metal-organic compounds
μ2-5-hydroxynicotinato-κ2N:O3)zinc]
of poly[bis(aDepartment of Material Science and Engineering, Jinan University, Guangzhou 510632, People's Republic of China
*Correspondence e-mail: thjchen@jnu.edu.cn
The title coordination polymer, [Zn(C6H4NO3)2]n, was prepared under hydrothermal conditions by the reaction of zinc nitrate with 5-hydroxynicotinic acid in the presence of malonic acid. In the structure, the ZnII ion is coordinated by two carboxylate O atoms and two pyridine N atoms of four 5-hydroxynicotinate ligands in a distorted tetrahedral coordination environment. The μ2-bridging mode of each anion leads to the formation of a three-dimensional framework structure. Intermolecular hydrogen bonds between the hydroxy groups of one anion and the non-coordinating carboxylate O atoms of neighbouring anions consolidate the crystal packing.
Keywords: crystal structure; zinc coordination polymer; 5-hydroxynicotinate ligand; hydrogen bonding.
CCDC reference: 1042412
1. Related literature
For transition metal complexes with 5-hydroxynicotinate ligands, see: Jiang & Feng (2008); Zhang et al. (2011); Yang et al. (2010). For corresponding rare earth metal complexes, see: Zhang et al. (2012); Mi et al. (2012); Xu et al. (2013).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 1042412
10.1107/S2056989015000249/wm5106sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015000249/wm5106Isup2.hkl
A mixture of zinc nitrate, 5-hydroxynicotinic acid, malonic acid and water in a mole ratio of ca 1:2:1:550 was added to a 25 ml Teflon-lined cup, and the pH value of the mixture was adjusted to 6.5 by 5%wt ammonia/water at room temperature. The Teflon-lined cup was sealed in a stainless steel vessel and heated to 443 K, kept at that temperature for 3 days, and then slowly cooled to room temperature at a rate of 5 K per hour. Yellow block-like crystals of the title compound were obtained. The yield was about 55%. Elemental anal. calc. for C12H8N2O6Zn (341.57): C 28.60, H 2.79, N, 3.28. Found: C 28.65, H 2.81, N, 3.13. IR (cm-1, KBr): 3454(s), 3104(m), 1856(w), 1632(s), 1586(s), 1487(m), 1432(m), 1400(s), 1302(w), 1279(s), 1239(m), 1158(w), 1119(w), 1026(s), 968(w), 936(s), 898(s), 822(s), 787(s), 732(m), 710(m), 687(s), 594(m), 539(m), 485(m), 453(w).
Hydrogen atoms bonded to C atoms of the 5-hydroxynicotinate anions were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms of the hydroxy functions were found from difference maps and were included in the
as riding atoms, with O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O).Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).[Zn(C6H4NO3)2] | Z = 4 |
Mr = 341.57 | F(000) = 688 |
Monoclinic, P21/n | Dx = 1.858 Mg m−3 |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 9.4299 (6) Å | θ = 3.0–29.1° |
b = 10.5453 (7) Å | µ = 2.04 mm−1 |
c = 12.6914 (8) Å | T = 150 K |
β = 104.640 (7)° | Block, yellow |
V = 1221.07 (14) Å3 | 0.41 × 0.37 × 0.17 mm |
Bruker APEXII CCD diffractometer | 2891 independent reflections |
Radiation source: fine-focus sealed tube | 2397 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
ϕ and ω scans | θmax = 29.3°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −12→12 |
Tmin = 0.488, Tmax = 0.723 | k = −14→12 |
7054 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.075 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0271P)2 + 0.5488P] where P = (Fo2 + 2Fc2)/3 |
3345 reflections | (Δ/σ)max = 0.001 |
192 parameters | Δρmax = 0.42 e Å−3 |
0 restraints | Δρmin = −0.43 e Å−3 |
[Zn(C6H4NO3)2] | V = 1221.07 (14) Å3 |
Mr = 341.57 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.4299 (6) Å | µ = 2.04 mm−1 |
b = 10.5453 (7) Å | T = 150 K |
c = 12.6914 (8) Å | 0.41 × 0.37 × 0.17 mm |
β = 104.640 (7)° |
Bruker APEXII CCD diffractometer | 2891 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 2397 reflections with I > 2σ(I) |
Tmin = 0.488, Tmax = 0.723 | Rint = 0.034 |
7054 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.075 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.42 e Å−3 |
3345 reflections | Δρmin = −0.43 e Å−3 |
192 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.8597 (2) | 0.3757 (2) | 0.30816 (18) | 0.0111 (5) | |
C2 | 0.4890 (2) | 0.1376 (2) | −0.09332 (18) | 0.0104 (5) | |
C3 | 0.6200 (2) | 0.0759 (2) | −0.08906 (19) | 0.0118 (5) | |
H3 | 0.6325 | 0.0305 | −0.1489 | 0.014* | |
C4 | 0.7328 (2) | 0.0828 (2) | 0.00604 (19) | 0.0114 (5) | |
C5 | 0.7092 (2) | 0.1514 (2) | 0.09361 (19) | 0.0114 (5) | |
H5 | 0.7828 | 0.1540 | 0.1581 | 0.014* | |
C6 | 0.4744 (2) | 0.2077 (2) | −0.00397 (19) | 0.0123 (5) | |
H6 | 0.3875 | 0.2512 | −0.0078 | 0.015* | |
C7 | 0.3884 (2) | 0.5320 (2) | 0.19736 (19) | 0.0135 (5) | |
C8 | 0.2504 (2) | 0.1059 (2) | 0.34892 (19) | 0.0121 (5) | |
C9 | 0.3220 (3) | 0.0977 (2) | 0.45873 (19) | 0.0122 (5) | |
H9 | 0.2824 | 0.0509 | 0.5065 | 0.015* | |
C10 | 0.4545 (3) | 0.1615 (2) | 0.49542 (19) | 0.0126 (5) | |
C11 | 0.5125 (3) | 0.2258 (2) | 0.42054 (19) | 0.0131 (5) | |
H11 | 0.6029 | 0.2656 | 0.4450 | 0.016* | |
C12 | 0.3118 (3) | 0.1758 (2) | 0.27914 (19) | 0.0117 (5) | |
H12 | 0.2610 | 0.1836 | 0.2064 | 0.014* | |
N1 | 0.5831 (2) | 0.21429 (19) | 0.08815 (15) | 0.0108 (4) | |
N2 | 0.4436 (2) | 0.2330 (2) | 0.31413 (15) | 0.0122 (4) | |
O1 | 0.74133 (17) | 0.32799 (17) | 0.32074 (13) | 0.0154 (4) | |
O2 | 0.87405 (18) | 0.43130 (18) | 0.22547 (13) | 0.0179 (4) | |
O3 | 0.85858 (17) | 0.02136 (18) | 0.00882 (14) | 0.0168 (4) | |
H3A | 0.9134 | 0.0264 | 0.0702 | 0.025* | |
O4 | 0.41994 (18) | 0.44819 (17) | 0.13440 (13) | 0.0178 (4) | |
O5 | 0.45953 (19) | 0.55268 (19) | 0.29152 (14) | 0.0238 (5) | |
O6 | 0.53504 (19) | 0.16272 (18) | 0.60036 (13) | 0.0188 (4) | |
H6A | 0.4885 | 0.1288 | 0.6391 | 0.028* | |
Zn1 | 0.55375 (3) | 0.32108 (3) | 0.21439 (2) | 0.01009 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0105 (10) | 0.0118 (12) | 0.0110 (11) | 0.0024 (10) | 0.0028 (9) | −0.0023 (9) |
C2 | 0.0105 (10) | 0.0102 (12) | 0.0101 (11) | 0.0001 (10) | 0.0016 (9) | 0.0015 (9) |
C3 | 0.0130 (11) | 0.0122 (13) | 0.0113 (11) | −0.0013 (10) | 0.0050 (9) | −0.0009 (10) |
C4 | 0.0083 (10) | 0.0120 (13) | 0.0139 (12) | 0.0006 (10) | 0.0026 (9) | 0.0016 (10) |
C5 | 0.0097 (10) | 0.0129 (13) | 0.0104 (11) | 0.0005 (10) | 0.0006 (9) | 0.0001 (9) |
C6 | 0.0089 (11) | 0.0160 (13) | 0.0111 (12) | 0.0011 (10) | 0.0008 (9) | 0.0005 (9) |
C7 | 0.0107 (11) | 0.0143 (13) | 0.0158 (13) | −0.0011 (10) | 0.0039 (10) | 0.0019 (10) |
C8 | 0.0122 (11) | 0.0104 (12) | 0.0132 (12) | 0.0004 (10) | 0.0021 (9) | −0.0021 (9) |
C9 | 0.0154 (11) | 0.0100 (12) | 0.0122 (11) | −0.0003 (10) | 0.0058 (9) | 0.0001 (9) |
C10 | 0.0129 (11) | 0.0143 (13) | 0.0097 (11) | 0.0017 (10) | 0.0012 (9) | −0.0017 (9) |
C11 | 0.0100 (11) | 0.0159 (13) | 0.0128 (12) | −0.0013 (10) | 0.0016 (10) | −0.0029 (10) |
C12 | 0.0123 (11) | 0.0128 (13) | 0.0102 (11) | 0.0026 (10) | 0.0034 (9) | −0.0011 (9) |
N1 | 0.0097 (9) | 0.0127 (11) | 0.0093 (9) | 0.0001 (8) | 0.0011 (8) | −0.0007 (8) |
N2 | 0.0121 (9) | 0.0131 (11) | 0.0113 (10) | −0.0014 (9) | 0.0028 (8) | −0.0009 (8) |
O1 | 0.0096 (8) | 0.0246 (10) | 0.0109 (8) | −0.0041 (7) | 0.0006 (7) | 0.0016 (7) |
O2 | 0.0157 (8) | 0.0280 (11) | 0.0097 (8) | 0.0012 (8) | 0.0025 (7) | 0.0045 (7) |
O3 | 0.0092 (8) | 0.0250 (10) | 0.0144 (9) | 0.0079 (8) | −0.0002 (7) | −0.0027 (8) |
O4 | 0.0190 (9) | 0.0203 (10) | 0.0136 (9) | 0.0090 (8) | 0.0029 (7) | 0.0021 (7) |
O5 | 0.0191 (9) | 0.0302 (12) | 0.0164 (10) | 0.0070 (8) | −0.0060 (8) | −0.0029 (8) |
O6 | 0.0184 (9) | 0.0295 (12) | 0.0071 (8) | −0.0073 (8) | 0.0008 (7) | −0.0013 (7) |
Zn1 | 0.00810 (14) | 0.01335 (17) | 0.00817 (15) | 0.00045 (11) | 0.00084 (10) | −0.00090 (11) |
C1—O2 | 1.239 (3) | C8—C12 | 1.387 (3) |
C1—O1 | 1.270 (3) | C8—C9 | 1.389 (3) |
C1—C2i | 1.516 (3) | C8—C7iv | 1.509 (3) |
C2—C3 | 1.385 (3) | C9—C10 | 1.392 (3) |
C2—C6 | 1.390 (3) | C9—H9 | 0.9300 |
C2—C1ii | 1.516 (3) | C10—O6 | 1.356 (3) |
C3—C4 | 1.395 (3) | C10—C11 | 1.387 (3) |
C3—H3 | 0.9300 | C11—N2 | 1.345 (3) |
C4—O3 | 1.344 (3) | C11—H11 | 0.9300 |
C4—C5 | 1.390 (3) | C12—N2 | 1.351 (3) |
C5—N1 | 1.348 (3) | C12—H12 | 0.9300 |
C5—H5 | 0.9300 | N1—Zn1 | 2.034 (2) |
C6—N1 | 1.348 (3) | N2—Zn1 | 2.052 (2) |
C6—H6 | 0.9300 | O1—Zn1 | 1.9364 (15) |
C7—O5 | 1.233 (3) | O3—H3A | 0.8200 |
C7—O4 | 1.276 (3) | O4—Zn1 | 1.9421 (17) |
C7—C8iii | 1.509 (3) | O6—H6A | 0.8200 |
O2—C1—O1 | 125.5 (2) | C10—C9—H9 | 120.9 |
O2—C1—C2i | 120.3 (2) | O6—C10—C11 | 116.6 (2) |
O1—C1—C2i | 114.1 (2) | O6—C10—C9 | 124.5 (2) |
C3—C2—C6 | 119.3 (2) | C11—C10—C9 | 118.9 (2) |
C3—C2—C1ii | 120.8 (2) | N2—C11—C10 | 122.8 (2) |
C6—C2—C1ii | 119.8 (2) | N2—C11—H11 | 118.6 |
C2—C3—C4 | 119.1 (2) | C10—C11—H11 | 118.6 |
C2—C3—H3 | 120.4 | N2—C12—C8 | 121.7 (2) |
C4—C3—H3 | 120.4 | N2—C12—H12 | 119.2 |
O3—C4—C5 | 123.2 (2) | C8—C12—H12 | 119.2 |
O3—C4—C3 | 118.2 (2) | C5—N1—C6 | 119.1 (2) |
C5—C4—C3 | 118.5 (2) | C5—N1—Zn1 | 121.74 (15) |
N1—C5—C4 | 122.2 (2) | C6—N1—Zn1 | 119.12 (16) |
N1—C5—H5 | 118.9 | C11—N2—C12 | 118.4 (2) |
C4—C5—H5 | 118.9 | C11—N2—Zn1 | 116.97 (15) |
N1—C6—C2 | 121.7 (2) | C12—N2—Zn1 | 124.49 (16) |
N1—C6—H6 | 119.2 | C1—O1—Zn1 | 127.16 (15) |
C2—C6—H6 | 119.2 | C4—O3—H3A | 109.5 |
O5—C7—O4 | 125.0 (2) | C7—O4—Zn1 | 111.97 (15) |
O5—C7—C8iii | 119.4 (2) | C10—O6—H6A | 109.5 |
O4—C7—C8iii | 115.5 (2) | O1—Zn1—O4 | 134.17 (8) |
C12—C8—C9 | 119.9 (2) | O1—Zn1—N1 | 106.71 (7) |
C12—C8—C7iv | 119.2 (2) | O4—Zn1—N1 | 99.80 (8) |
C9—C8—C7iv | 120.8 (2) | O1—Zn1—N2 | 95.90 (7) |
C8—C9—C10 | 118.2 (2) | O4—Zn1—N2 | 105.76 (8) |
C8—C9—H9 | 120.9 | N1—Zn1—N2 | 115.24 (8) |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) x−1/2, −y+1/2, z−1/2; (iii) −x+1/2, y+1/2, −z+1/2; (iv) −x+1/2, y−1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···O5v | 0.82 | 1.88 | 2.697 (2) | 175 |
O6—H6A···O2vi | 0.82 | 1.83 | 2.651 (3) | 174 |
Symmetry codes: (v) −x+3/2, y−1/2, −z+1/2; (vi) x−1/2, −y+1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···O5i | 0.82 | 1.88 | 2.697 (2) | 175.2 |
O6—H6A···O2ii | 0.82 | 1.83 | 2.651 (3) | 174.0 |
Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) x−1/2, −y+1/2, z+1/2. |
References
Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Jiang, M.-X. & Feng, Y.-L. (2008). Acta Cryst. E64, m1517. Google Scholar
Mi, J.-L., Huang, J. & Chen, H.-J. (2012). Acta Cryst. E68, m1146–m1147. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, S.-S., Mi, J.-L. & Chen, H.-J. (2013). Acta Cryst. E69, m294–m295. Google Scholar
Yang, J., Chen, H. J. & Tsz, H. L. (2010). Inorg. Chem. Commun. 10, 1016–1019. Google Scholar
Zhang, J., Chen, H.-J. & Huang, J. (2011). Chin. J. Struct. Chem. 30, 1069–1073. Google Scholar
Zhang, J., Huang, J., Yang, J. & Chen, H.-J. (2012). Inorg. Chem. Commun. 17, 163–168. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.