research communications
2{(CH3)2CO}{μ-Fe(η5-C5H4C≡N)2}3](BF4)2·(CH3)2CO
of paddle-wheel sandwich-type [CuaTechnische Universität Chemnitz, Fakultät für Naturwissenschaften, Institut für Chemie, Anorganische Chemie, D-09107 Chemnitz, Germany
*Correspondence e-mail: heinrich.lang@chemie.tu-chemnitz.de
The molecular structure of (acetone-κO)tris(μ-ferrocene-1,1′-dicarbonitrile-κ2N:N′)dicopper(I) bis(tetrafluoridoborate) acetone monosolvate, [Cu2Fe3(C6H4N)6(C3H6O)](BF4)2·C3H6O, consists of two CuI ions bridged by a ferrocene-1,1′-dicarbonitrile moiety in a paddle-wheel-architectured sandwich complex with two BF4− units as counter-ions. One of the latter is equally disordered over two sets of sites. The two CuI ions are complexed in a trigonal–planar manner by three nitrile N-donor atoms. Further interactions by the O atom of an acetone molecule to one of the CuI atoms and a weak η2,π-interaction of two atoms of a cyclopentadienyl ring to the other CuI atom complete a distorted trigonal–pyramidal environment for each of the metal ions. A further acetone molecule is also present as a solvent molecule. The crystal packing is consolidated by several π–π interactions.
Keywords: crystal structure; ferrocene-1,1′-dicarbonitrile; pentametallic complex; paddle-wheel; copper(I); coordination chemistry; η2,π-interaction; π–π interactions.
CCDC reference: 1045804
1. Chemical context
The electron-transfer properties of the acetylide function have been investigated intensively by using bridging units of the type —C≡C—M—C≡C— (M = transition metal), showing moderate electron communication between two redox-active metallocenyl termini in the mixed-valence species (see, for example: Lang et al., 2006; Vives et al., 2006; Jakob et al., 2009; Díez et al., 2008, 2009; Osella et al., 1998; Packheiser et al., 2008; Burgun et al., 2013). The nitrile group is isoelectronic with the acetylide function; Bonniard et al. (2011) described how an —N≡C—C6H4—C≡N— linkage between two iron fragments prohibits the electronic interaction between the transition metal atoms, while the isoelectric di(acetylene)–phenylene bridge shows a moderate delocalization. In contrast, a weak by generation of the mixed-valence species [Ru(N≡CFc)(NH3)5]3+ [Fc = Fe(η5-C5H4)(η5-C5H5)] has been described (Dowling et al., 1981). We recently reported on the synthesis, characterization and electrochemical properties of platinum and copper complexes containing a —C≡N—M—N≡C— (M = Cu or Pt) bridging unit between two redox-active ferrocenyl moieties (Strehler et al., 2013, 2014) to achieve a direct comparison with the —C≡C—M—C≡C— building blocks. In addition, the coordination of ferrocene-1,1′-dicarbonitrile towards PtCl2 resulted in an oligomeric complex (Strehler et al., 2014). In a continuation of this work, we present herein the synthesis and of [Cu2{(CH3)2CO}{μ-Fe(η5-C5H4C≡N)2}3](BF4)2·(CH3)2CO, (I). The synthesis of this compound was realized by comproportionation of elementary copper and a copper(II) salt in the presence of 1,1′-ferrocenediyl dicarbonitrile.
2. Structural commentary
The title compound contains one pentametallic Cu2Fe3 complex molecule in the consisting of two CuI ions bridged by three 1,1′-ferrocenediyl dicarbonitrile ligands that form a triangular paddle-wheel sandwich-type complex with iron⋯iron distances ranging from 9.1739 (13) (Fe2⋯Fe3) to 10.0385 (12) Å (Fe1ctdot;Fe2). The complex crystallizes with two BF4− counter-ions and two molecules of acetone. One acetone molecule coordinates with its oxygen atom to Cu1 [Cu1—O1 2.375 (2) Å], leading to an 18 VE complex and an overall distorted trigonal–pyramidal environment. The Cu2 ion exhibits a weak intermolecular η2, π interaction [3.1520 (6) Å; Table 1, Fig. 1] with two atoms of an adjacent cyclopentadienyl ring, and thus, only a 16 VE complex is present. The deviation from the N3 plane is increased for Cu1 [0.1883 (16) Å] as compared to Cu2 [0.0602 (16) Å] due to a stronger interaction with the axial moiety. The Cu⋯Cu distance [3.3818 (7) Å] exceeds the sum of the van der Waals radii (Σ = 2.80 Å; Bondi, 1964), indicating that the CuI ions do not interact with each other.
The two faces of the sandwich-type complex consist of almost coplanar cyclopentadienyl aromatics and central planes formed by three nitrogen atoms that are also almost coplanar towards the C5 planes. However, one cyclopentadienyl ring of each site deviates from coplanarity (Table 2), which results in a slight bending of the whole complex (Fig. 2). The ferrocenyl cyclopentadienyl moieties virtually exhibit ecliptic conformations [4.5 (2) to 6.4 (2) °], with synperiplanar-oriented carbonitrile substituents towards each other. Maximum deviations from this plane are observed for N5 [0.289 (7) Å] and Cu2 [0.825 (9) Å].
|
3. Supramolecular features
Besides the already noted intermolecular interaction between Cu2 and the mid-point of the C26—C27 bond, π–π interactions are present in the crystal packing between the C23 atom and its symmetry-generated equivalent [3.167 (6) Å; Table 1]. All other π interactions occur almost perpendicular to the involved C5 ring [α C5⋯C23, 92.2 (2) °; α C5⋯Cu2, 93.23 (1) °; Table 1]. Compound (I) forms a layer-type structure parallel to (11) (Fig. 2), in which the coordinating acetone molecule is part of the overlaying layer. The second acetone molecule is present in each layer and does not exhibit any notable intermolecular interactions. The distances between two layers are in the range of the above-mentioned interactions.
4. Database survey
Since the first synthesis of 1,1′-dicyanoferrocene (Osgerby & Pauson, 1961), only one example of a has been reported, that of the molecule itself (Altmannshofer et al., 2008) which exhibits a similar torsion (–2.2°) of the cyclopentadienyl rings to that in (I). Further molecules bearing one nitrilo substituent at the ferrocenyl backbone include a pentacarbonyl tungsten complex with the second nitrilo functionality involved in a 2,3-dihydro-1,2,3-azadiphosphete (Helten et al., 2010) and recently published square-planar cis- and trans-platinum(II) complexes of cyanoferrocene (Strehler et al., 2014).
Trigonal–planar (hetero-bimetallic) CuI complexes are well described in the literature (Lang et al., 1995, 2000, 2006; Buschbeck et al., 2011; Ferrara et al., 1987; Köhler et al., 1998; Frosch et al., 2000, 2001; Janssen et al., 1995; Spek, 2007). However, the coordination to a further carbon atom with similar short Cu⋯C distances has rarely been described (Cu⋯C distances are given in parentheses) [Dong et al., 2008 (3.538 and 3.583 Å); Chesnut et al., 1998 (3.126 Å); Fu et al., 2008 (3.577 and 3.561 Å); Benmansour et al., 2009 (3.088 and 3.519 Å] compared to 3.1520 (6) Å in (I). They mainly contain cyanide molecules acting as donating ligands that are partially replaced by aromatic N-donating molecules.
Regarding et al., 2004) has been reported, exhibiting a similar trigonal–planar coordination environment including the counter-ion acting as one axial ligand with a similar Cu—O distance of 2.404 (4) Å [compared to 2.375 (2) Å in (I)]. This results in a distorted trigonal-pyramidal environment with N—Cu—N angles slightly more varying [105.4 (2) to 130.4 (2)°] than in (I) [113.63 (11) to 128.97 (11)°], but Cu—N distances [1.906 (4)–1.958 (4) Å] in the same range as in (I) [1.911 (3)–1.960 (3) Å].
as donating molecules, a tris(benzonitrilo)copper(I) perchlorate complex (Bowmaker5. Synthesis and crystallization
Ferrocene-1,1′-dicarbonitrile was prepared according to a published procedure (Strehler et al., 2014). Synthesis of [Cu2{(CH3)2CO}{μ-Fe(η5-C5H4C≡N)2}3](BF4)2·(CH3)2CO: Copper powder (6 mg, 0.09 mmol), Cu(BF4)2·5H2O (12.5 mg, 0.05 mmol) and ferrocene-1,1′-dicarbonitrile (50.0 mg, 0.20 mmol) were stirred in 5 ml of dichloromethane at room temperature overnight. The resulting orange precipitate was filtered off using zeolite and washed several times with 20 ml of dichloromethane until the filtrate was colorless. The residue was taken up in acetone and this solution was evaporated to dryness using a rotary evaporator affording (I) as an orange solid. The evaporation was stopped before dryness, small orange crystals of (I) suitable for X-ray analysis could be isolated. On further drying, the crystals decomposed due to evaporation of acetone from the crystal. Yield: 42 mg (0.04 mmol, 83% based on Cu[BF4]2·5H2O). IR (KBr, cm−1): ν = 2248 (CN). 1H NMR (500.3 MHz, acetone-d6, 298 K, p.p.m.) = 5.12 (s, 12H, C5H4), 4.82 (s, 12H, C5H4). 13C{1H} NMR: Data not available due to low solubility. HRMS (ESI–TOF): M+ C12H8N2CuFe (C24H16N4CuFe2): m/z = 534.9342 (calc. 534.9370); M+ C24H16N4CuFe2 (C12H8N2CuFe): m/z = 298.9342 (calc. 298.9333).
6. details
Crystal data, data collection and structure . C-bonded H atoms were placed in calculated positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) and a C—H distance of 0.93 Å for aromatic and Uiso(H) = 1.5Ueq(C) and a C—H distance of 0.96 Å for methyl H atoms. The F atoms of one of the two BF4− ions were refined as equally disordered over two sets of sites using DFIX [B—F 1.38 (2) Å] and DANG [F—F 2.25 (4) Å] instructions. Since some anisotropic displacement ellipsoids were rather elongated, DELU/SIMU/ISOR restraints were also applied (McArdle, 1995; Sheldrick, 2008).
details are summarized in Table 3
|
Supporting information
CCDC reference: 1045804
10.1107/S2056989015001760/wm5104sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015001760/wm5104Isup2.hkl
The electron-transfer properties of the acetylide function have been investigated intensively by using bridging units of the type —C≡ C—M—C≡C— (M = transition metal), showing moderate electron communication between two redox-active metallocenyl termini in the mixed-valence species (see, for example: Lang et al., 2006; Vives et al., 2006; Jakob et al., 2009; Díez et al., 2008, 2009; Osella et al., 1998; Packheiser et al., 2008; Burgun et al., 2013). The nitrile group is isoelectronic with the acetylide function; Bonniard et al. (2011) described how an —N≡ C—C6H4—C≡N— linkage between two iron fragments prohibits the electronic interaction between the transition metal atoms, while the isoelectric di(acetylene)—phenylene bridge shows a moderate delocalization. In contrast, a weak by generation of the mixed-valence species [Ru(N≡CFc)(NH3)5]3+ [Fc = Fe(η5-C5H4)(η5-C5H5)] has been described (Dowling et al., 1981). We recently reported on the synthesis, characterization and electrochemical properties of platinum and copper complexes containing a —C≡N—M—N≡C— (M = Cu or Pt) bridging unit between two redox-active ferrocenyl moieties (Strehler et al., 2013, 2014) to achieve a direct comparison with the —C≡C—M—C≡C— building blocks. In addition, the coordination of ferrocene-1,1'-dicarbonitrile towards PtCl2 resulted in an oligomeric complex (Strehler et al., 2014). In a continuation of this work, we herein present the synthesis and of [Cu2((CH3)2CO)(µ-Fe(η5-C5H4C≡ N)2)3](BF4)2·(CH3)2CO, (I). The synthesis of this compound was realized by comproportionation of elementary copper and a copper(II) salt in the presence of 1,1'-ferrocenediyl dicarbonitrile.
The title compound contains one pentametallic Cu2Fe3 complex molecule in the η2, π interaction [3.1520 (6) Å; Table 1, Fig. 1] with two atoms of an adjacent cyclopentadienyl ring, and thus, only a 16 VE complex is present. The deviation from the N3 plane is increased for Cu1 [0.1883 (16) Å] as compared to Cu2 [0.0602 (16) Å] due to a stronger interaction with the axial moiety. The Cu···Cu distance [3.3818 (7) Å] exceeds the sum of the van der Waals radii (Σ = 2.80 Å; Bondi, 1964), indicating that the CuI ions do not interact with each other.
consisting of two CuI ions bridged by three 1,1'-ferrocenediyl dicarbonitrile ligands that form a triangular paddle-wheel sandwich-type complex with iron···iron distances ranging from 9.1739 (13) (Fe2—Fe3) to 10.0385 (12) Å (Fe1—Fe2). The complex crystallizes with two BF4- counter-ions and two molecules of acetone. One acetone molecule coordinates with its oxygen atom to Cu1 [Cu1—O1 2.375 (2) Å], leading to an an 18 VE complex and an overall distorted trigonal–pyramidal environment. The Cu2 ion exhibits a weak intermolecularThe two faces of the sandwich-type complex consist of almost coplanar cyclopentadienyl aromatics and central planes formed by three nitrogen atoms that are also almost coplanar towards the C5 planes. However, one cyclopentadienyl ring of each site deviates from coplanarity (Table 2), which results in a slight bending of the whole complex (Fig. 2). The ferrocenyl cyclopentadienyl moieties virtually exhibit ecliptic conformations [4.5 (2) to 6.4 (2) °], with synperiplanar-oriented carbonitrile substituents towards each other. Maximum deviations from this plane are observed for N5 [0.289 (7) Å] and Cu2 [0.825 (9) Å].
Besides the already noted intermolecular interaction between Cu2 and the mid-point of the C26—C27 bond, π–π interactions are present in the crystal packing between the C23 atom and its symmetry-generated equivalent [3.167 (6) Å; Table 1]. All other π interactions occur almost perpendicular to the involved C5 ring (α C5···C23, 92.2 (2) °; α C5···Cu2, 93.23 (1) °; Table 1) . Compound (I) forms a layer-type structure parallel to (111) (Fig. 2), in which the coordinating acetone molecule is part of the overlaying layer. The second acetone molecule is present in each layer and does not exhibit any notable intermolecular interactions. The distances between two layers are in the range of the above-mentioned interactions.
Since the first synthesis of 1,1'-dicyanoferrocene (Osgerby & Pauson, 1961), only one example of a
has been reported, that of the molecule itself (Altmannshofer et al., 2008) which exhibits a similar torsion (–2.2°) of the cyclopentadienyl rings to that in (I). Further molecules bearing one nitrilo substituent at the ferrocenyl backbone include a pentacarbonyl tungsten complex with the second nitrilo functionality involved in a 2,3-dihydro-1,2,3-azadiphosphete (Helten et al., 2010) and recently published square-planar cis- and trans-platinum(II) complexes of cyanoferrocene (Strehler et al., 2014).Trigonal–planar (hetero-bimetallic) CuI complexes are well described in the literature (Lang et al., 1995, 2000, 2006; Buschbeck et al., 2011; Ferrara et al., 1987; Köhler et al., 1998; Frosch et al., 2000, 2001; Janssen et al., 1995; Spek, 2007). However, the coordination to a further carbon atom with similar short Cu···C distances has rarely been described (Cu···C distances are given in parentheses) [Dong et al., 2008 (3.538 and 3.583 Å); Chesnut et al., 1998 (3.126 Å); Fu et al., 2008 (3.577 and 3.561 Å); Benmansour et al., 2009 (3.088 and 3.519 Å] compared to 3.1520 (6) Å in (I). They mainly contain cyanide molecules acting as donating ligands that are partially replaced by aromatic N-donating molecules.
Regarding
as donating molecules, a tris(benzonitrilo)copper(I) perchlorate complex (Bowmaker et al., 2004) has been reported, exhibiting a similar trigonal–planar coordination environment including the counter-ion acting as one axial ligand with a similar Cu—O distance of 2.404 (4) Å [compared to 2.375 (2) Å in (I)]. This results in a distorted trigonal-pyramidal environment with N—Cu—N angles slightly more varying [105.4 (2) to 130.4 (2)°] than in (I) [113.63 (11) to 128.97 (11)°], but Cu—N distances [1.906 (4)–1.958 (4) Å] in the same range as in (I) [1.911 (3)–1.960 (3) Å].Ferrocene-1,1'-dicarbonitrile was prepared according to a published procedure (Strehler et al., 2014). Synthesis of [Cu2(µ-(η5-C5H4CN)Fe(η5-C5H4C≡N))3][BF4]2 (I): Copper powder (6 mg, 0.09 mmol), Cu[BF4]2·5H2O (12.5 mg, 0.05 mmol) and ferrocene-1,1'-dicarbonitrile (50.0 mg, 0.20 mmol) were stirred in 5 ml of dichloromethane at room temperature overnight. The resulting orange precipitate was filtered off using zeolite and washed several times with 20 ml of dichloromethane until the filtrate was colorless. The residue was taken up in acetone and this solution was evaporated to dryness using a rotary evaporator affording (I) as an orange solid. The evaporation was stopped before dryness, small orange crystals of (I) suitable for X-ray analysis could be isolated. On further drying, the crystals decomposed due to evaporation of acetone from the crystal. Yield: 42 mg (0.04 mmol, 83 % based on Cu[BF4]2·5H2O). IR (KBr, cm-1): ν = 2248 (CN). 1H NMR (500.3 MHz, acetone-d6, 298 K, p.p.m.) = 5.12 (s, 12H, C5H4), 4.82 (s, 12H, C5H4). 13C{1H} NMR: Data not available due to low solubility. HRMS (ESI–TOF): M+ – C12H8N2CuFe (C24H16N4CuFe2): m/z = 534.9342 (calc. 534.9370); M+ – C24H16N4CuFe2 (C12H8N2CuFe): m/z = 298.9342 (calc. 298.9333).
Crystal data, data collection and structure
details are summarized in Table 3. C-bonded H atoms were placed in calculated positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) and a C—H distance of 0.93 Å for aromatic and Uiso(H) = 1.5Ueq(C) and a C—H distance of 0.96 Å for methyl H atoms. The F atoms of one of the two BF4- ions were refined as equally disordered over two sets of sites using DFIX [B—F 1.38 (2) Å] and DANG [F—F 2.25 (4) Å] instructions. Since some anisotropic displacement ellipsoids were rather elongated, DELU/SIMU/ISOR restraints were also applied (McArdle, 1995; Sheldrick, 2008).The electron-transfer properties of the acetylide function have been investigated intensively by using bridging units of the type —C≡ C—M—C≡C— (M = transition metal), showing moderate electron communication between two redox-active metallocenyl termini in the mixed-valence species (see, for example: Lang et al., 2006; Vives et al., 2006; Jakob et al., 2009; Díez et al., 2008, 2009; Osella et al., 1998; Packheiser et al., 2008; Burgun et al., 2013). The nitrile group is isoelectronic with the acetylide function; Bonniard et al. (2011) described how an —N≡ C—C6H4—C≡N— linkage between two iron fragments prohibits the electronic interaction between the transition metal atoms, while the isoelectric di(acetylene)—phenylene bridge shows a moderate delocalization. In contrast, a weak by generation of the mixed-valence species [Ru(N≡CFc)(NH3)5]3+ [Fc = Fe(η5-C5H4)(η5-C5H5)] has been described (Dowling et al., 1981). We recently reported on the synthesis, characterization and electrochemical properties of platinum and copper complexes containing a —C≡N—M—N≡C— (M = Cu or Pt) bridging unit between two redox-active ferrocenyl moieties (Strehler et al., 2013, 2014) to achieve a direct comparison with the —C≡C—M—C≡C— building blocks. In addition, the coordination of ferrocene-1,1'-dicarbonitrile towards PtCl2 resulted in an oligomeric complex (Strehler et al., 2014). In a continuation of this work, we herein present the synthesis and of [Cu2((CH3)2CO)(µ-Fe(η5-C5H4C≡ N)2)3](BF4)2·(CH3)2CO, (I). The synthesis of this compound was realized by comproportionation of elementary copper and a copper(II) salt in the presence of 1,1'-ferrocenediyl dicarbonitrile.
The title compound contains one pentametallic Cu2Fe3 complex molecule in the η2, π interaction [3.1520 (6) Å; Table 1, Fig. 1] with two atoms of an adjacent cyclopentadienyl ring, and thus, only a 16 VE complex is present. The deviation from the N3 plane is increased for Cu1 [0.1883 (16) Å] as compared to Cu2 [0.0602 (16) Å] due to a stronger interaction with the axial moiety. The Cu···Cu distance [3.3818 (7) Å] exceeds the sum of the van der Waals radii (Σ = 2.80 Å; Bondi, 1964), indicating that the CuI ions do not interact with each other.
consisting of two CuI ions bridged by three 1,1'-ferrocenediyl dicarbonitrile ligands that form a triangular paddle-wheel sandwich-type complex with iron···iron distances ranging from 9.1739 (13) (Fe2—Fe3) to 10.0385 (12) Å (Fe1—Fe2). The complex crystallizes with two BF4- counter-ions and two molecules of acetone. One acetone molecule coordinates with its oxygen atom to Cu1 [Cu1—O1 2.375 (2) Å], leading to an an 18 VE complex and an overall distorted trigonal–pyramidal environment. The Cu2 ion exhibits a weak intermolecularThe two faces of the sandwich-type complex consist of almost coplanar cyclopentadienyl aromatics and central planes formed by three nitrogen atoms that are also almost coplanar towards the C5 planes. However, one cyclopentadienyl ring of each site deviates from coplanarity (Table 2), which results in a slight bending of the whole complex (Fig. 2). The ferrocenyl cyclopentadienyl moieties virtually exhibit ecliptic conformations [4.5 (2) to 6.4 (2) °], with synperiplanar-oriented carbonitrile substituents towards each other. Maximum deviations from this plane are observed for N5 [0.289 (7) Å] and Cu2 [0.825 (9) Å].
Besides the already noted intermolecular interaction between Cu2 and the mid-point of the C26—C27 bond, π–π interactions are present in the crystal packing between the C23 atom and its symmetry-generated equivalent [3.167 (6) Å; Table 1]. All other π interactions occur almost perpendicular to the involved C5 ring (α C5···C23, 92.2 (2) °; α C5···Cu2, 93.23 (1) °; Table 1) . Compound (I) forms a layer-type structure parallel to (111) (Fig. 2), in which the coordinating acetone molecule is part of the overlaying layer. The second acetone molecule is present in each layer and does not exhibit any notable intermolecular interactions. The distances between two layers are in the range of the above-mentioned interactions.
Since the first synthesis of 1,1'-dicyanoferrocene (Osgerby & Pauson, 1961), only one example of a
has been reported, that of the molecule itself (Altmannshofer et al., 2008) which exhibits a similar torsion (–2.2°) of the cyclopentadienyl rings to that in (I). Further molecules bearing one nitrilo substituent at the ferrocenyl backbone include a pentacarbonyl tungsten complex with the second nitrilo functionality involved in a 2,3-dihydro-1,2,3-azadiphosphete (Helten et al., 2010) and recently published square-planar cis- and trans-platinum(II) complexes of cyanoferrocene (Strehler et al., 2014).Trigonal–planar (hetero-bimetallic) CuI complexes are well described in the literature (Lang et al., 1995, 2000, 2006; Buschbeck et al., 2011; Ferrara et al., 1987; Köhler et al., 1998; Frosch et al., 2000, 2001; Janssen et al., 1995; Spek, 2007). However, the coordination to a further carbon atom with similar short Cu···C distances has rarely been described (Cu···C distances are given in parentheses) [Dong et al., 2008 (3.538 and 3.583 Å); Chesnut et al., 1998 (3.126 Å); Fu et al., 2008 (3.577 and 3.561 Å); Benmansour et al., 2009 (3.088 and 3.519 Å] compared to 3.1520 (6) Å in (I). They mainly contain cyanide molecules acting as donating ligands that are partially replaced by aromatic N-donating molecules.
Regarding
as donating molecules, a tris(benzonitrilo)copper(I) perchlorate complex (Bowmaker et al., 2004) has been reported, exhibiting a similar trigonal–planar coordination environment including the counter-ion acting as one axial ligand with a similar Cu—O distance of 2.404 (4) Å [compared to 2.375 (2) Å in (I)]. This results in a distorted trigonal-pyramidal environment with N—Cu—N angles slightly more varying [105.4 (2) to 130.4 (2)°] than in (I) [113.63 (11) to 128.97 (11)°], but Cu—N distances [1.906 (4)–1.958 (4) Å] in the same range as in (I) [1.911 (3)–1.960 (3) Å].For related literature, see: Altmannshofer et al. (2008); Bonniard et al. (2011); Benmansour et al. (2009); Bondi (1964); Bowmaker et al. (2004); Burgun et al. (2013); Buschbeck et al. (2011); Chesnut et al. (1998); Díez et al. (2008); Dong et al. (2008); Ferrara et al. (1987); Frosch et al. (2000, 2001); Fu et al. (2008); Helten et al. (2010); Jakob et al. (2009); Janssen et al. (1995); Köhler et al. (1998); Díez et al. (2009); Lang et al. (1995, 2000, 2006); Dowling et al. (1981); McArdle (1995); Osella et al. (1998); Osgerby & Pauson (1961); Packheiser et al. (2008); Sheldrick (2008); Spek (2007); Strehler et al. (2013, 2014); Vives et al. (2006).
Ferrocene-1,1'-dicarbonitrile was prepared according to a published procedure (Strehler et al., 2014). Synthesis of [Cu2(µ-(η5-C5H4CN)Fe(η5-C5H4C≡N))3][BF4]2 (I): Copper powder (6 mg, 0.09 mmol), Cu[BF4]2·5H2O (12.5 mg, 0.05 mmol) and ferrocene-1,1'-dicarbonitrile (50.0 mg, 0.20 mmol) were stirred in 5 ml of dichloromethane at room temperature overnight. The resulting orange precipitate was filtered off using zeolite and washed several times with 20 ml of dichloromethane until the filtrate was colorless. The residue was taken up in acetone and this solution was evaporated to dryness using a rotary evaporator affording (I) as an orange solid. The evaporation was stopped before dryness, small orange crystals of (I) suitable for X-ray analysis could be isolated. On further drying, the crystals decomposed due to evaporation of acetone from the crystal. Yield: 42 mg (0.04 mmol, 83 % based on Cu[BF4]2·5H2O). IR (KBr, cm-1): ν = 2248 (CN). 1H NMR (500.3 MHz, acetone-d6, 298 K, p.p.m.) = 5.12 (s, 12H, C5H4), 4.82 (s, 12H, C5H4). 13C{1H} NMR: Data not available due to low solubility. HRMS (ESI–TOF): M+ – C12H8N2CuFe (C24H16N4CuFe2): m/z = 534.9342 (calc. 534.9370); M+ – C24H16N4CuFe2 (C12H8N2CuFe): m/z = 298.9342 (calc. 298.9333).
detailsCrystal data, data collection and structure
details are summarized in Table 3. C-bonded H atoms were placed in calculated positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) and a C—H distance of 0.93 Å for aromatic and Uiso(H) = 1.5Ueq(C) and a C—H distance of 0.96 Å for methyl H atoms. The F atoms of one of the two BF4- ions were refined as equally disordered over two sets of sites using DFIX [B—F 1.38 (2) Å] and DANG [F—F 2.25 (4) Å] instructions. Since some anisotropic displacement ellipsoids were rather elongated, DELU/SIMU/ISOR restraints were also applied (McArdle, 1995; Sheldrick, 2008).Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).Fig. 1. The molecular structure of (I), showing intermolecular η2, π–π interactions between Cu2 and the C26—C27 bond, and short interactions between C23 and its symmetry-generated equivalent (Table 1), with displacement ellipsoids drawn at the 50% probability level. All H atoms, the BF4- ions and the non-coordinating acetone solvent molecule have been omitted for clarity. [Symmetry codes: (A) x - 1, y, z; (B) 1 + x, y, z; (C) -x, 1 - y, 1 - z.] | |
Fig. 2. Packing of molecular layers in the crystal structure of (I), with displacement ellipsoids drawn at the 30% probability level. All H atoms have been omitted for clarity. The disorder of one of the counter-anions is not shown. |
[Cu2Fe3(C6H4N)6(C3H6O)](BF4)2·C3H6O | Z = 2 |
Mr = 1125.02 | F(000) = 1128 |
Triclinic, P1 | Dx = 1.774 Mg m−3 |
Hall symbol: -P 1 | Cu Kα radiation, λ = 1.54184 Å |
a = 7.9947 (6) Å | Cell parameters from 8458 reflections |
b = 13.9384 (18) Å | θ = 3.3–69.0° |
c = 19.923 (2) Å | µ = 9.92 mm−1 |
α = 72.942 (10)° | T = 110 K |
β = 82.968 (7)° | Block, orange |
γ = 87.936 (8)° | 0.4 × 0.4 × 0.4 mm |
V = 2106.4 (4) Å3 |
Oxford Gemini CCD diffractometer | 7318 independent reflections |
Radiation source: fine-focus sealed tube | 6793 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
ω scans | θmax = 66.0°, θmin = 3.3° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) | h = −9→9 |
Tmin = 0.427, Tmax = 1.000 | k = −16→16 |
18279 measured reflections | l = −22→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.107 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0708P)2 + 0.1006P] where P = (Fo2 + 2Fc2)/3 |
7318 reflections | (Δ/σ)max = 0.001 |
623 parameters | Δρmax = 0.59 e Å−3 |
148 restraints | Δρmin = −0.49 e Å−3 |
[Cu2Fe3(C6H4N)6(C3H6O)](BF4)2·C3H6O | γ = 87.936 (8)° |
Mr = 1125.02 | V = 2106.4 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.9947 (6) Å | Cu Kα radiation |
b = 13.9384 (18) Å | µ = 9.92 mm−1 |
c = 19.923 (2) Å | T = 110 K |
α = 72.942 (10)° | 0.4 × 0.4 × 0.4 mm |
β = 82.968 (7)° |
Oxford Gemini CCD diffractometer | 7318 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) | 6793 reflections with I > 2σ(I) |
Tmin = 0.427, Tmax = 1.000 | Rint = 0.042 |
18279 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 148 restraints |
wR(F2) = 0.107 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.59 e Å−3 |
7318 reflections | Δρmin = −0.49 e Å−3 |
623 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.5468 (4) | 0.3054 (2) | 0.04318 (16) | 0.0185 (6) | |
C2 | 0.4808 (4) | 0.3038 (2) | −0.01919 (15) | 0.0174 (6) | |
C3 | 0.5066 (4) | 0.2253 (2) | −0.05327 (16) | 0.0200 (6) | |
H3 | 0.5718 | 0.1678 | −0.0393 | 0.024* | |
C4 | 0.4134 (4) | 0.2527 (2) | −0.11210 (15) | 0.0220 (6) | |
H4 | 0.4076 | 0.2160 | −0.1439 | 0.026* | |
C5 | 0.3303 (4) | 0.3449 (2) | −0.11466 (16) | 0.0221 (6) | |
H5 | 0.2609 | 0.3782 | −0.1484 | 0.027* | |
C6 | 0.3697 (4) | 0.3788 (2) | −0.05765 (16) | 0.0202 (6) | |
H6 | 0.3318 | 0.4372 | −0.0472 | 0.024* | |
C7 | 0.2033 (4) | 0.1972 (2) | 0.13847 (16) | 0.0181 (6) | |
C8 | 0.1377 (4) | 0.1837 (2) | 0.07864 (15) | 0.0179 (6) | |
C9 | 0.1813 (4) | 0.1037 (2) | 0.04685 (16) | 0.0207 (6) | |
H9 | 0.2518 | 0.0495 | 0.0631 | 0.025* | |
C10 | 0.0957 (4) | 0.1244 (2) | −0.01372 (17) | 0.0219 (6) | |
H10 | 0.0994 | 0.0848 | −0.0442 | 0.026* | |
C11 | 0.0026 (4) | 0.2154 (2) | −0.02100 (16) | 0.0227 (6) | |
H11 | −0.0635 | 0.2447 | −0.0569 | 0.027* | |
C12 | 0.0277 (4) | 0.2537 (2) | 0.03579 (16) | 0.0202 (6) | |
H12 | −0.0177 | 0.3123 | 0.0438 | 0.024* | |
C13 | 0.5338 (4) | 0.4709 (2) | 0.25231 (15) | 0.0188 (6) | |
C14 | 0.5060 (4) | 0.5502 (2) | 0.28328 (15) | 0.0182 (6) | |
C15 | 0.5993 (4) | 0.5645 (2) | 0.33724 (16) | 0.0224 (6) | |
H15 | 0.6864 | 0.5245 | 0.3573 | 0.027* | |
C16 | 0.5322 (4) | 0.6516 (2) | 0.35356 (18) | 0.0282 (8) | |
H16 | 0.5690 | 0.6791 | 0.3865 | 0.034* | |
C17 | 0.3998 (5) | 0.6902 (2) | 0.31161 (18) | 0.0288 (8) | |
H17 | 0.3355 | 0.7468 | 0.3126 | 0.035* | |
C18 | 0.3822 (4) | 0.6281 (2) | 0.26801 (16) | 0.0225 (7) | |
H18 | 0.3048 | 0.6364 | 0.2355 | 0.027* | |
C19 | 0.2308 (4) | 0.3458 (2) | 0.36694 (15) | 0.0172 (6) | |
C20 | 0.2118 (4) | 0.4172 (2) | 0.40581 (15) | 0.0164 (6) | |
C21 | 0.3173 (4) | 0.4224 (2) | 0.45839 (15) | 0.0179 (6) | |
H21 | 0.4010 | 0.3771 | 0.4759 | 0.022* | |
C22 | 0.2683 (4) | 0.5103 (2) | 0.47808 (15) | 0.0197 (6) | |
H22 | 0.3150 | 0.5324 | 0.5114 | 0.024* | |
C23 | 0.1375 (4) | 0.5588 (2) | 0.43916 (17) | 0.0218 (6) | |
H23 | 0.0844 | 0.6179 | 0.4426 | 0.026* | |
C24 | 0.1004 (4) | 0.5022 (2) | 0.39356 (16) | 0.0202 (6) | |
H24 | 0.0198 | 0.5174 | 0.3621 | 0.024* | |
C25 | 0.8920 (4) | 0.1538 (2) | 0.27510 (15) | 0.0161 (6) | |
C26 | 0.9887 (4) | 0.0779 (2) | 0.31755 (15) | 0.0160 (6) | |
C27 | 1.0231 (4) | 0.0708 (2) | 0.38812 (16) | 0.0180 (6) | |
H27 | 0.9901 | 0.1161 | 0.4134 | 0.022* | |
C28 | 1.1172 (4) | −0.0189 (2) | 0.41175 (16) | 0.0170 (6) | |
H28 | 1.1573 | −0.0423 | 0.4556 | 0.020* | |
C29 | 1.1401 (4) | −0.0672 (2) | 0.35708 (16) | 0.0188 (6) | |
H29 | 1.1974 | −0.1271 | 0.3595 | 0.023* | |
C30 | 1.0613 (4) | −0.0089 (2) | 0.29883 (16) | 0.0181 (6) | |
H30 | 1.0568 | −0.0234 | 0.2564 | 0.022* | |
C31 | 0.5433 (4) | 0.0322 (2) | 0.34912 (16) | 0.0173 (6) | |
C32 | 0.6342 (4) | −0.0514 (2) | 0.38813 (16) | 0.0171 (6) | |
C33 | 0.6779 (4) | −0.0651 (2) | 0.45801 (16) | 0.0205 (6) | |
H33 | 0.6474 | −0.0236 | 0.4865 | 0.025* | |
C34 | 0.7752 (4) | −0.1528 (2) | 0.47542 (16) | 0.0239 (7) | |
H34 | 0.8195 | −0.1799 | 0.5180 | 0.029* | |
C35 | 0.7953 (4) | −0.1936 (2) | 0.41705 (18) | 0.0233 (7) | |
H35 | 0.8553 | −0.2514 | 0.4152 | 0.028* | |
C36 | 0.7084 (4) | −0.1314 (2) | 0.36238 (16) | 0.0199 (6) | |
H36 | 0.7009 | −0.1405 | 0.3184 | 0.024* | |
C37 | 1.1665 (5) | 0.5108 (3) | 0.0935 (2) | 0.0435 (10) | |
H37A | 1.1566 | 0.5118 | 0.0457 | 0.065* | |
H37B | 1.2669 | 0.4751 | 0.1083 | 0.065* | |
H37C | 1.1726 | 0.5783 | 0.0959 | 0.065* | |
C38 | 1.0157 (4) | 0.4592 (2) | 0.14111 (18) | 0.0223 (6) | |
C39 | 1.0100 (5) | 0.4503 (3) | 0.2177 (2) | 0.0332 (8) | |
H39A | 0.9086 | 0.4161 | 0.2428 | 0.050* | |
H39B | 1.0117 | 0.5160 | 0.2238 | 0.050* | |
H39C | 1.1061 | 0.4129 | 0.2359 | 0.050* | |
C40 | 0.4543 (4) | −0.0511 (2) | 0.19261 (17) | 0.0247 (7) | |
H40A | 0.3626 | −0.0733 | 0.1740 | 0.037* | |
H40B | 0.4127 | −0.0055 | 0.2187 | 0.037* | |
H40C | 0.5052 | −0.1080 | 0.2234 | 0.037* | |
C41 | 0.5833 (4) | 0.0012 (2) | 0.13277 (17) | 0.0223 (7) | |
C42 | 0.7365 (5) | 0.0406 (3) | 0.1520 (2) | 0.0313 (8) | |
H42A | 0.8095 | 0.0720 | 0.1098 | 0.047* | |
H42B | 0.7950 | −0.0137 | 0.1817 | 0.047* | |
H42C | 0.7034 | 0.0890 | 0.1769 | 0.047* | |
N1 | 0.6008 (3) | 0.30829 (19) | 0.09341 (14) | 0.0196 (5) | |
N2 | 0.5629 (3) | 0.40839 (19) | 0.22584 (13) | 0.0216 (5) | |
N3 | 0.8167 (3) | 0.21500 (17) | 0.23846 (13) | 0.0179 (5) | |
N4 | 0.2546 (3) | 0.20846 (19) | 0.18660 (13) | 0.0202 (5) | |
N5 | 0.2515 (3) | 0.29064 (18) | 0.33446 (13) | 0.0196 (5) | |
N6 | 0.4698 (3) | 0.09815 (19) | 0.31814 (14) | 0.0204 (5) | |
Fe1 | 0.25591 (6) | 0.24050 (3) | −0.02036 (2) | 0.01424 (12) | |
Fe2 | 0.34679 (5) | 0.54574 (3) | 0.37176 (2) | 0.01361 (12) | |
Fe3 | 0.88811 (5) | −0.05035 (3) | 0.38612 (2) | 0.01260 (12) | |
Cu1 | 0.68186 (5) | 0.31536 (3) | 0.17936 (2) | 0.01732 (12) | |
Cu2 | 0.32370 (5) | 0.20644 (3) | 0.27549 (2) | 0.01731 (12) | |
O1 | 0.9045 (3) | 0.42672 (16) | 0.11721 (11) | 0.0229 (5) | |
O2 | 0.5640 (3) | 0.0100 (2) | 0.07178 (13) | 0.0372 (6) | |
F1 | −0.030 (3) | 0.3112 (14) | 0.8055 (12) | 0.053 (5) | 0.50 |
F2 | 0.1898 (14) | 0.2122 (16) | 0.7813 (11) | 0.037 (3) | 0.50 |
F3 | −0.031 (2) | 0.2441 (11) | 0.7154 (7) | 0.072 (3) | 0.50 |
F4 | −0.083 (2) | 0.1484 (11) | 0.8103 (7) | 0.077 (4) | 0.50 |
F1' | −0.015 (3) | 0.3066 (11) | 0.8136 (11) | 0.033 (2) | 0.50 |
F2' | 0.1857 (15) | 0.1996 (15) | 0.7868 (11) | 0.040 (4) | 0.50 |
F3' | 0.000 (2) | 0.2664 (12) | 0.7105 (5) | 0.094 (5) | 0.50 |
F4' | −0.062 (2) | 0.1452 (9) | 0.8301 (6) | 0.050 (2) | 0.50 |
F5 | 0.8995 (3) | 0.25555 (17) | 0.46188 (15) | 0.0480 (6) | |
F6 | 0.6375 (3) | 0.26511 (19) | 0.51557 (14) | 0.0479 (6) | |
F7 | 0.6937 (5) | 0.3401 (2) | 0.39964 (16) | 0.0729 (9) | |
F8 | 0.6880 (3) | 0.17002 (17) | 0.44066 (14) | 0.0445 (6) | |
B1 | 0.0191 (5) | 0.2297 (3) | 0.7814 (2) | 0.0320 (9) | |
B2 | 0.7293 (5) | 0.2580 (3) | 0.4537 (2) | 0.0270 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0139 (14) | 0.0180 (14) | 0.0234 (16) | −0.0030 (11) | 0.0033 (12) | −0.0076 (11) |
C2 | 0.0149 (14) | 0.0196 (14) | 0.0176 (14) | −0.0046 (11) | 0.0017 (11) | −0.0063 (11) |
C3 | 0.0185 (15) | 0.0218 (15) | 0.0200 (15) | −0.0030 (12) | 0.0044 (12) | −0.0089 (12) |
C4 | 0.0248 (16) | 0.0269 (16) | 0.0152 (14) | −0.0084 (13) | 0.0054 (12) | −0.0096 (12) |
C5 | 0.0252 (16) | 0.0232 (15) | 0.0143 (14) | −0.0065 (12) | −0.0011 (12) | 0.0007 (11) |
C6 | 0.0223 (15) | 0.0171 (14) | 0.0196 (15) | −0.0049 (12) | 0.0016 (12) | −0.0039 (11) |
C7 | 0.0163 (14) | 0.0168 (14) | 0.0189 (15) | −0.0050 (11) | 0.0042 (12) | −0.0035 (11) |
C8 | 0.0162 (14) | 0.0215 (14) | 0.0144 (14) | −0.0068 (11) | 0.0038 (11) | −0.0041 (11) |
C9 | 0.0229 (16) | 0.0164 (14) | 0.0225 (15) | −0.0083 (12) | 0.0009 (12) | −0.0056 (11) |
C10 | 0.0217 (16) | 0.0228 (15) | 0.0246 (16) | −0.0100 (12) | −0.0005 (12) | −0.0119 (12) |
C11 | 0.0165 (15) | 0.0300 (16) | 0.0212 (15) | −0.0064 (12) | −0.0018 (12) | −0.0063 (12) |
C12 | 0.0141 (14) | 0.0239 (15) | 0.0224 (15) | −0.0031 (11) | 0.0035 (11) | −0.0083 (12) |
C13 | 0.0171 (14) | 0.0176 (14) | 0.0182 (14) | −0.0028 (11) | 0.0065 (11) | −0.0026 (12) |
C14 | 0.0207 (15) | 0.0153 (13) | 0.0163 (14) | −0.0039 (11) | 0.0073 (11) | −0.0044 (11) |
C15 | 0.0158 (15) | 0.0268 (16) | 0.0240 (15) | −0.0105 (12) | 0.0051 (12) | −0.0083 (12) |
C16 | 0.0331 (19) | 0.0252 (16) | 0.0265 (16) | −0.0184 (14) | 0.0137 (14) | −0.0128 (13) |
C17 | 0.041 (2) | 0.0073 (13) | 0.0327 (17) | −0.0044 (13) | 0.0137 (15) | −0.0037 (12) |
C18 | 0.0320 (17) | 0.0141 (14) | 0.0158 (14) | 0.0019 (12) | 0.0071 (12) | 0.0005 (11) |
C19 | 0.0202 (15) | 0.0118 (13) | 0.0171 (14) | −0.0055 (11) | 0.0008 (11) | −0.0009 (11) |
C20 | 0.0179 (14) | 0.0119 (13) | 0.0180 (14) | −0.0063 (11) | 0.0042 (11) | −0.0039 (10) |
C21 | 0.0236 (15) | 0.0149 (13) | 0.0131 (13) | −0.0043 (11) | 0.0011 (11) | −0.0014 (10) |
C22 | 0.0269 (16) | 0.0185 (14) | 0.0134 (13) | −0.0099 (12) | 0.0065 (12) | −0.0065 (11) |
C23 | 0.0197 (15) | 0.0167 (14) | 0.0291 (16) | −0.0010 (11) | 0.0090 (12) | −0.0113 (12) |
C24 | 0.0147 (14) | 0.0201 (14) | 0.0254 (15) | −0.0026 (11) | 0.0018 (12) | −0.0072 (12) |
C25 | 0.0156 (14) | 0.0105 (13) | 0.0226 (14) | −0.0066 (11) | 0.0050 (12) | −0.0074 (11) |
C26 | 0.0145 (14) | 0.0118 (13) | 0.0204 (14) | −0.0064 (11) | 0.0033 (11) | −0.0040 (11) |
C27 | 0.0168 (14) | 0.0149 (13) | 0.0238 (15) | −0.0047 (11) | 0.0013 (11) | −0.0088 (11) |
C28 | 0.0110 (13) | 0.0158 (13) | 0.0238 (15) | −0.0037 (10) | −0.0027 (11) | −0.0044 (11) |
C29 | 0.0145 (14) | 0.0123 (13) | 0.0283 (16) | 0.0006 (11) | 0.0029 (12) | −0.0063 (11) |
C30 | 0.0160 (14) | 0.0157 (14) | 0.0217 (14) | −0.0053 (11) | 0.0077 (11) | −0.0074 (11) |
C31 | 0.0118 (13) | 0.0190 (15) | 0.0225 (15) | −0.0052 (12) | 0.0020 (11) | −0.0091 (12) |
C32 | 0.0142 (14) | 0.0139 (13) | 0.0223 (15) | −0.0049 (11) | −0.0013 (11) | −0.0037 (11) |
C33 | 0.0145 (14) | 0.0245 (15) | 0.0207 (15) | −0.0086 (12) | 0.0040 (11) | −0.0052 (12) |
C34 | 0.0195 (15) | 0.0244 (16) | 0.0204 (15) | −0.0125 (12) | −0.0016 (12) | 0.0061 (12) |
C35 | 0.0237 (16) | 0.0079 (13) | 0.0345 (17) | −0.0067 (11) | −0.0041 (13) | 0.0007 (12) |
C36 | 0.0209 (15) | 0.0146 (14) | 0.0256 (15) | −0.0085 (11) | −0.0032 (12) | −0.0069 (11) |
C37 | 0.033 (2) | 0.035 (2) | 0.061 (3) | −0.0126 (16) | 0.0047 (19) | −0.0136 (18) |
C38 | 0.0209 (16) | 0.0117 (13) | 0.0349 (17) | 0.0032 (11) | −0.0052 (13) | −0.0072 (12) |
C39 | 0.042 (2) | 0.0217 (16) | 0.038 (2) | −0.0033 (14) | −0.0168 (16) | −0.0066 (14) |
C40 | 0.0247 (17) | 0.0257 (16) | 0.0241 (16) | −0.0031 (13) | 0.0010 (13) | −0.0089 (12) |
C41 | 0.0249 (16) | 0.0146 (14) | 0.0269 (17) | 0.0030 (12) | −0.0007 (13) | −0.0068 (12) |
C42 | 0.0324 (19) | 0.0250 (17) | 0.0369 (19) | −0.0083 (14) | −0.0026 (15) | −0.0092 (14) |
N1 | 0.0155 (12) | 0.0221 (13) | 0.0229 (13) | −0.0025 (10) | −0.0018 (10) | −0.0090 (10) |
N2 | 0.0237 (14) | 0.0190 (12) | 0.0215 (13) | 0.0030 (10) | 0.0030 (10) | −0.0074 (10) |
N3 | 0.0210 (13) | 0.0127 (12) | 0.0197 (12) | −0.0035 (10) | 0.0003 (10) | −0.0051 (10) |
N4 | 0.0203 (13) | 0.0214 (13) | 0.0182 (13) | −0.0024 (10) | 0.0016 (10) | −0.0058 (10) |
N5 | 0.0236 (13) | 0.0154 (12) | 0.0194 (12) | −0.0031 (10) | −0.0006 (10) | −0.0050 (10) |
N6 | 0.0160 (12) | 0.0210 (13) | 0.0256 (13) | 0.0004 (10) | −0.0021 (10) | −0.0093 (11) |
Fe1 | 0.0156 (2) | 0.0142 (2) | 0.0135 (2) | −0.00296 (17) | 0.00021 (17) | −0.00528 (17) |
Fe2 | 0.0160 (2) | 0.0091 (2) | 0.0157 (2) | −0.00264 (16) | 0.00292 (17) | −0.00522 (16) |
Fe3 | 0.0128 (2) | 0.0089 (2) | 0.0161 (2) | −0.00297 (16) | −0.00034 (17) | −0.00383 (16) |
Cu1 | 0.0201 (2) | 0.0150 (2) | 0.0186 (2) | 0.00069 (16) | −0.00220 (17) | −0.00767 (16) |
Cu2 | 0.0195 (2) | 0.0161 (2) | 0.0179 (2) | −0.00040 (16) | −0.00213 (17) | −0.00739 (16) |
O1 | 0.0236 (11) | 0.0205 (10) | 0.0259 (11) | −0.0038 (9) | −0.0005 (9) | −0.0093 (8) |
O2 | 0.0411 (15) | 0.0443 (15) | 0.0246 (13) | −0.0013 (12) | −0.0053 (11) | −0.0067 (11) |
F1 | 0.085 (9) | 0.046 (6) | 0.048 (8) | 0.032 (4) | −0.046 (5) | −0.035 (6) |
F2 | 0.027 (4) | 0.044 (6) | 0.034 (5) | −0.008 (3) | 0.000 (4) | −0.006 (4) |
F3 | 0.090 (7) | 0.079 (5) | 0.086 (6) | 0.045 (4) | −0.065 (5) | −0.069 (4) |
F4 | 0.037 (5) | 0.090 (6) | 0.136 (10) | −0.027 (5) | 0.011 (7) | −0.088 (6) |
F1' | 0.056 (5) | 0.022 (4) | 0.029 (4) | 0.014 (4) | −0.018 (6) | −0.015 (3) |
F2' | 0.037 (5) | 0.044 (6) | 0.055 (9) | 0.015 (4) | −0.025 (5) | −0.034 (6) |
F3' | 0.116 (10) | 0.155 (12) | 0.035 (4) | 0.107 (9) | −0.053 (4) | −0.059 (5) |
F4' | 0.045 (5) | 0.043 (3) | 0.074 (5) | −0.018 (3) | −0.010 (4) | −0.032 (3) |
F5 | 0.0255 (11) | 0.0393 (12) | 0.0848 (18) | −0.0003 (9) | −0.0047 (11) | −0.0275 (12) |
F6 | 0.0439 (13) | 0.0476 (13) | 0.0608 (15) | −0.0020 (10) | 0.0085 (11) | −0.0348 (11) |
F7 | 0.108 (3) | 0.0435 (15) | 0.0600 (17) | 0.0378 (16) | −0.0194 (16) | −0.0047 (12) |
F8 | 0.0368 (12) | 0.0356 (11) | 0.0757 (16) | 0.0038 (9) | −0.0083 (11) | −0.0387 (11) |
B1 | 0.038 (2) | 0.034 (2) | 0.036 (2) | 0.0115 (17) | −0.0196 (18) | −0.0245 (17) |
B2 | 0.0236 (19) | 0.0181 (17) | 0.041 (2) | 0.0068 (14) | −0.0013 (16) | −0.0125 (15) |
C1—N1 | 1.149 (4) | C26—C30 | 1.449 (4) |
C1—C2 | 1.414 (4) | C26—Fe3 | 2.027 (3) |
C2—C3 | 1.444 (4) | C27—C28 | 1.423 (4) |
C2—C6 | 1.449 (4) | C27—Fe3 | 2.049 (3) |
C2—Fe1 | 2.037 (3) | C27—H27 | 0.9300 |
C3—C4 | 1.416 (5) | C28—C29 | 1.430 (4) |
C3—Fe1 | 2.054 (3) | C28—Fe3 | 2.056 (3) |
C3—H3 | 0.9300 | C28—H28 | 0.9300 |
C4—C5 | 1.416 (5) | C29—C30 | 1.412 (5) |
C4—Fe1 | 2.055 (3) | C29—Fe3 | 2.051 (3) |
C4—H4 | 0.9300 | C29—H29 | 0.9300 |
C5—C6 | 1.423 (5) | C30—Fe3 | 2.038 (3) |
C5—Fe1 | 2.046 (3) | C30—H30 | 0.9300 |
C5—H5 | 0.9300 | C31—N6 | 1.135 (4) |
C6—Fe1 | 2.053 (3) | C31—C32 | 1.426 (4) |
C6—H6 | 0.9300 | C32—C33 | 1.434 (4) |
C7—N4 | 1.141 (4) | C32—C36 | 1.441 (4) |
C7—C8 | 1.422 (4) | C32—Fe3 | 2.026 (3) |
C8—C12 | 1.445 (5) | C33—C34 | 1.403 (5) |
C8—C9 | 1.448 (4) | C33—Fe3 | 2.045 (3) |
C8—Fe1 | 2.023 (3) | C33—H33 | 0.9300 |
C9—C10 | 1.411 (5) | C34—C35 | 1.428 (5) |
C9—Fe1 | 2.043 (3) | C34—Fe3 | 2.056 (3) |
C9—H9 | 0.9300 | C34—H34 | 0.9300 |
C10—C11 | 1.425 (5) | C35—C36 | 1.417 (5) |
C10—Fe1 | 2.064 (3) | C35—Fe3 | 2.047 (3) |
C10—H10 | 0.9300 | C35—H35 | 0.9300 |
C11—C12 | 1.423 (5) | C36—Fe3 | 2.040 (3) |
C11—Fe1 | 2.070 (3) | C36—H36 | 0.9300 |
C11—H11 | 0.9300 | C37—C38 | 1.501 (5) |
C12—Fe1 | 2.052 (3) | C37—H37A | 0.9600 |
C12—H12 | 0.9300 | C37—H37B | 0.9600 |
C13—N2 | 1.148 (4) | C37—H37C | 0.9600 |
C13—C14 | 1.414 (4) | C38—O1 | 1.217 (4) |
C14—C18 | 1.434 (4) | C38—C39 | 1.489 (5) |
C14—C15 | 1.444 (5) | C39—H39A | 0.9600 |
C14—Fe2 | 2.031 (3) | C39—H39B | 0.9600 |
C15—C16 | 1.417 (5) | C39—H39C | 0.9600 |
C15—Fe2 | 2.052 (3) | C40—C41 | 1.503 (4) |
C15—H15 | 0.9300 | C40—H40A | 0.9600 |
C16—C17 | 1.422 (6) | C40—H40B | 0.9600 |
C16—Fe2 | 2.054 (3) | C40—H40C | 0.9600 |
C16—H16 | 0.9300 | C41—O2 | 1.214 (4) |
C17—C18 | 1.415 (5) | C41—C42 | 1.496 (5) |
C17—Fe2 | 2.048 (3) | C42—H42A | 0.9600 |
C17—H17 | 0.9300 | C42—H42B | 0.9600 |
C18—Fe2 | 2.039 (3) | C42—H42C | 0.9600 |
C18—H18 | 0.9300 | N1—Cu1 | 1.933 (3) |
C19—N5 | 1.137 (4) | N2—Cu1 | 1.960 (3) |
C19—C20 | 1.423 (4) | N3—Cu1 | 1.934 (3) |
C20—C24 | 1.437 (4) | N4—Cu2 | 1.911 (3) |
C20—C21 | 1.442 (4) | N5—Cu2 | 1.920 (3) |
C20—Fe2 | 2.021 (3) | N6—Cu2 | 1.931 (3) |
C21—C22 | 1.421 (4) | Cu1—O1 | 2.375 (2) |
C21—Fe2 | 2.044 (3) | F1—B1 | 1.385 (13) |
C21—H21 | 0.9300 | F2—B1 | 1.378 (12) |
C22—C23 | 1.411 (5) | F3—B1 | 1.378 (11) |
C22—Fe2 | 2.051 (3) | F4—B1 | 1.362 (12) |
C22—H22 | 0.9300 | F1'—B1 | 1.404 (11) |
C23—C24 | 1.429 (4) | F2'—B1 | 1.389 (12) |
C23—Fe2 | 2.051 (3) | F3'—B1 | 1.378 (9) |
C23—H23 | 0.9300 | F4'—B1 | 1.407 (10) |
C24—Fe2 | 2.039 (3) | F5—B2 | 1.388 (5) |
C24—H24 | 0.9300 | F6—B2 | 1.382 (5) |
C25—N3 | 1.152 (4) | F7—B2 | 1.371 (5) |
C25—C26 | 1.417 (4) | F8—B2 | 1.385 (4) |
C26—C27 | 1.440 (4) | ||
N1—C1—C2 | 178.9 (3) | C41—C40—H40A | 109.5 |
C1—C2—C3 | 125.8 (3) | C41—C40—H40B | 109.5 |
C1—C2—C6 | 125.4 (3) | H40A—C40—H40B | 109.5 |
C3—C2—C6 | 108.7 (3) | C41—C40—H40C | 109.5 |
C1—C2—Fe1 | 124.0 (2) | H40A—C40—H40C | 109.5 |
C3—C2—Fe1 | 69.98 (17) | H40B—C40—H40C | 109.5 |
C6—C2—Fe1 | 69.87 (17) | O2—C41—C42 | 121.8 (3) |
C4—C3—C2 | 106.7 (3) | O2—C41—C40 | 121.2 (3) |
C4—C3—Fe1 | 69.87 (18) | C42—C41—C40 | 117.0 (3) |
C2—C3—Fe1 | 68.67 (17) | C41—C42—H42A | 109.5 |
C4—C3—H3 | 126.6 | C41—C42—H42B | 109.5 |
C2—C3—H3 | 126.6 | H42A—C42—H42B | 109.5 |
Fe1—C3—H3 | 126.4 | C41—C42—H42C | 109.5 |
C5—C4—C3 | 109.0 (3) | H42A—C42—H42C | 109.5 |
C5—C4—Fe1 | 69.46 (17) | H42B—C42—H42C | 109.5 |
C3—C4—Fe1 | 69.81 (16) | C1—N1—Cu1 | 177.4 (2) |
C5—C4—H4 | 125.5 | C13—N2—Cu1 | 162.7 (3) |
C3—C4—H4 | 125.5 | C25—N3—Cu1 | 177.6 (2) |
Fe1—C4—H4 | 126.8 | C7—N4—Cu2 | 170.5 (2) |
C4—C5—C6 | 109.4 (3) | C19—N5—Cu2 | 170.5 (3) |
C4—C5—Fe1 | 70.15 (16) | C31—N6—Cu2 | 172.9 (2) |
C6—C5—Fe1 | 69.96 (16) | C8—Fe1—C2 | 111.30 (12) |
C4—C5—H5 | 125.3 | C8—Fe1—C9 | 41.73 (12) |
C6—C5—H5 | 125.3 | C2—Fe1—C9 | 122.57 (13) |
Fe1—C5—H5 | 126.2 | C8—Fe1—C5 | 158.37 (13) |
C5—C6—C2 | 106.1 (3) | C2—Fe1—C5 | 68.38 (12) |
C5—C6—Fe1 | 69.42 (16) | C9—Fe1—C5 | 157.48 (13) |
C2—C6—Fe1 | 68.65 (16) | C8—Fe1—C12 | 41.54 (13) |
C5—C6—H6 | 127.0 | C2—Fe1—C12 | 128.56 (12) |
C2—C6—H6 | 127.0 | C9—Fe1—C12 | 70.17 (13) |
Fe1—C6—H6 | 126.5 | C5—Fe1—C12 | 120.54 (13) |
N4—C7—C8 | 179.4 (3) | C8—Fe1—C6 | 124.44 (12) |
C7—C8—C12 | 124.8 (3) | C2—Fe1—C6 | 41.49 (13) |
C7—C8—C9 | 126.1 (3) | C9—Fe1—C6 | 159.97 (13) |
C12—C8—C9 | 108.9 (3) | C5—Fe1—C6 | 40.62 (13) |
C7—C8—Fe1 | 121.6 (2) | C12—Fe1—C6 | 109.01 (13) |
C12—C8—Fe1 | 70.32 (16) | C8—Fe1—C3 | 126.63 (13) |
C9—C8—Fe1 | 69.87 (16) | C2—Fe1—C3 | 41.35 (12) |
C10—C9—C8 | 106.4 (3) | C9—Fe1—C3 | 105.80 (13) |
C10—C9—Fe1 | 70.70 (17) | C5—Fe1—C3 | 68.44 (13) |
C8—C9—Fe1 | 68.40 (16) | C12—Fe1—C3 | 165.74 (13) |
C10—C9—H9 | 126.8 | C6—Fe1—C3 | 69.84 (12) |
C8—C9—H9 | 126.8 | C8—Fe1—C4 | 161.08 (13) |
Fe1—C9—H9 | 125.7 | C2—Fe1—C4 | 68.25 (12) |
C9—C10—C11 | 109.5 (3) | C9—Fe1—C4 | 121.35 (13) |
C9—C10—Fe1 | 69.10 (16) | C5—Fe1—C4 | 40.39 (13) |
C11—C10—Fe1 | 70.05 (17) | C12—Fe1—C4 | 153.52 (13) |
C9—C10—H10 | 125.2 | C6—Fe1—C4 | 68.67 (12) |
C11—C10—H10 | 125.2 | C3—Fe1—C4 | 40.32 (13) |
Fe1—C10—H10 | 127.2 | C8—Fe1—C10 | 68.17 (12) |
C12—C11—C10 | 108.7 (3) | C2—Fe1—C10 | 155.50 (13) |
C12—C11—Fe1 | 69.15 (17) | C9—Fe1—C10 | 40.20 (13) |
C10—C11—Fe1 | 69.60 (18) | C5—Fe1—C10 | 121.64 (13) |
C12—C11—H11 | 125.6 | C12—Fe1—C10 | 68.45 (12) |
C10—C11—H11 | 125.6 | C6—Fe1—C10 | 159.38 (13) |
Fe1—C11—H11 | 127.2 | C3—Fe1—C10 | 117.83 (13) |
C11—C12—C8 | 106.5 (3) | C4—Fe1—C10 | 104.04 (12) |
C11—C12—Fe1 | 70.46 (17) | C8—Fe1—C11 | 68.30 (12) |
C8—C12—Fe1 | 68.14 (16) | C2—Fe1—C11 | 163.98 (13) |
C11—C12—H12 | 126.8 | C9—Fe1—C11 | 68.58 (13) |
C8—C12—H12 | 126.8 | C5—Fe1—C11 | 105.79 (13) |
Fe1—C12—H12 | 126.2 | C12—Fe1—C11 | 40.39 (13) |
N2—C13—C14 | 177.1 (3) | C6—Fe1—C11 | 124.52 (13) |
C13—C14—C18 | 126.9 (3) | C3—Fe1—C11 | 152.10 (13) |
C13—C14—C15 | 124.6 (3) | C4—Fe1—C11 | 117.67 (13) |
C18—C14—C15 | 108.6 (3) | C10—Fe1—C11 | 40.35 (13) |
C13—C14—Fe2 | 125.5 (2) | C20—Fe2—C14 | 111.25 (12) |
C18—C14—Fe2 | 69.70 (16) | C20—Fe2—C18 | 122.55 (13) |
C15—C14—Fe2 | 70.07 (16) | C14—Fe2—C18 | 41.24 (13) |
C16—C15—C14 | 106.5 (3) | C20—Fe2—C24 | 41.45 (12) |
C16—C15—Fe2 | 69.89 (18) | C14—Fe2—C24 | 127.62 (13) |
C14—C15—Fe2 | 68.51 (16) | C18—Fe2—C24 | 106.96 (14) |
C16—C15—H15 | 126.7 | C20—Fe2—C21 | 41.55 (12) |
C14—C15—H15 | 126.7 | C14—Fe2—C21 | 123.44 (12) |
Fe2—C15—H15 | 126.4 | C18—Fe2—C21 | 159.02 (12) |
C15—C16—C17 | 109.1 (3) | C24—Fe2—C21 | 69.95 (12) |
C15—C16—Fe2 | 69.74 (17) | C20—Fe2—C17 | 155.36 (15) |
C17—C16—Fe2 | 69.48 (18) | C14—Fe2—C17 | 68.43 (12) |
C15—C16—H16 | 125.4 | C18—Fe2—C17 | 40.52 (14) |
C17—C16—H16 | 125.4 | C24—Fe2—C17 | 117.82 (14) |
Fe2—C16—H16 | 126.9 | C21—Fe2—C17 | 159.70 (14) |
C18—C17—C16 | 108.6 (3) | C20—Fe2—C23 | 68.72 (12) |
C18—C17—Fe2 | 69.43 (16) | C14—Fe2—C23 | 162.87 (14) |
C16—C17—Fe2 | 69.96 (18) | C18—Fe2—C23 | 123.29 (13) |
C18—C17—H17 | 125.7 | C24—Fe2—C23 | 40.88 (13) |
C16—C17—H17 | 125.7 | C21—Fe2—C23 | 68.70 (12) |
Fe2—C17—H17 | 126.5 | C17—Fe2—C23 | 104.13 (13) |
C17—C18—C14 | 107.2 (3) | C20—Fe2—C22 | 68.55 (12) |
C17—C18—Fe2 | 70.06 (17) | C14—Fe2—C22 | 156.78 (14) |
C14—C18—Fe2 | 69.06 (16) | C18—Fe2—C22 | 159.14 (13) |
C17—C18—H18 | 126.4 | C24—Fe2—C22 | 68.68 (13) |
C14—C18—H18 | 126.4 | C21—Fe2—C22 | 40.59 (12) |
Fe2—C18—H18 | 126.1 | C17—Fe2—C22 | 122.00 (13) |
N5—C19—C20 | 177.4 (3) | C23—Fe2—C22 | 40.24 (14) |
C19—C20—C24 | 126.1 (3) | C20—Fe2—C15 | 128.54 (13) |
C19—C20—C21 | 124.7 (3) | C14—Fe2—C15 | 41.43 (13) |
C24—C20—C21 | 108.8 (3) | C18—Fe2—C15 | 69.64 (14) |
C19—C20—Fe2 | 120.2 (2) | C24—Fe2—C15 | 166.46 (13) |
C24—C20—Fe2 | 69.97 (16) | C21—Fe2—C15 | 108.26 (13) |
C21—C20—Fe2 | 70.09 (16) | C17—Fe2—C15 | 68.68 (14) |
C22—C21—C20 | 106.5 (3) | C23—Fe2—C15 | 152.02 (13) |
C22—C21—Fe2 | 69.97 (16) | C22—Fe2—C15 | 119.25 (13) |
C20—C21—Fe2 | 68.35 (15) | C20—Fe2—C16 | 163.92 (15) |
C22—C21—H21 | 126.8 | C14—Fe2—C16 | 68.29 (12) |
C20—C21—H21 | 126.8 | C18—Fe2—C16 | 68.48 (14) |
Fe2—C21—H21 | 126.5 | C24—Fe2—C16 | 151.81 (14) |
C23—C22—C21 | 109.4 (3) | C21—Fe2—C16 | 124.25 (14) |
C23—C22—Fe2 | 69.87 (17) | C17—Fe2—C16 | 40.56 (16) |
C21—C22—Fe2 | 69.44 (16) | C23—Fe2—C16 | 116.77 (13) |
C23—C22—H22 | 125.3 | C22—Fe2—C16 | 105.22 (12) |
C21—C22—H22 | 125.3 | C15—Fe2—C16 | 40.37 (14) |
Fe2—C22—H22 | 127.0 | C32—Fe3—C26 | 111.01 (12) |
C22—C23—C24 | 108.7 (3) | C32—Fe3—C30 | 126.88 (13) |
C22—C23—Fe2 | 69.89 (17) | C26—Fe3—C30 | 41.77 (12) |
C24—C23—Fe2 | 69.12 (17) | C32—Fe3—C36 | 41.50 (12) |
C22—C23—H23 | 125.6 | C26—Fe3—C36 | 123.05 (12) |
C24—C23—H23 | 125.6 | C30—Fe3—C36 | 106.54 (12) |
Fe2—C23—H23 | 126.9 | C32—Fe3—C33 | 41.23 (13) |
C23—C24—C20 | 106.7 (3) | C26—Fe3—C33 | 127.68 (12) |
C23—C24—Fe2 | 69.99 (17) | C30—Fe3—C33 | 165.43 (13) |
C20—C24—Fe2 | 68.58 (16) | C36—Fe3—C33 | 69.70 (12) |
C23—C24—H24 | 126.7 | C32—Fe3—C35 | 68.46 (12) |
C20—C24—H24 | 126.7 | C26—Fe3—C35 | 156.48 (13) |
Fe2—C24—H24 | 126.3 | C30—Fe3—C35 | 118.37 (13) |
N3—C25—C26 | 177.5 (3) | C36—Fe3—C35 | 40.57 (13) |
C25—C26—C27 | 125.8 (3) | C33—Fe3—C35 | 68.51 (13) |
C25—C26—C30 | 125.7 (3) | C32—Fe3—C27 | 124.00 (12) |
C27—C26—C30 | 108.4 (3) | C26—Fe3—C27 | 41.37 (12) |
C25—C26—Fe3 | 123.5 (2) | C30—Fe3—C27 | 69.99 (12) |
C27—C26—Fe3 | 70.12 (15) | C36—Fe3—C27 | 159.91 (13) |
C30—C26—Fe3 | 69.51 (15) | C33—Fe3—C27 | 108.45 (12) |
C28—C27—C26 | 106.8 (3) | C35—Fe3—C27 | 158.82 (13) |
C28—C27—Fe3 | 69.97 (16) | C32—Fe3—C29 | 161.44 (13) |
C26—C27—Fe3 | 68.51 (16) | C26—Fe3—C29 | 68.70 (12) |
C28—C27—H27 | 126.6 | C30—Fe3—C29 | 40.39 (13) |
C26—C27—H27 | 126.6 | C36—Fe3—C29 | 121.97 (12) |
Fe3—C27—H27 | 126.5 | C33—Fe3—C29 | 153.64 (13) |
C27—C28—C29 | 108.8 (3) | C35—Fe3—C29 | 104.07 (12) |
C27—C28—Fe3 | 69.46 (16) | C27—Fe3—C29 | 68.91 (12) |
C29—C28—Fe3 | 69.45 (17) | C32—Fe3—C28 | 157.65 (12) |
C27—C28—H28 | 125.6 | C26—Fe3—C28 | 68.54 (12) |
C29—C28—H28 | 125.6 | C30—Fe3—C28 | 68.72 (12) |
Fe3—C28—H28 | 127.1 | C36—Fe3—C28 | 158.11 (12) |
C30—C29—C28 | 108.8 (3) | C33—Fe3—C28 | 120.10 (12) |
C30—C29—Fe3 | 69.30 (16) | C35—Fe3—C28 | 121.38 (12) |
C28—C29—Fe3 | 69.80 (16) | C27—Fe3—C28 | 40.57 (12) |
C30—C29—H29 | 125.6 | C29—Fe3—C28 | 40.75 (12) |
C28—C29—H29 | 125.6 | C32—Fe3—C34 | 68.04 (12) |
Fe3—C29—H29 | 126.9 | C26—Fe3—C34 | 162.55 (13) |
C29—C30—C26 | 107.1 (3) | C30—Fe3—C34 | 153.04 (13) |
C29—C30—Fe3 | 70.31 (16) | C36—Fe3—C34 | 68.66 (13) |
C26—C30—Fe3 | 68.72 (15) | C33—Fe3—C34 | 40.01 (13) |
C29—C30—H30 | 126.4 | C35—Fe3—C34 | 40.72 (14) |
C26—C30—H30 | 126.4 | C27—Fe3—C34 | 123.56 (13) |
Fe3—C30—H30 | 126.1 | C29—Fe3—C34 | 118.09 (13) |
N6—C31—C32 | 179.4 (3) | C28—Fe3—C34 | 105.38 (12) |
C31—C32—C33 | 125.2 (3) | N1—Cu1—N3 | 126.02 (11) |
C31—C32—C36 | 126.1 (3) | N1—Cu1—N2 | 116.24 (11) |
C33—C32—C36 | 108.6 (3) | N3—Cu1—N2 | 114.92 (11) |
C31—C32—Fe3 | 122.43 (19) | N1—Cu1—O1 | 93.09 (9) |
C33—C32—Fe3 | 70.08 (17) | N3—Cu1—O1 | 97.54 (9) |
C36—C32—Fe3 | 69.77 (17) | N2—Cu1—O1 | 96.17 (9) |
C34—C33—C32 | 107.3 (3) | N4—Cu2—N5 | 128.97 (11) |
C34—C33—Fe3 | 70.43 (17) | N4—Cu2—N6 | 117.11 (11) |
C32—C33—Fe3 | 68.69 (16) | N5—Cu2—N6 | 113.63 (11) |
C34—C33—H33 | 126.4 | C38—O1—Cu1 | 128.4 (2) |
C32—C33—H33 | 126.4 | F4—B1—F3 | 92.2 (9) |
Fe3—C33—H33 | 126.1 | F4—B1—F2 | 116.4 (12) |
C33—C34—C35 | 108.9 (3) | F3—B1—F2 | 111.8 (12) |
C33—C34—Fe3 | 69.56 (16) | F4—B1—F3' | 108.4 (10) |
C35—C34—Fe3 | 69.30 (16) | F3—B1—F3' | 16.2 (13) |
C33—C34—H34 | 125.5 | F2—B1—F3' | 103.2 (12) |
C35—C34—H34 | 125.5 | F4—B1—F1 | 113.4 (12) |
Fe3—C34—H34 | 127.2 | F3—B1—F1 | 109.4 (13) |
C36—C35—C34 | 108.6 (3) | F2—B1—F1 | 112.0 (14) |
C36—C35—Fe3 | 69.45 (16) | F3'—B1—F1 | 101.9 (13) |
C34—C35—Fe3 | 69.97 (17) | F4—B1—F2' | 109.0 (12) |
C36—C35—H35 | 125.7 | F3—B1—F2' | 114.6 (13) |
C34—C35—H35 | 125.7 | F2—B1—F2' | 7.4 (16) |
Fe3—C35—H35 | 126.5 | F3'—B1—F2' | 107.6 (10) |
C35—C36—C32 | 106.6 (3) | F1—B1—F2' | 115.9 (16) |
C35—C36—Fe3 | 69.99 (17) | F4—B1—F1' | 113.5 (11) |
C32—C36—Fe3 | 68.74 (16) | F3—B1—F1' | 117.8 (13) |
C35—C36—H36 | 126.7 | F2—B1—F1' | 105.5 (15) |
C32—C36—H36 | 126.7 | F3'—B1—F1' | 109.3 (11) |
Fe3—C36—H36 | 126.1 | F1—B1—F1' | 9 (2) |
C38—C37—H37A | 109.5 | F2'—B1—F1' | 108.8 (12) |
C38—C37—H37B | 109.5 | F4—B1—F4' | 18.1 (9) |
H37A—C37—H37B | 109.5 | F3—B1—F4' | 110.3 (8) |
C38—C37—H37C | 109.5 | F2—B1—F4' | 106.7 (11) |
H37A—C37—H37C | 109.5 | F3'—B1—F4' | 126.5 (10) |
H37B—C37—H37C | 109.5 | F1—B1—F4' | 106.5 (13) |
O1—C38—C39 | 122.5 (3) | F2'—B1—F4' | 99.3 (11) |
O1—C38—C37 | 120.6 (3) | F1'—B1—F4' | 104.1 (9) |
C39—C38—C37 | 116.9 (3) | F7—B2—F6 | 108.5 (3) |
C38—C39—H39A | 109.5 | F7—B2—F8 | 110.9 (4) |
C38—C39—H39B | 109.5 | F6—B2—F8 | 109.7 (3) |
H39A—C39—H39B | 109.5 | F7—B2—F5 | 110.4 (3) |
C38—C39—H39C | 109.5 | F6—B2—F5 | 108.7 (3) |
H39A—C39—H39C | 109.5 | F8—B2—F5 | 108.7 (3) |
H39B—C39—H39C | 109.5 | ||
N1—C1—C2—C3 | 141 (17) | C13—C14—Fe2—C24 | −50.2 (3) |
N1—C1—C2—C6 | −42 (17) | C18—C14—Fe2—C24 | 71.3 (2) |
N1—C1—C2—Fe1 | −130 (17) | C15—C14—Fe2—C24 | −169.03 (18) |
C1—C2—C3—C4 | 177.9 (3) | C13—C14—Fe2—C21 | 39.3 (3) |
C6—C2—C3—C4 | 0.5 (3) | C18—C14—Fe2—C21 | 160.74 (19) |
Fe1—C2—C3—C4 | 59.8 (2) | C15—C14—Fe2—C21 | −79.6 (2) |
C1—C2—C3—Fe1 | 118.1 (3) | C13—C14—Fe2—C17 | −159.4 (3) |
C6—C2—C3—Fe1 | −59.32 (19) | C18—C14—Fe2—C17 | −37.9 (2) |
C2—C3—C4—C5 | −0.5 (3) | C15—C14—Fe2—C17 | 81.8 (2) |
Fe1—C3—C4—C5 | 58.5 (2) | C13—C14—Fe2—C23 | −92.4 (5) |
C2—C3—C4—Fe1 | −59.03 (19) | C18—C14—Fe2—C23 | 29.1 (5) |
C3—C4—C5—C6 | 0.4 (3) | C15—C14—Fe2—C23 | 148.7 (4) |
Fe1—C4—C5—C6 | 59.1 (2) | C13—C14—Fe2—C22 | 79.1 (4) |
C3—C4—C5—Fe1 | −58.7 (2) | C18—C14—Fe2—C22 | −159.5 (3) |
C4—C5—C6—C2 | −0.1 (3) | C15—C14—Fe2—C22 | −39.8 (4) |
Fe1—C5—C6—C2 | 59.15 (19) | C13—C14—Fe2—C15 | 118.9 (4) |
C4—C5—C6—Fe1 | −59.2 (2) | C18—C14—Fe2—C15 | −119.7 (3) |
C1—C2—C6—C5 | −177.7 (3) | C13—C14—Fe2—C16 | 156.9 (3) |
C3—C2—C6—C5 | −0.3 (3) | C18—C14—Fe2—C16 | −81.7 (2) |
Fe1—C2—C6—C5 | −59.65 (19) | C15—C14—Fe2—C16 | 38.0 (2) |
C1—C2—C6—Fe1 | −118.1 (3) | C17—C18—Fe2—C20 | 155.9 (2) |
C3—C2—C6—Fe1 | 59.38 (19) | C14—C18—Fe2—C20 | −85.6 (2) |
N4—C7—C8—C12 | 29 (33) | C17—C18—Fe2—C14 | −118.4 (3) |
N4—C7—C8—C9 | −157 (32) | C17—C18—Fe2—C24 | 113.2 (2) |
N4—C7—C8—Fe1 | 116 (32) | C14—C18—Fe2—C24 | −128.34 (19) |
C7—C8—C9—C10 | −175.9 (3) | C17—C18—Fe2—C21 | −168.7 (3) |
C12—C8—C9—C10 | −1.1 (3) | C14—C18—Fe2—C21 | −50.2 (4) |
Fe1—C8—C9—C10 | −60.8 (2) | C14—C18—Fe2—C17 | 118.4 (3) |
C7—C8—C9—Fe1 | −115.0 (3) | C17—C18—Fe2—C23 | 71.4 (2) |
C12—C8—C9—Fe1 | 59.71 (19) | C14—C18—Fe2—C23 | −170.15 (18) |
C8—C9—C10—C11 | 0.9 (3) | C17—C18—Fe2—C22 | 38.7 (5) |
Fe1—C9—C10—C11 | −58.5 (2) | C14—C18—Fe2—C22 | 157.2 (3) |
C8—C9—C10—Fe1 | 59.34 (19) | C17—C18—Fe2—C15 | −80.6 (2) |
C9—C10—C11—C12 | −0.3 (3) | C14—C18—Fe2—C15 | 37.82 (19) |
Fe1—C10—C11—C12 | −58.2 (2) | C17—C18—Fe2—C16 | −37.3 (2) |
C9—C10—C11—Fe1 | 57.9 (2) | C14—C18—Fe2—C16 | 81.2 (2) |
C10—C11—C12—C8 | −0.4 (3) | C23—C24—Fe2—C20 | 118.1 (3) |
Fe1—C11—C12—C8 | −58.89 (19) | C23—C24—Fe2—C14 | −162.39 (18) |
C10—C11—C12—Fe1 | 58.5 (2) | C20—C24—Fe2—C14 | 79.5 (2) |
C7—C8—C12—C11 | 175.8 (3) | C23—C24—Fe2—C18 | −121.63 (19) |
C9—C8—C12—C11 | 1.0 (3) | C20—C24—Fe2—C18 | 120.30 (18) |
Fe1—C8—C12—C11 | 60.38 (19) | C23—C24—Fe2—C21 | 80.26 (19) |
C7—C8—C12—Fe1 | 115.4 (3) | C20—C24—Fe2—C21 | −37.80 (18) |
C9—C8—C12—Fe1 | −59.43 (19) | C23—C24—Fe2—C17 | −79.2 (2) |
N2—C13—C14—C18 | 113 (7) | C20—C24—Fe2—C17 | 162.76 (18) |
N2—C13—C14—C15 | −68 (7) | C20—C24—Fe2—C23 | −118.1 (3) |
N2—C13—C14—Fe2 | −157 (7) | C23—C24—Fe2—C22 | 36.76 (18) |
C13—C14—C15—C16 | −179.9 (3) | C20—C24—Fe2—C22 | −81.31 (19) |
C18—C14—C15—C16 | −0.6 (3) | C23—C24—Fe2—C15 | 165.1 (5) |
Fe2—C14—C15—C16 | −59.9 (2) | C20—C24—Fe2—C15 | 47.0 (6) |
C13—C14—C15—Fe2 | −120.0 (3) | C23—C24—Fe2—C16 | −45.7 (4) |
C18—C14—C15—Fe2 | 59.27 (19) | C20—C24—Fe2—C16 | −163.8 (3) |
C14—C15—C16—C17 | 0.5 (3) | C22—C21—Fe2—C20 | −118.0 (3) |
Fe2—C15—C16—C17 | −58.4 (2) | C22—C21—Fe2—C14 | 157.19 (19) |
C14—C15—C16—Fe2 | 58.96 (19) | C20—C21—Fe2—C14 | −84.8 (2) |
C15—C16—C17—C18 | −0.3 (3) | C22—C21—Fe2—C18 | −165.4 (3) |
Fe2—C16—C17—C18 | −58.9 (2) | C20—C21—Fe2—C18 | −47.4 (4) |
C15—C16—C17—Fe2 | 58.6 (2) | C22—C21—Fe2—C24 | −80.3 (2) |
C16—C17—C18—C14 | −0.1 (3) | C20—C21—Fe2—C24 | 37.71 (17) |
Fe2—C17—C18—C14 | −59.29 (19) | C22—C21—Fe2—C17 | 36.1 (5) |
C16—C17—C18—Fe2 | 59.2 (2) | C20—C21—Fe2—C17 | 154.1 (4) |
C13—C14—C18—C17 | 179.7 (3) | C22—C21—Fe2—C23 | −36.46 (19) |
C15—C14—C18—C17 | 0.4 (3) | C20—C21—Fe2—C23 | 81.53 (19) |
Fe2—C14—C18—C17 | 59.9 (2) | C20—C21—Fe2—C22 | 118.0 (3) |
C13—C14—C18—Fe2 | 119.8 (3) | C22—C21—Fe2—C15 | 113.9 (2) |
C15—C14—C18—Fe2 | −59.50 (19) | C20—C21—Fe2—C15 | −128.08 (18) |
N5—C19—C20—C24 | 100 (7) | C22—C21—Fe2—C16 | 72.2 (2) |
N5—C19—C20—C21 | −72 (7) | C20—C21—Fe2—C16 | −169.85 (18) |
N5—C19—C20—Fe2 | 13 (7) | C18—C17—Fe2—C20 | −55.6 (4) |
C19—C20—C21—C22 | 173.5 (3) | C16—C17—Fe2—C20 | −175.6 (3) |
C24—C20—C21—C22 | 0.4 (3) | C18—C17—Fe2—C14 | 38.6 (2) |
Fe2—C20—C21—C22 | 59.90 (18) | C16—C17—Fe2—C14 | −81.4 (2) |
C19—C20—C21—Fe2 | 113.6 (3) | C16—C17—Fe2—C18 | −119.9 (3) |
C24—C20—C21—Fe2 | −59.47 (19) | C18—C17—Fe2—C24 | −83.7 (2) |
C20—C21—C22—C23 | −0.3 (3) | C16—C17—Fe2—C24 | 156.37 (19) |
Fe2—C21—C22—C23 | 58.6 (2) | C18—C17—Fe2—C21 | 168.3 (3) |
C20—C21—C22—Fe2 | −58.86 (18) | C16—C17—Fe2—C21 | 48.4 (5) |
C21—C22—C23—C24 | 0.1 (3) | C18—C17—Fe2—C23 | −125.2 (2) |
Fe2—C22—C23—C24 | 58.4 (2) | C16—C17—Fe2—C23 | 114.8 (2) |
C21—C22—C23—Fe2 | −58.3 (2) | C18—C17—Fe2—C22 | −164.8 (2) |
C22—C23—C24—C20 | 0.2 (3) | C16—C17—Fe2—C22 | 75.3 (2) |
Fe2—C23—C24—C20 | 59.03 (19) | C18—C17—Fe2—C15 | 83.2 (2) |
C22—C23—C24—Fe2 | −58.8 (2) | C16—C17—Fe2—C15 | −36.71 (19) |
C19—C20—C24—C23 | −173.3 (3) | C18—C17—Fe2—C16 | 119.9 (3) |
C21—C20—C24—C23 | −0.4 (3) | C22—C23—Fe2—C20 | 81.53 (18) |
Fe2—C20—C24—C23 | −59.94 (19) | C24—C23—Fe2—C20 | −38.82 (18) |
C19—C20—C24—Fe2 | −113.4 (3) | C22—C23—Fe2—C14 | 174.8 (4) |
C21—C20—C24—Fe2 | 59.55 (19) | C24—C23—Fe2—C14 | 54.5 (5) |
N3—C25—C26—C27 | 153 (7) | C22—C23—Fe2—C18 | −162.68 (18) |
N3—C25—C26—C30 | −31 (7) | C24—C23—Fe2—C18 | 77.0 (2) |
N3—C25—C26—Fe3 | −119 (7) | C22—C23—Fe2—C24 | 120.3 (2) |
C25—C26—C27—C28 | 177.3 (3) | C22—C23—Fe2—C21 | 36.77 (17) |
C30—C26—C27—C28 | 0.6 (3) | C24—C23—Fe2—C21 | −83.57 (19) |
Fe3—C26—C27—C28 | 59.75 (19) | C22—C23—Fe2—C17 | −123.27 (19) |
C25—C26—C27—Fe3 | 117.6 (3) | C24—C23—Fe2—C17 | 116.4 (2) |
C30—C26—C27—Fe3 | −59.15 (18) | C24—C23—Fe2—C22 | −120.3 (2) |
C26—C27—C28—C29 | −0.4 (3) | C22—C23—Fe2—C15 | −52.3 (3) |
Fe3—C27—C28—C29 | 58.43 (19) | C24—C23—Fe2—C15 | −172.6 (3) |
C26—C27—C28—Fe3 | −58.82 (19) | C22—C23—Fe2—C16 | −81.9 (2) |
C27—C28—C29—C30 | 0.0 (3) | C24—C23—Fe2—C16 | 157.75 (19) |
Fe3—C28—C29—C30 | 58.5 (2) | C23—C22—Fe2—C20 | −82.00 (19) |
C27—C28—C29—Fe3 | −58.43 (19) | C21—C22—Fe2—C20 | 39.00 (18) |
C28—C29—C30—C26 | 0.3 (3) | C23—C22—Fe2—C14 | −176.1 (3) |
Fe3—C29—C30—C26 | 59.11 (18) | C21—C22—Fe2—C14 | −55.1 (4) |
C28—C29—C30—Fe3 | −58.8 (2) | C23—C22—Fe2—C18 | 44.3 (4) |
C25—C26—C30—C29 | −177.3 (3) | C21—C22—Fe2—C18 | 165.3 (3) |
C27—C26—C30—C29 | −0.6 (3) | C23—C22—Fe2—C24 | −37.33 (18) |
Fe3—C26—C30—C29 | −60.12 (19) | C21—C22—Fe2—C24 | 83.67 (19) |
C25—C26—C30—Fe3 | −117.2 (3) | C23—C22—Fe2—C21 | −121.0 (3) |
C27—C26—C30—Fe3 | 59.53 (19) | C23—C22—Fe2—C17 | 73.0 (2) |
N6—C31—C32—C33 | −109 (33) | C21—C22—Fe2—C17 | −166.0 (2) |
N6—C31—C32—C36 | 77 (33) | C21—C22—Fe2—C23 | 121.0 (3) |
N6—C31—C32—Fe3 | 164 (100) | C23—C22—Fe2—C15 | 154.83 (18) |
C31—C32—C33—C34 | −176.4 (3) | C21—C22—Fe2—C15 | −84.2 (2) |
C36—C32—C33—C34 | −0.8 (3) | C23—C22—Fe2—C16 | 113.6 (2) |
Fe3—C32—C33—C34 | −60.14 (19) | C21—C22—Fe2—C16 | −125.4 (2) |
C31—C32—C33—Fe3 | −116.3 (3) | C16—C15—Fe2—C20 | −163.7 (2) |
C36—C32—C33—Fe3 | 59.3 (2) | C14—C15—Fe2—C20 | 78.3 (2) |
C32—C33—C34—C35 | 0.8 (3) | C16—C15—Fe2—C14 | 118.0 (3) |
Fe3—C33—C34—C35 | −58.2 (2) | C16—C15—Fe2—C18 | 80.4 (2) |
C32—C33—C34—Fe3 | 59.03 (19) | C14—C15—Fe2—C18 | −37.66 (18) |
C33—C34—C35—C36 | −0.5 (3) | C16—C15—Fe2—C24 | 158.1 (5) |
Fe3—C34—C35—C36 | −58.9 (2) | C14—C15—Fe2—C24 | 40.1 (6) |
C33—C34—C35—Fe3 | 58.4 (2) | C16—C15—Fe2—C21 | −121.8 (2) |
C34—C35—C36—C32 | 0.0 (3) | C14—C15—Fe2—C21 | 120.20 (18) |
Fe3—C35—C36—C32 | −59.24 (19) | C16—C15—Fe2—C17 | 36.9 (2) |
C34—C35—C36—Fe3 | 59.2 (2) | C14—C15—Fe2—C17 | −81.1 (2) |
C31—C32—C36—C35 | 176.1 (3) | C16—C15—Fe2—C23 | −43.0 (4) |
C33—C32—C36—C35 | 0.5 (3) | C14—C15—Fe2—C23 | −161.0 (2) |
Fe3—C32—C36—C35 | 60.0 (2) | C16—C15—Fe2—C22 | −78.8 (2) |
C31—C32—C36—Fe3 | 116.0 (3) | C14—C15—Fe2—C22 | 163.18 (17) |
C33—C32—C36—Fe3 | −59.52 (19) | C14—C15—Fe2—C16 | −118.0 (3) |
C2—C1—N1—Cu1 | 81 (18) | C15—C16—Fe2—C20 | 52.6 (5) |
C14—C13—N2—Cu1 | 21 (7) | C17—C16—Fe2—C20 | 173.3 (4) |
C26—C25—N3—Cu1 | 135 (6) | C15—C16—Fe2—C14 | −38.96 (19) |
C8—C7—N4—Cu2 | 95 (33) | C17—C16—Fe2—C14 | 81.8 (2) |
C20—C19—N5—Cu2 | 16 (9) | C15—C16—Fe2—C18 | −83.5 (2) |
C32—C31—N6—Cu2 | 54 (34) | C17—C16—Fe2—C18 | 37.24 (19) |
C7—C8—Fe1—C2 | 5.3 (3) | C15—C16—Fe2—C24 | −169.4 (3) |
C12—C8—Fe1—C2 | 124.68 (18) | C17—C16—Fe2—C24 | −48.6 (4) |
C9—C8—Fe1—C2 | −115.53 (19) | C15—C16—Fe2—C21 | 77.6 (2) |
C7—C8—Fe1—C9 | 120.8 (3) | C17—C16—Fe2—C21 | −161.72 (18) |
C12—C8—Fe1—C9 | −119.8 (3) | C15—C16—Fe2—C17 | −120.7 (3) |
C7—C8—Fe1—C5 | −79.6 (4) | C15—C16—Fe2—C23 | 159.01 (19) |
C12—C8—Fe1—C5 | 39.8 (4) | C17—C16—Fe2—C23 | −80.3 (2) |
C9—C8—Fe1—C5 | 159.6 (3) | C15—C16—Fe2—C22 | 117.5 (2) |
C7—C8—Fe1—C12 | −119.4 (3) | C17—C16—Fe2—C22 | −121.8 (2) |
C9—C8—Fe1—C12 | 119.8 (3) | C17—C16—Fe2—C15 | 120.7 (3) |
C7—C8—Fe1—C6 | −39.7 (3) | C31—C32—Fe3—C26 | −4.0 (3) |
C12—C8—Fe1—C6 | 79.7 (2) | C33—C32—Fe3—C26 | −123.73 (18) |
C9—C8—Fe1—C6 | −160.49 (19) | C36—C32—Fe3—C26 | 116.59 (18) |
C7—C8—Fe1—C3 | 49.7 (3) | C31—C32—Fe3—C30 | −48.7 (3) |
C12—C8—Fe1—C3 | 169.10 (17) | C33—C32—Fe3—C30 | −168.44 (17) |
C9—C8—Fe1—C3 | −71.1 (2) | C36—C32—Fe3—C30 | 71.9 (2) |
C7—C8—Fe1—C4 | 90.2 (4) | C31—C32—Fe3—C36 | −120.6 (3) |
C12—C8—Fe1—C4 | −150.4 (4) | C33—C32—Fe3—C36 | 119.7 (2) |
C9—C8—Fe1—C4 | −30.6 (5) | C31—C32—Fe3—C33 | 119.7 (3) |
C7—C8—Fe1—C10 | 158.9 (3) | C36—C32—Fe3—C33 | −119.7 (2) |
C12—C8—Fe1—C10 | −81.70 (19) | C31—C32—Fe3—C35 | −158.8 (3) |
C9—C8—Fe1—C10 | 38.10 (19) | C33—C32—Fe3—C35 | 81.53 (19) |
C7—C8—Fe1—C11 | −157.5 (3) | C36—C32—Fe3—C35 | −38.15 (18) |
C12—C8—Fe1—C11 | −38.10 (18) | C31—C32—Fe3—C27 | 40.7 (3) |
C9—C8—Fe1—C11 | 81.7 (2) | C33—C32—Fe3—C27 | −79.0 (2) |
C1—C2—Fe1—C8 | 1.4 (3) | C36—C32—Fe3—C27 | 161.30 (17) |
C3—C2—Fe1—C8 | 121.77 (18) | C31—C32—Fe3—C29 | −89.5 (4) |
C6—C2—Fe1—C8 | −118.40 (18) | C33—C32—Fe3—C29 | 150.8 (3) |
C1—C2—Fe1—C9 | −44.1 (3) | C36—C32—Fe3—C29 | 31.1 (4) |
C3—C2—Fe1—C9 | 76.3 (2) | C31—C32—Fe3—C28 | 80.4 (4) |
C6—C2—Fe1—C9 | −163.86 (17) | C33—C32—Fe3—C28 | −39.3 (4) |
C1—C2—Fe1—C5 | 158.1 (3) | C36—C32—Fe3—C28 | −159.0 (3) |
C3—C2—Fe1—C5 | −81.50 (19) | C31—C32—Fe3—C34 | 157.2 (3) |
C6—C2—Fe1—C5 | 38.34 (18) | C33—C32—Fe3—C34 | 37.54 (18) |
C1—C2—Fe1—C12 | 45.6 (3) | C36—C32—Fe3—C34 | −82.15 (19) |
C3—C2—Fe1—C12 | 165.98 (18) | C25—C26—Fe3—C32 | −2.4 (3) |
C6—C2—Fe1—C12 | −74.2 (2) | C27—C26—Fe3—C32 | 118.05 (18) |
C1—C2—Fe1—C6 | 119.8 (3) | C30—C26—Fe3—C32 | −122.34 (19) |
C3—C2—Fe1—C6 | −119.8 (2) | C25—C26—Fe3—C30 | 120.0 (3) |
C1—C2—Fe1—C3 | −120.4 (3) | C27—C26—Fe3—C30 | −119.6 (3) |
C6—C2—Fe1—C3 | 119.8 (2) | C25—C26—Fe3—C36 | 42.6 (3) |
C1—C2—Fe1—C4 | −158.3 (3) | C27—C26—Fe3—C36 | 163.04 (18) |
C3—C2—Fe1—C4 | −37.89 (18) | C30—C26—Fe3—C36 | −77.4 (2) |
C6—C2—Fe1—C4 | 81.95 (19) | C25—C26—Fe3—C33 | −46.2 (3) |
C1—C2—Fe1—C10 | −82.5 (4) | C27—C26—Fe3—C33 | 74.2 (2) |
C3—C2—Fe1—C10 | 37.9 (4) | C30—C26—Fe3—C33 | −166.19 (18) |
C6—C2—Fe1—C10 | 157.8 (3) | C25—C26—Fe3—C35 | 81.7 (4) |
C1—C2—Fe1—C11 | 86.8 (5) | C27—C26—Fe3—C35 | −157.9 (3) |
C3—C2—Fe1—C11 | −152.8 (4) | C30—C26—Fe3—C35 | −38.3 (4) |
C6—C2—Fe1—C11 | −33.0 (5) | C25—C26—Fe3—C27 | −120.4 (3) |
C10—C9—Fe1—C8 | 117.5 (3) | C30—C26—Fe3—C27 | 119.6 (3) |
C10—C9—Fe1—C2 | −156.48 (18) | C25—C26—Fe3—C29 | 157.7 (3) |
C8—C9—Fe1—C2 | 86.1 (2) | C27—C26—Fe3—C29 | −81.85 (19) |
C10—C9—Fe1—C5 | −43.0 (4) | C30—C26—Fe3—C29 | 37.75 (18) |
C8—C9—Fe1—C5 | −160.4 (3) | C25—C26—Fe3—C28 | −158.4 (3) |
C10—C9—Fe1—C12 | 79.7 (2) | C27—C26—Fe3—C28 | −37.95 (17) |
C8—C9—Fe1—C12 | −37.71 (18) | C30—C26—Fe3—C28 | 81.65 (19) |
C10—C9—Fe1—C6 | 171.0 (3) | C25—C26—Fe3—C34 | −85.9 (5) |
C8—C9—Fe1—C6 | 53.5 (4) | C27—C26—Fe3—C34 | 34.6 (5) |
C10—C9—Fe1—C3 | −114.64 (19) | C30—C26—Fe3—C34 | 154.2 (4) |
C8—C9—Fe1—C3 | 127.91 (19) | C29—C30—Fe3—C32 | −161.29 (17) |
C10—C9—Fe1—C4 | −73.7 (2) | C26—C30—Fe3—C32 | 80.4 (2) |
C8—C9—Fe1—C4 | 168.84 (18) | C29—C30—Fe3—C26 | 118.3 (3) |
C8—C9—Fe1—C10 | −117.5 (3) | C29—C30—Fe3—C36 | −120.22 (18) |
C10—C9—Fe1—C11 | 36.48 (19) | C26—C30—Fe3—C36 | 121.44 (19) |
C8—C9—Fe1—C11 | −81.0 (2) | C29—C30—Fe3—C33 | 167.0 (4) |
C4—C5—Fe1—C8 | 174.9 (3) | C26—C30—Fe3—C33 | 48.7 (6) |
C6—C5—Fe1—C8 | 54.3 (4) | C29—C30—Fe3—C35 | −78.0 (2) |
C4—C5—Fe1—C2 | 81.4 (2) | C26—C30—Fe3—C35 | 163.69 (18) |
C6—C5—Fe1—C2 | −39.14 (19) | C29—C30—Fe3—C27 | 80.63 (18) |
C4—C5—Fe1—C9 | −42.4 (4) | C26—C30—Fe3—C27 | −37.70 (18) |
C6—C5—Fe1—C9 | −162.9 (3) | C26—C30—Fe3—C29 | −118.3 (3) |
C4—C5—Fe1—C12 | −155.58 (19) | C29—C30—Fe3—C28 | 37.16 (17) |
C6—C5—Fe1—C12 | 83.9 (2) | C26—C30—Fe3—C28 | −81.17 (19) |
C4—C5—Fe1—C6 | 120.6 (3) | C29—C30—Fe3—C34 | −44.9 (3) |
C4—C5—Fe1—C3 | 36.79 (19) | C26—C30—Fe3—C34 | −163.3 (3) |
C6—C5—Fe1—C3 | −83.8 (2) | C35—C36—Fe3—C32 | −117.9 (3) |
C6—C5—Fe1—C4 | −120.6 (3) | C35—C36—Fe3—C26 | 157.23 (19) |
C4—C5—Fe1—C10 | −73.5 (2) | C32—C36—Fe3—C26 | −84.8 (2) |
C6—C5—Fe1—C10 | 165.97 (19) | C35—C36—Fe3—C30 | 114.5 (2) |
C4—C5—Fe1—C11 | −114.4 (2) | C32—C36—Fe3—C30 | −127.53 (17) |
C6—C5—Fe1—C11 | 125.09 (19) | C35—C36—Fe3—C33 | −80.3 (2) |
C11—C12—Fe1—C8 | −117.8 (3) | C32—C36—Fe3—C33 | 37.63 (17) |
C11—C12—Fe1—C2 | 163.72 (18) | C32—C36—Fe3—C35 | 117.9 (3) |
C8—C12—Fe1—C2 | −78.5 (2) | C35—C36—Fe3—C27 | −168.6 (3) |
C11—C12—Fe1—C9 | −79.9 (2) | C32—C36—Fe3—C27 | −50.7 (4) |
C8—C12—Fe1—C9 | 37.88 (18) | C35—C36—Fe3—C29 | 73.2 (2) |
C11—C12—Fe1—C5 | 78.1 (2) | C32—C36—Fe3—C29 | −168.83 (17) |
C8—C12—Fe1—C5 | −164.09 (18) | C35—C36—Fe3—C28 | 40.6 (4) |
C11—C12—Fe1—C6 | 121.33 (19) | C32—C36—Fe3—C28 | 158.5 (3) |
C8—C12—Fe1—C6 | −120.88 (18) | C35—C36—Fe3—C34 | −37.4 (2) |
C11—C12—Fe1—C3 | −155.8 (5) | C32—C36—Fe3—C34 | 80.55 (19) |
C8—C12—Fe1—C3 | −38.0 (6) | C34—C33—Fe3—C32 | 118.5 (3) |
C11—C12—Fe1—C4 | 41.2 (4) | C34—C33—Fe3—C26 | −162.69 (19) |
C8—C12—Fe1—C4 | 159.0 (3) | C32—C33—Fe3—C26 | 78.8 (2) |
C11—C12—Fe1—C10 | −36.83 (19) | C34—C33—Fe3—C30 | 158.1 (4) |
C8—C12—Fe1—C10 | 80.95 (19) | C32—C33—Fe3—C30 | 39.6 (6) |
C8—C12—Fe1—C11 | 117.8 (3) | C34—C33—Fe3—C36 | 80.6 (2) |
C5—C6—Fe1—C8 | −158.71 (19) | C32—C33—Fe3—C36 | −37.86 (17) |
C2—C6—Fe1—C8 | 83.6 (2) | C34—C33—Fe3—C35 | 37.1 (2) |
C5—C6—Fe1—C2 | 117.7 (3) | C32—C33—Fe3—C35 | −81.41 (19) |
C5—C6—Fe1—C9 | 160.8 (3) | C34—C33—Fe3—C27 | −120.6 (2) |
C2—C6—Fe1—C9 | 43.2 (4) | C32—C33—Fe3—C27 | 120.92 (18) |
C2—C6—Fe1—C5 | −117.7 (3) | C34—C33—Fe3—C29 | −41.0 (4) |
C5—C6—Fe1—C12 | −115.1 (2) | C32—C33—Fe3—C29 | −159.5 (2) |
C2—C6—Fe1—C12 | 127.28 (18) | C34—C33—Fe3—C28 | −77.7 (2) |
C5—C6—Fe1—C3 | 80.0 (2) | C32—C33—Fe3—C28 | 163.85 (16) |
C2—C6—Fe1—C3 | −37.62 (17) | C32—C33—Fe3—C34 | −118.5 (3) |
C5—C6—Fe1—C4 | 36.8 (2) | C36—C35—Fe3—C32 | 39.01 (19) |
C2—C6—Fe1—C4 | −80.86 (19) | C34—C35—Fe3—C32 | −80.9 (2) |
C5—C6—Fe1—C10 | −35.9 (4) | C36—C35—Fe3—C26 | −54.4 (4) |
C2—C6—Fe1—C10 | −153.5 (3) | C34—C35—Fe3—C26 | −174.3 (3) |
C5—C6—Fe1—C11 | −72.9 (2) | C36—C35—Fe3—C30 | −82.3 (2) |
C2—C6—Fe1—C11 | 169.48 (17) | C34—C35—Fe3—C30 | 157.73 (19) |
C4—C3—Fe1—C8 | 161.02 (18) | C34—C35—Fe3—C36 | −119.9 (3) |
C2—C3—Fe1—C8 | −80.8 (2) | C36—C35—Fe3—C33 | 83.5 (2) |
C4—C3—Fe1—C2 | −118.2 (2) | C34—C35—Fe3—C33 | −36.45 (19) |
C4—C3—Fe1—C9 | 120.14 (18) | C36—C35—Fe3—C27 | 169.2 (3) |
C2—C3—Fe1—C9 | −121.69 (18) | C34—C35—Fe3—C27 | 49.2 (4) |
C4—C3—Fe1—C5 | −36.85 (18) | C36—C35—Fe3—C29 | −123.1 (2) |
C2—C3—Fe1—C5 | 81.33 (19) | C34—C35—Fe3—C29 | 116.9 (2) |
C4—C3—Fe1—C12 | −168.4 (4) | C36—C35—Fe3—C28 | −163.49 (18) |
C2—C3—Fe1—C12 | −50.2 (5) | C34—C35—Fe3—C28 | 76.6 (2) |
C4—C3—Fe1—C6 | −80.43 (19) | C36—C35—Fe3—C34 | 119.9 (3) |
C2—C3—Fe1—C6 | 37.74 (17) | C28—C27—Fe3—C32 | 158.05 (17) |
C2—C3—Fe1—C4 | 118.2 (2) | C26—C27—Fe3—C32 | −83.6 (2) |
C4—C3—Fe1—C10 | 78.6 (2) | C28—C27—Fe3—C26 | −118.4 (2) |
C2—C3—Fe1—C10 | −163.25 (17) | C28—C27—Fe3—C30 | −80.30 (19) |
C4—C3—Fe1—C11 | 46.2 (3) | C26—C27—Fe3—C30 | 38.06 (18) |
C2—C3—Fe1—C11 | 164.4 (2) | C28—C27—Fe3—C36 | −163.8 (3) |
C5—C4—Fe1—C8 | −174.2 (3) | C26—C27—Fe3—C36 | −45.4 (4) |
C3—C4—Fe1—C8 | −53.6 (4) | C28—C27—Fe3—C33 | 115.04 (18) |
C5—C4—Fe1—C2 | −81.8 (2) | C26—C27—Fe3—C33 | −126.60 (18) |
C3—C4—Fe1—C2 | 38.83 (17) | C28—C27—Fe3—C35 | 37.1 (4) |
C5—C4—Fe1—C9 | 162.41 (19) | C26—C27—Fe3—C35 | 155.4 (3) |
C3—C4—Fe1—C9 | −77.0 (2) | C28—C27—Fe3—C29 | −37.05 (17) |
C3—C4—Fe1—C5 | 120.6 (3) | C26—C27—Fe3—C29 | 81.31 (18) |
C5—C4—Fe1—C12 | 53.0 (3) | C26—C27—Fe3—C28 | 118.4 (2) |
C3—C4—Fe1—C12 | 173.6 (2) | C28—C27—Fe3—C34 | 73.4 (2) |
C5—C4—Fe1—C6 | −37.00 (19) | C26—C27—Fe3—C34 | −168.21 (18) |
C3—C4—Fe1—C6 | 83.59 (19) | C30—C29—Fe3—C32 | 53.8 (4) |
C5—C4—Fe1—C3 | −120.6 (3) | C28—C29—Fe3—C32 | 174.2 (3) |
C5—C4—Fe1—C10 | 122.7 (2) | C30—C29—Fe3—C26 | −39.00 (17) |
C3—C4—Fe1—C10 | −116.68 (19) | C28—C29—Fe3—C26 | 81.42 (18) |
C5—C4—Fe1—C11 | 81.8 (2) | C28—C29—Fe3—C30 | 120.4 (2) |
C3—C4—Fe1—C11 | −157.58 (18) | C30—C29—Fe3—C36 | 77.5 (2) |
C9—C10—Fe1—C8 | −39.52 (19) | C28—C29—Fe3—C36 | −162.05 (17) |
C11—C10—Fe1—C8 | 81.74 (19) | C30—C29—Fe3—C33 | −172.7 (2) |
C9—C10—Fe1—C2 | 54.2 (4) | C28—C29—Fe3—C33 | −52.3 (3) |
C11—C10—Fe1—C2 | 175.4 (3) | C30—C29—Fe3—C35 | 117.47 (18) |
C11—C10—Fe1—C9 | 121.3 (3) | C28—C29—Fe3—C35 | −122.11 (18) |
C9—C10—Fe1—C5 | 162.14 (19) | C30—C29—Fe3—C27 | −83.52 (18) |
C11—C10—Fe1—C5 | −76.6 (2) | C28—C29—Fe3—C27 | 36.89 (17) |
C9—C10—Fe1—C12 | −84.4 (2) | C30—C29—Fe3—C28 | −120.4 (2) |
C11—C10—Fe1—C12 | 36.87 (18) | C30—C29—Fe3—C34 | 158.72 (18) |
C9—C10—Fe1—C6 | −171.2 (3) | C28—C29—Fe3—C34 | −80.86 (19) |
C11—C10—Fe1—C6 | −50.0 (4) | C27—C28—Fe3—C32 | −54.6 (4) |
C9—C10—Fe1—C3 | 81.5 (2) | C29—C28—Fe3—C32 | −175.1 (3) |
C11—C10—Fe1—C3 | −157.24 (18) | C27—C28—Fe3—C26 | 38.68 (17) |
C9—C10—Fe1—C4 | 122.3 (2) | C29—C28—Fe3—C26 | −81.86 (18) |
C11—C10—Fe1—C4 | −116.41 (19) | C27—C28—Fe3—C30 | 83.69 (18) |
C9—C10—Fe1—C11 | −121.3 (3) | C29—C28—Fe3—C30 | −36.85 (17) |
C12—C11—Fe1—C8 | 39.15 (18) | C27—C28—Fe3—C36 | 165.1 (3) |
C10—C11—Fe1—C8 | −81.39 (19) | C29—C28—Fe3—C36 | 44.5 (4) |
C12—C11—Fe1—C2 | −52.6 (5) | C27—C28—Fe3—C33 | −83.4 (2) |
C10—C11—Fe1—C2 | −173.1 (4) | C29—C28—Fe3—C33 | 156.05 (17) |
C12—C11—Fe1—C9 | 84.2 (2) | C27—C28—Fe3—C35 | −165.22 (18) |
C10—C11—Fe1—C9 | −36.35 (18) | C29—C28—Fe3—C35 | 74.2 (2) |
C12—C11—Fe1—C5 | −118.85 (19) | C29—C28—Fe3—C27 | −120.5 (2) |
C10—C11—Fe1—C5 | 120.61 (19) | C27—C28—Fe3—C29 | 120.5 (2) |
C10—C11—Fe1—C12 | −120.5 (3) | C27—C28—Fe3—C34 | −124.06 (19) |
C12—C11—Fe1—C6 | −78.6 (2) | C29—C28—Fe3—C34 | 115.40 (18) |
C10—C11—Fe1—C6 | 160.89 (18) | C33—C34—Fe3—C32 | −38.65 (19) |
C12—C11—Fe1—C3 | 167.5 (2) | C35—C34—Fe3—C32 | 82.0 (2) |
C10—C11—Fe1—C3 | 47.0 (3) | C33—C34—Fe3—C26 | 51.7 (5) |
C12—C11—Fe1—C4 | −160.64 (18) | C35—C34—Fe3—C26 | 172.4 (4) |
C10—C11—Fe1—C4 | 78.8 (2) | C33—C34—Fe3—C30 | −168.1 (3) |
C12—C11—Fe1—C10 | 120.5 (3) | C35—C34—Fe3—C30 | −47.4 (4) |
C19—C20—Fe2—C14 | −2.4 (3) | C33—C34—Fe3—C36 | −83.5 (2) |
C24—C20—Fe2—C14 | −123.31 (19) | C35—C34—Fe3—C36 | 37.23 (19) |
C21—C20—Fe2—C14 | 116.92 (18) | C35—C34—Fe3—C33 | 120.7 (3) |
C19—C20—Fe2—C18 | 42.5 (3) | C33—C34—Fe3—C35 | −120.7 (3) |
C24—C20—Fe2—C18 | −78.5 (2) | C33—C34—Fe3—C27 | 78.5 (2) |
C21—C20—Fe2—C18 | 161.77 (18) | C35—C34—Fe3—C27 | −160.82 (19) |
C19—C20—Fe2—C24 | 120.9 (3) | C33—C34—Fe3—C29 | 160.70 (18) |
C21—C20—Fe2—C24 | −119.8 (2) | C35—C34—Fe3—C29 | −78.6 (2) |
C19—C20—Fe2—C21 | −119.3 (3) | C33—C34—Fe3—C28 | 118.76 (19) |
C24—C20—Fe2—C21 | 119.8 (2) | C35—C34—Fe3—C28 | −120.54 (19) |
C19—C20—Fe2—C17 | 82.0 (4) | C1—N1—Cu1—N3 | 136 (5) |
C24—C20—Fe2—C17 | −38.9 (4) | C1—N1—Cu1—N2 | −23 (5) |
C21—C20—Fe2—C17 | −158.7 (3) | C1—N1—Cu1—O1 | −122 (5) |
C19—C20—Fe2—C23 | 159.2 (3) | C25—N3—Cu1—N1 | −95 (6) |
C24—C20—Fe2—C23 | 38.30 (19) | C25—N3—Cu1—N2 | 65 (6) |
C21—C20—Fe2—C23 | −81.47 (19) | C25—N3—Cu1—O1 | 165 (6) |
C19—C20—Fe2—C22 | −157.4 (3) | C13—N2—Cu1—N1 | −128.5 (8) |
C24—C20—Fe2—C22 | 81.6 (2) | C13—N2—Cu1—N3 | 69.4 (8) |
C21—C20—Fe2—C22 | −38.12 (18) | C13—N2—Cu1—O1 | −31.9 (8) |
C19—C20—Fe2—C15 | −46.4 (3) | C7—N4—Cu2—N5 | −112.1 (15) |
C24—C20—Fe2—C15 | −167.36 (18) | C7—N4—Cu2—N6 | 61.3 (16) |
C21—C20—Fe2—C15 | 72.9 (2) | C19—N5—Cu2—N4 | −111.5 (15) |
C19—C20—Fe2—C16 | −87.6 (5) | C19—N5—Cu2—N6 | 74.9 (15) |
C24—C20—Fe2—C16 | 151.5 (4) | C31—N6—Cu2—N4 | −123 (2) |
C21—C20—Fe2—C16 | 31.7 (5) | C31—N6—Cu2—N5 | 51 (2) |
C13—C14—Fe2—C20 | −5.9 (3) | C39—C38—O1—Cu1 | −13.3 (4) |
C18—C14—Fe2—C20 | 115.6 (2) | C37—C38—O1—Cu1 | 166.6 (2) |
C15—C14—Fe2—C20 | −124.72 (19) | N1—Cu1—O1—C38 | −175.9 (3) |
C13—C14—Fe2—C18 | −121.5 (4) | N3—Cu1—O1—C38 | −48.9 (3) |
C15—C14—Fe2—C18 | 119.7 (3) | N2—Cu1—O1—C38 | 67.3 (3) |
The angle α is described by calculating the respective π–π bond relative to the centroid of the involved aromatic C5 ring. |
Involved atoms | distance | α |
Cu2 ··· C26A—C27A | 3.1520 (6) | 93.23 (1) |
C26—C27··· Cu2B | 3.1520 (6) | 93.23 (1) |
C23···C23C | 3.167 (6) | 92.2 (2) |
Symmetry codes: (A) x - 1, y, z; (B) 1 + x, y, z; (C) -x, 1 -y, 1 - z. |
p defines a plane calculated by the following atom sequence. |
Cp···Cp | α | Cp···N3 | α |
p(C2–C6)···p(C14–C18) | 11.7 (3) | p(C2–C6)···p(N1–N3) | 11.8 (2) |
p(C14–C18)···p(C26–C30) | 23.8 (2) | p(C14–C18)···p(N1–N3) | 18.2 (2) |
p(C26–C30)···p(C2–C6) | 13.3 (2) | p(C26–C30)···p(N1–N3) | 8.9 (2) |
p(C8–C12)···p(C32–C36) | 12.8 (2) | p(C8–C12)···p(N4–N6) | 8.5 (2) |
p(C20–C24)···p(C32–C36) | 23.7 (2) | p(C20–C24)···p(N4–N6) | 19.66 (19) |
p(C20–C24)···p(C8–C12) | 11.1 (2) | p(C20–C24)···p(N4–N6) | 5.3 (2) |
Experimental details
Crystal data | |
Chemical formula | [Cu2Fe3(C6H4N)6(C3H6O)](BF4)2·C3H6O |
Mr | 1125.02 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 110 |
a, b, c (Å) | 7.9947 (6), 13.9384 (18), 19.923 (2) |
α, β, γ (°) | 72.942 (10), 82.968 (7), 87.936 (8) |
V (Å3) | 2106.4 (4) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 9.92 |
Crystal size (mm) | 0.4 × 0.4 × 0.4 |
Data collection | |
Diffractometer | Oxford Gemini CCD |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2006) |
Tmin, Tmax | 0.427, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18279, 7318, 6793 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.593 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.107, 1.05 |
No. of reflections | 7318 |
No. of parameters | 623 |
No. of restraints | 148 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.59, −0.49 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS2013 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).
Acknowledgements
MK thanks the Fonds der Chemischen Industrie for a Chemiefonds fellowship.
References
Altmannshofer, S., Herdtweck, E., Köhler, F. H., Miller, R., Mölle, R., Scheidt, E.-W., Scherer, W. & Train, C. (2008). Chem. Eur. J. 14, 8013–8024. CSD CrossRef PubMed CAS Google Scholar
Benmansour, S., Setifi, F., Triki, S., Thetiot, F., Sala-Pala, J., Gomez-Garcia, C.-J. & Colacio, E. (2009). Polyhedron, pp. 1308–1314. Google Scholar
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Bonniard, L., Kahlal, S., Diallo, A. K., Ornelas, C., Roisnel, T., Manca, G., Rodrigues, J., Ruiz, J., Astruc, D. & Saillard, J. Y. (2011). Inorg. Chem. 50, 114–124. CSD CrossRef CAS PubMed Google Scholar
Bowmaker, G. A., Gill, D. S., Skelton, B. W., Somers, N. & White, A. H. (2004). Z. Naturforsch. Teil B, pp. 1307–1313. Google Scholar
Burgun, A., Gendron, F., Schauer, P. A., Skelton, B. W., Low, P. J., Costuas, K., Halet, J.-F., Bruce, M. I. & Lapinte, C. (2013). Organometallics, 32, 5015–5025. Google Scholar
Buschbeck, R., Low, P. J. & Lang, H. (2011). Coord. Chem. Rev. 255, 241–272. Google Scholar
Chesnut, D. J., Kusnetzow, A. & Zubieta, J. (1998). J. Chem. Soc. Dalton Trans. pp. 4081–4084. Google Scholar
Díez, A., Fernández, J., Lalinde, E., Moreno, M. T. & Sánchez, S. (2008). Dalton Trans. pp. 4926–4936. Google Scholar
Díez, Á., Lalinde, E., Moreno, M. T. & Sánchez, S. (2009). Dalton Trans. pp. 3434–3446. Google Scholar
Dong, F.-Y., Li, Y.-T., Wu, Z.-Y., Sun, Y.-M., Sun, W., Liu, Z.-Q. & Song, Q.-L. (2008). J. Inorg. Organomet. Polym. 18, 398–406. Google Scholar
Dowling, N., Henry, P. M., Lewis, N. A. & Taube, H. (1981). Inorg. Chem. 20, 2345–2348. CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ferrara, J. D., Tessier-Youngs, C. & Youngs, W. J. (1987). Organometallics, 6, 676–678. Google Scholar
Frosch, W., Back, S., Müller, H., Köhler, K., Driess, A., Schiemenz, B., Huttner, G. & Lang, H. (2001). J. Organomet. Chem. 619, 99–109. Google Scholar
Frosch, W., Back, S., Rheinwald, G., Köhler, K., Pritzkow, H. & Lang, H. (2000). Organometallics, 19, 4016–4024. Google Scholar
Fu, D.-W., Ye, H.-Y., Ye, Q., Pan, K.-J. & Xiong, R.-G. (2008). Dalton Trans. pp. 874–877. Google Scholar
Helten, H., Beckmann, M., Schnakenburg, G. & Streubel, R. (2010). Eur. J. Inorg. Chem. pp. 2337–2341. CrossRef Google Scholar
Jakob, A., Ecorchard, P., Linseis, M., Winter, R. F. & Lang, H. (2009). J. Organomet. Chem. 694, 655–666. Google Scholar
Janssen, M. D., Herres, M., Zsolnai, L., Grove, D. M., Spek, A. L., Lang, H. & van Koten, G. (1995). Organometallics, 14, 1098–1100. Google Scholar
Köhler, K., Pritzkow, H. & Lang, H. (1998). J. Organomet. Chem. 553, 31–38. Google Scholar
Lang, H., George, D. S. A. & Rheinwald, G. (2000). Coord. Chem. Rev. 206–207, 101–197. Web of Science CrossRef CAS Google Scholar
Lang, H., Köhler, K. & Blau, S. (1995). Coord. Chem. Rev. 143, 113–168. Google Scholar
Lang, H., Packheiser, R. & Walfort, B. (2006). Organometallics, 25, 1836–1850. CrossRef CAS Google Scholar
McArdle, P. (1995). J. Appl. Cryst. 28, 65. CrossRef IUCr Journals Google Scholar
Osella, D., Gobetto, R., Nervi, C., Ravera, M., D'Amato, R. & Russo, M. V. (1998). Inorg. Chem. Commun. 1, 239–245. Google Scholar
Osgerby, J. & Pauson, P. (1961). J. Chem. Soc. pp. 4604–4609. Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England. Google Scholar
Packheiser, R., Lohan, M., Bräuer, B., Justaud, F., Lapinte, C. & Lang, H. (2008). J. Organomet. Chem. 693, 2898–2902. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2007). Private communication (refcode YOSTOP01). CCDC, Cambridge, England. Google Scholar
Strehler, F., Hildebrandt, H., Korb, M. & Lang, H. (2013). Z. Anorg. Allg. Chem. 639, 1214–1219. CSD CrossRef CAS Google Scholar
Strehler, F., Hildebrandt, H., Korb, M., Rüffer, T. & Lang, H. (2014). Organometallics, 33, 4279–4289. CSD CrossRef CAS Google Scholar
Vives, G., Carella, A., Sistach, S., Launay, J.-P. & Rapenne, G. (2006). New J. Chem. 30, 1429–1438. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.