.8 (2)p(C14–C18)···p(N1–N3)18.2 (2)
p(C26–C30)···p(C2–C6)13.3 (2)p(C26–C30)···p(N1–N3)8.9 (2)
p(C8–C12)···p(C32–C36)12.8 (2)p(C8–C12)···p(N4–N6)8.5 (2)
p(C20–C24)···p(C32–C36)23.7 (2)p(C20–C24)···p(N4–N6)19.66 (19)
p(C20–C24)···p(C8–C12)11.1 (2)p(C20–C24)···p(N4–N6)5.3 (2)

Experimental details

Crystal data
Chemical formula[Cu2Fe3(C6H4N)6(C3H6O)](BF4)2·C3H6O
Mr1125.02
Crystal system, space groupTriclinic, P1
Temperature (K)110
a, b, c (Å)7.9947 (6), 13.9384 (18), 19.923 (2)
α, β, γ (°)72.942 (10), 82.968 (7), 87.936 (8)
V3)2106.4 (4)
Z2
Radiation typeCu Kα
µ (mm1)9.92
Crystal size (mm)0.4 × 0.4 × 0.4
Data collection
DiffractometerOxford Gemini CCD
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.427, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
18279, 7318, 6793
Rint0.042
(sin θ/λ)max1)0.593
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.107, 1.05
No. of reflections7318
No. of parameters623
No. of restraints148
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.49

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS2013 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

 

Acknowledgements

MK thanks the Fonds der Chemischen Industrie for a Chemiefonds fellowship.

References

First citationAltmannshofer, S., Herdtweck, E., Köhler, F. H., Miller, R., Mölle, R., Scheidt, E.-W., Scherer, W. & Train, C. (2008). Chem. Eur. J. 14, 8013–8024.  CSD CrossRef PubMed CAS Google Scholar
First citationBenmansour, S., Setifi, F., Triki, S., Thetiot, F., Sala-Pala, J., Gomez-Garcia, C.-J. & Colacio, E. (2009). Polyhedron, pp. 1308–1314.  Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBonniard, L., Kahlal, S., Diallo, A. K., Ornelas, C., Roisnel, T., Manca, G., Rodrigues, J., Ruiz, J., Astruc, D. & Saillard, J. Y. (2011). Inorg. Chem. 50, 114–124.  CSD CrossRef CAS PubMed Google Scholar
First citationBowmaker, G. A., Gill, D. S., Skelton, B. W., Somers, N. & White, A. H. (2004). Z. Naturforsch. Teil B, pp. 1307–1313.  Google Scholar
First citationBurgun, A., Gendron, F., Schauer, P. A., Skelton, B. W., Low, P. J., Costuas, K., Halet, J.-F., Bruce, M. I. & Lapinte, C. (2013). Organometallics, 32, 5015–5025.  Google Scholar
First citationBuschbeck, R., Low, P. J. & Lang, H. (2011). Coord. Chem. Rev. 255, 241–272.  Google Scholar
First citationChesnut, D. J., Kusnetzow, A. & Zubieta, J. (1998). J. Chem. Soc. Dalton Trans. pp. 4081–4084.  Google Scholar
First citationDíez, A., Fernández, J., Lalinde, E., Moreno, M. T. & Sánchez, S. (2008). Dalton Trans. pp. 4926–4936.  Google Scholar
First citationDíez, Á., Lalinde, E., Moreno, M. T. & Sánchez, S. (2009). Dalton Trans. pp. 3434–3446.  Google Scholar
First citationDong, F.-Y., Li, Y.-T., Wu, Z.-Y., Sun, Y.-M., Sun, W., Liu, Z.-Q. & Song, Q.-L. (2008). J. Inorg. Organomet. Polym. 18, 398–406.  Google Scholar
First citationDowling, N., Henry, P. M., Lewis, N. A. & Taube, H. (1981). Inorg. Chem. 20, 2345–2348.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerrara, J. D., Tessier-Youngs, C. & Youngs, W. J. (1987). Organometallics, 6, 676–678.  Google Scholar
First citationFrosch, W., Back, S., Müller, H., Köhler, K., Driess, A., Schiemenz, B., Huttner, G. & Lang, H. (2001). J. Organomet. Chem. 619, 99–109.  Google Scholar
First citationFrosch, W., Back, S., Rheinwald, G., Köhler, K., Pritzkow, H. & Lang, H. (2000). Organometallics, 19, 4016–4024.  Google Scholar
First citationFu, D.-W., Ye, H.-Y., Ye, Q., Pan, K.-J. & Xiong, R.-G. (2008). Dalton Trans. pp. 874–877.  Google Scholar
First citationHelten, H., Beckmann, M., Schnakenburg, G. & Streubel, R. (2010). Eur. J. Inorg. Chem. pp. 2337–2341.  CrossRef Google Scholar
First citationJakob, A., Ecorchard, P., Linseis, M., Winter, R. F. & Lang, H. (2009). J. Organomet. Chem. 694, 655–666.  Google Scholar
First citationJanssen, M. D., Herres, M., Zsolnai, L., Grove, D. M., Spek, A. L., Lang, H. & van Koten, G. (1995). Organometallics, 14, 1098–1100.  Google Scholar
First citationKöhler, K., Pritzkow, H. & Lang, H. (1998). J. Organomet. Chem. 553, 31–38.  Google Scholar
First citationLang, H., George, D. S. A. & Rheinwald, G. (2000). Coord. Chem. Rev. 206–207, 101–197.  Web of Science CrossRef CAS Google Scholar
First citationLang, H., Köhler, K. & Blau, S. (1995). Coord. Chem. Rev. 143, 113–168.  Google Scholar
First citationLang, H., Packheiser, R. & Walfort, B. (2006). Organometallics, 25, 1836–1850.  CrossRef CAS Google Scholar
First citationMcArdle, P. (1995). J. Appl. Cryst. 28, 65.  CrossRef IUCr Journals Google Scholar
First citationOsella, D., Gobetto, R., Nervi, C., Ravera, M., D'Amato, R. & Russo, M. V. (1998). Inorg. Chem. Commun. 1, 239–245.  Google Scholar
First citationOsgerby, J. & Pauson, P. (1961). J. Chem. Soc. pp. 4604–4609.  Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.  Google Scholar
First citationPackheiser, R., Lohan, M., Bräuer, B., Justaud, F., Lapinte, C. & Lang, H. (2008). J. Organomet. Chem. 693, 2898–2902.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2007). Private communication (refcode YOSTOP01). CCDC, Cambridge, England.  Google Scholar
First citationStrehler, F., Hildebrandt, H., Korb, M. & Lang, H. (2013). Z. Anorg. Allg. Chem. 639, 1214–1219.  CSD CrossRef CAS Google Scholar
First citationStrehler, F., Hildebrandt, H., Korb, M., Rüffer, T. & Lang, H. (2014). Organometallics, 33, 4279–4289.  CSD CrossRef CAS Google Scholar
First citationVives, G., Carella, A., Sistach, S., Launay, J.-P. & Rapenne, G. (2006). New J. Chem. 30, 1429–1438.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 244-247
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds