research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 142-145

Crystal structure of bis­­(2,2′-bi­pyridine)[N′-(quino­lin-2-ylmethyl­idene)pyridine-2-carbohydrazide]ruthenium(II) bis­(tetra­fluorido­borate) di­chloro­methane tris­­olvate

aDepartment of Chemistry, Faculty of Science, Okayama University, Okayama, 700-8530, Japan, and bDepartment of Chemistry, Aichi University of Education, Kariya, Aichi 448-8542, Japan
*Correspondence e-mail: suzuki@okayama-u.ac.jp

Edited by M. Weil, Vienna University of Technology, Austria (Received 18 December 2014; accepted 5 January 2015; online 10 January 2015)

The title compound, [Ru(C10H8N2)2(C16H12N4O)](BF4)2·3CH2Cl2, crystallizes with one complex dication, two BF4 counter-anions and three di­chloro­methane solvent mol­ecules in the asymmetric unit. The central RuII atom adopts a distorted octa­hedral coordination sphere with two 2,2′-bi­pyridine (bpy) and one quinoline-2-carbaldehyde (pyridine-2-carbon­yl)hydrazone (HL) ligand. The hydrazone ligand has a Z form and coordinates to the RuII atom via the amide-O and imine-N atoms, affording a planar five-membered chelate ring, while its pyridine-N and quinoline-N donor atoms in the substituents are non-coordinating. The hydrazone N—H group forms an intra­molecular hydrogen bond with the quinoline-N atom. In the crystal, the quinoline moiety of HL shows the shortest ππ stacking inter­action with the pyridine substituent of HL in a neighbouring complex, the centroid-to-centroid distance being 3.793 (3) Å.

1. Chemical context

Aroylhydrazones, ArC(O)NHN=CHR, are easily prepared by the reaction of an aroylhydrazine [ArC(O)NHNH2] with an aldehyde (RCHO), and they can coordinate to a metal atom via the amide-O and imine-N atoms (Bernhardt et al., 2007[Bernhardt, P. V., Chin, P., Sharpe, P. C. & Richardson, D. R. (2007). Dalton Trans. pp. 3232-3244.]; Raveendran & Pal, 2005[Raveendran, R. & Pal, S. (2005). Polyhedron, 24, 57-63.], 2006[Raveendran, R. & Pal, S. (2006). Inorg. Chim. Acta, 359, 3212-3220.]). These hydrazones are often obtained as a mixture of E and Z isomers (Su & Aprahamian, 2014[Su, X. & Aprahamian, I. (2014). Chem. Soc. Rev. 43, 1963-1981.]), and both isomers are generally weak acids. However, when they coordinate to a metal ion through the imine-N atom, their acidity becomes higher (Chang et al., 2010[Chang, M., Horiki, H., Nakajima, K., Kobayashi, A., Chang, H.-C. & Kato, M. (2010). Bull. Chem. Soc. Jpn, 83, 905-910.]), and the deprotonated hydrazonato complexes are often isolated (Nonoyama, 1974[Nonoyama, M. (1974). Inorg. Chim. Acta, 10, 133-137.]). For example, the reaction of cis-[RuCl2(bpy)2] (bpy is 2,2′-bi­pyridine) and a series of aroylhydrazones in the presence of tri­ethyl­amine afforded the cationic complexes [RuII(bpy)2(hydrazonato)](ClO4 or PF6), which were unambiguously characterized by X-ray analysis (Duan et al., 1998[Duan, C.-Y., Lu, Z.-L., Wu, D.-B. & You, X.-Z. (1998). Transition Met. Chem. 23, 631-634.]; Ghosh et al., 2014[Ghosh, B., Naskar, S., Naskar, S., Espinosa, A., Hau, S. C. K., Mak, T. C. W., Sekiya, R., Kuroda, R. & Chattopadhyay, S. K. (2014). Polyhedron, 72, 115-121.]).

In the current study we utilized a 2-picolinoylhydrazone (Ar = 2-C5H4N) with a 2-quinolyl substituent on the imine-C atom (R = 2-C9H6N). This compound (HL) has several possible coordination modes because of the additional pyridine and quinoline ligating groups. In a previous study we investigated the reaction products from [RuCl2(PPh3)3] and (an E/Z mixture of) HL under several reaction conditions, and characterized three geometrical isomers of [RuCl2(PPh3)2{HL-κO(amide),κN(imine)}] as well as a linkage isomer of trans(P)-[RuCl2(PPh3)2{HL-κN(imine), κN(quinoline)}] (Mori et al., 2014[Mori, A., Suzuki, T., Sunatsuki, Y., Kobayashi, A., Kato, M. & Nakajima, K. (2014). Eur. J. Inorg. Chem. pp. 186-197.]). Here, we have examined the reaction of the Z isomer of HL and an RuII(bpy)2 precursor prepared from cis-[RuCl2(bpy)2] and AgBF4 (2 eq.) in ethanol. The resulting orange product had the composition Ru(bpy)2(HL)(BF4)2, indicating the formation of an RuII complex with a neutral hydrazone ligand, in contrast to the previous examples of [RuII(bpy)2(hydrazonato)](ClO4 or PF6). Therefore, in order to determine the mol­ecular and crystal structure of the present product, an orange prismatic crystal of the title compound, (I)[link], [Ru(C10H8N2)2(C16H12N4O)](BF4)2·3CH2Cl2, was analysed by X-ray diffraction.

[Scheme 1]

2. Structural commentary

The asymmetric unit of compound (I)[link] contains one complex dication (Fig. 1[link]), two BF4 counter-anions and three di­chloro­methane solvent mol­ecules. In the cationic complex, the neutral hydrazone is present as its Z isomer and coordinates to the RuII atom through the amide-O and imine-N atoms, forming a virtually planar five-membered chelate ring [maximum deviation from the least-squares plane = 0.015 (4) Å], as well as two bidentate bpy co-ligands. An intra­molecular hydrogen bond between the hydrazone N—H group and the quinoline-N atom is observed (Table 1[link]). The pyridine (py) and quinoline (qn) moieties of HL are non-coordinating, but their mean planes are almost co-planar to the RuII carb­oxy­lic acid hydrazide (CAH: —C(O)NHN=) chelating plane. The dihedral angles between these planes are: py vs CAH = 5.4 (2), qn vs CAH = 3.7 (2) and py vs qn = 2.3 (2)°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1⋯N1 0.76 (6) 1.90 (6) 2.553 (6) 145 (6)
[Figure 1]
Figure 1
View of the mol­ecular structure of the cationic complex in the title compound, showing the atom-numbering scheme, with displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms except for the hydrazone N—H group are omitted for clarity.

The Ru1—O1(amide) and Ru1—N2(imine) bond lengths in (I)[link] are 2.090 (3) and 2.047 (4) Å, respectively, which are comparable to those in [Ru(bpy)2{3-py-C(O)NN=CHC6H4(4-NMe2)}]ClO4 [2.083 (1) and 2.040 (1) Å, respectively; Duan et al., 1998[Duan, C.-Y., Lu, Z.-L., Wu, D.-B. & You, X.-Z. (1998). Transition Met. Chem. 23, 631-634.]] and [Ru(bpy)2{2-C6H4(OH)–C(O)NN=CH-2-fur­yl}]PF6 [2.072 (2) and 2.089 (1) Å, respectively; Ghosh et al., 2014[Ghosh, B., Naskar, S., Naskar, S., Espinosa, A., Hau, S. C. K., Mak, T. C. W., Sekiya, R., Kuroda, R. & Chattopadhyay, S. K. (2014). Polyhedron, 72, 115-121.]]. The bite angle of the hydrazone chelate, O1—Ru—N2, in (I)[link] is 77.8 (1)°, which is also similar to the above-mentioned hydrazonato complexes, 78.0 (1) and 78.6 (1)°, respectively. Thus, the substituent groups on the carbonyl-C and the imine-C atoms of the aroylhydrazones, as well as the protonation (or deprotonation) states of the hydrazone N—H moiety, do not significantly affect the structural parameters of the RuII—(hydrazone/hydrazonate) coordination bonds.

3. Supra­molecular features

In the crystal structure of (I)[link] there are no remarkable hydrogen-bonding inter­actions between the cationic complex, BF4 anions and the solvated di­chloro­methane mol­ecules. However, each of the planar HL and two bpy ligands in the complex cation shows a ππ stacking inter­action with the respective neighbouring complexes (Fig. 2[link]). The quinoline plane (N1/C1–C9) has a stacking inter­action with the pyridine plane (N4i/C12i–C16i) of HL in a neighbouring complex [symmetry code: (i) –x, –y + 1, –z + 2]; the shortest C⋯C distance between these rings is C6⋯C16i = 3.444 (8) Å and the centroid-to-centroid distance between the planes C1–C6 and N4i/C12i–C16i is 3.793 (3) Å. One of the bpy ligands, N5/C17–C26/N6, is stacked with the same symmetry-related ligand, N5ii/C17ii–C26ii/N6ii, in a neighbouring complex [symmetry code: (ii) –x, –y + 1, –z + 1]; the shortest C⋯C distance between them is C20⋯C25i = 3.373 (8) Å, and the centroid-to-centroid distance between the N6/C22–C26 and N6ii/C22ii–C26ii planes is 3.864 (3) Å. For the other bpy ligand, N7/C27–C36/N8, a similar inter­action is observed, and the shortest C⋯C distance between them is C32⋯C35iii = 3.509 (8) Å and the centroid-to-centroid distance between planes N8/C32–C36 and N8iii/C32iii–C36iii is 3.918 (3) Å [symmetry code: (iii) –x, –y, –z + 1]. Considering these stacking inter­actions, the complex cations are arranged in a three-dimensional extended structure in the crystal.

[Figure 2]
Figure 2
View of the crystal packing of the title compound, illustrating three ππ stacking inter­actions between the complex cations. Colour code: Ru, purple; Cl, green; F, yellow–green; O, red; N, blue; C, black; B, pink; H, grey.

4. Database survey

Four geometrical and linkage isomers of [RuCl2(PPh3)2(HL)] with the same picolinoylhydrazone ligand, HL, have been reported previously (Mori et al., 2014[Mori, A., Suzuki, T., Sunatsuki, Y., Kobayashi, A., Kato, M. & Nakajima, K. (2014). Eur. J. Inorg. Chem. pp. 186-197.]). There is no record of any [RuII(bpy)2(carbonyl­hydrazone)]2+ complexes with its protonated (neutral) hydrazone form in the CSD database (Version 5.35, last update May 2014; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]). The deprotonated (anionic) hydrazonate analogues, [Ru(bpy)2{3-py-C(O)NN=CHC6H4(4-NMe2)}]ClO4 (Duan et al., 1998[Duan, C.-Y., Lu, Z.-L., Wu, D.-B. & You, X.-Z. (1998). Transition Met. Chem. 23, 631-634.]) and [Ru(bpy)2{2-C6H4(OH)–C(O)NN=CH-2-fur­yl}]PF6 as well as the thio­phene analogue have been reported (Ghosh et al., 2014[Ghosh, B., Naskar, S., Naskar, S., Espinosa, A., Hau, S. C. K., Mak, T. C. W., Sekiya, R., Kuroda, R. & Chattopadhyay, S. K. (2014). Polyhedron, 72, 115-121.]). The structurally related compound [RuII(bpy)2{C6H5C(O)NNC6H5}]PF6 with a monoanionic (radical) ligand has also been reported (Ehret et al., 2012[Ehret, F., Bubrin, M., Hübner, R., Schweinfurth, D., Hartenbach, I., Záliš, S. & Kaim, W. (2012). Inorg. Chem. 51, 6237-6244.]).

5. Synthesis and crystallization

All reagents and solvents were commercially available and used without further purification. The starting ruthenium(II) complex, cis-[RuCl2(bpy)2]·2H2O (Sullivan et al., 1978[Sullivan, B. P., Salmon, D. J. & Meyer, T. J. (1978). Inorg. Chem. 17, 3334-3341.]), and hydrazone ligand, Z-HL (Mori et al., 2014[Mori, A., Suzuki, T., Sunatsuki, Y., Kobayashi, A., Kato, M. & Nakajima, K. (2014). Eur. J. Inorg. Chem. pp. 186-197.]), were prepared according to literature procedures. A mixture of cis-[RuCl2(bpy)2]·2H2O (618 mg, 1.19 mmol) and AgBF4 (463 mg, 2.38 mmol) in ethanol (80 ml) was stirred in the dark at room temperature overnight. The resulting white precipitate (AgCl) was filtered off, and Z-HL (328 mg, 1.19 mmol) was added to the filtrate. The mixture was heated to reflux for 9 h and then cooled to room temperature. The solution was concentrated to ca. 10 ml under reduced pressure, and the resulting microcrystalline powder was collected by filtration and dried in air. Yield: 869 mg (81%). Analysis calculated for C36H28B2F8N8ORu·2H2O: C 48.08, H 3.59, N 12.46%. Found: C 48.11, H 3.42, N 12.18%. Orange prismatic crystals of (I)[link] suitable for X-ray analysis were obtained by diffusion of layered hexane into a di­chloro­methane solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The position of the hydrazone (N—)H atom was located in a difference Fourier map and refined with Uiso = 1.2Ueq(N). All other H atoms were refined using a riding model, with C—H = 0.95 (aromatic) or 0.99 (methyl­ene) Å and Uiso = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [Ru(C10H8N2)2(C16H12N2)](BF4)2·3CH2Cl2
Mr 1118.13
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 192
a, b, c (Å) 11.0165 (12), 13.2508 (15), 16.4285 (19)
α, β, γ (°) 77.812 (4), 76.924 (4), 88.367 (4)
V3) 2282.9 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.77
Crystal size (mm) 0.40 × 0.30 × 0.25
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Numerical (NUMABS; Rigaku, 1999[Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.658, 0.825
No. of measured, independent and observed [I > 2σ(I)] reflections 22472, 10378, 8147
Rint 0.076
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.208, 1.04
No. of reflections 10378
No. of parameters 589
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.49, −1.02
Computer programs: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]), SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Chemical context top

Aroylhydrazones, ArC(O)NHNCHR, are easily prepared by the reaction of an aroylhydrazine {ArC(O)NHNH2} with an aldehyde (RCHO), and they can coordinate to a metal atom via the amide-O and imine-N atoms (Bernhardt et al., 2007; Raveendran & Pal, 2005, 2006). These hydrazones are often obtained as a mixture of E and Z isomers (Su & Aprahamian, 2014), and both isomers are generally weak acids. However, when they coordinate to a metal ion through the imine-N atom, their acidity becomes higher (Chang et al., 2010), and the deprotonated hydrazonato complexes are often isolated (Nonoyama, 1974). For example, the reaction of cis-[RuCl2(bpy)2] (bpy is 2,2'-bi­pyridine) and a series of aroylhydrazones in the presence of tri­ethyl­amine afforded the cationic complexes of [RuII(bpy)2(hydrazonato)](ClO4 or PF6), which were unambiguously characterized by X-ray analysis (Duan et al., 1998; Ghosh et al., 2014).

In the current study we utilized a 2-picolinoylhydrazone (Ar = 2-C5H4N) with a 2-quinolyl substituent on the imine-C atom (R = 2-C9H6N). This compound (HL) has several possible coordination modes because of the additional pyridine and quinoline ligating groups. In a previous study we have investigated the reaction products from [RuCl2(PPh3)3] and (an E/Z mixture of) HL under several reaction conditions, and characterized three geometrical isomers of [RuCl2(PPh3)2{HL-κO(amide),κN(imine)}] as well as a linkage isomer of trans(P)-[RuCl2(PPh3)2{HL-κN(imine), κN(quinoline)}] (Mori et al., 2014). Here, we have examined the reaction of the Z isomer of HL and an RuII(bpy)2 precursor prepared from cis-[RuCl2(bpy)2] and AgBF4 (2 eq.) in ethanol. The resulting orange product had the composition Ru(bpy)2(HL)(BF4)2, indicating the formation of an RuII complex with a neutral hydrazone ligand, in contrast to the previous examples of [RuII(bpy)2(hydrazonato)](ClO4 or PF6). Therefore, in order to determine the molecular and crystal structure of the present product, an orange prismatic crystal of the title compound, (I), [Ru(C10H8N2)2(C16H12N4O)](BF4)2·3CH2Cl2, was analysed by X-ray diffraction.

Structural commentary top

The asymmetric unit of compound (I) contains one complex dication (Fig. 1), two BF4 counter-anions and three di­chloro­methane solvent molecules. In the cationic complex, the neutral hydrazone is present as its Z isomer and coordinates to the RuII atom through the amide-O and imine-N atoms, forming a virtually planar five-membered chelate ring [maximum deviation from the least-squares plane = 0.015 (4) Å], as well as two bidentate bpy co-ligands. An intra­molecular hydrogen bond between the hydrazone N—H group and the quinoline-N atom is observed (Table 1). The pyridine (py) and quinoline (qn) moieties of HL are non-coordinating, but their mean planes are almost co-planar to the RuII carb­oxy­lic acid hydrazide (CAH: –C(O)NHN) chelating plane. The dihedral angles between these planes are: py vs. CAH = 5.4 (2), qn vs. CAH = 3.7 (2) and py vs. qn = 2.3 (2)°.

The Ru1—O1(amide) and Ru1—N2(imine) bond lengths in (I) are 2.090 (3) and 2.047 (4) Å, respectively, which are comparable to those in [Ru(bpy)2{3-py-C(O)NNCHC6H4(4-NMe2)}]ClO4 [2.083 (1) and 2.040 (1) Å, respectively; Duan et al., 1998] and [Ru(bpy)2{2-C6H4(OH)–C(O)NNCH-2-furyl}]PF6 [2.072 (2) and 2.089 (1) Å, respectively; Ghosh et al., 2014]. The bite angle of the hydrazone chelate, O1—Ru—N2, in (I) is 77.8 (1)°, which is also similar to the above-mentioned hydrazonato complexes, 78.0 (1) and 78.6 (1)°, respectively. Thus, the substituent groups on the carbonyl-C and the imine-C atoms of the aroylhydrazones, as well as the protonation (or deprotonation) states of the hydrazone N—H moiety, do not significantly affect the structural parameters of the RuII—(hydrazone/hydrazonate) coordination bonds.

Supra­molecular features top

In the crystal structure of (I) there are no remarkable hydrogen-bonding inter­actions between the cationic complex, BF4 anions and the solvated di­chloro­methane molecules. However, each of the planar HL and two bpy ligands in the complex cation show a ππ stacking inter­action with the respective neighbouring complexes (Fig. 2). The quinoline plane (N1/C1–C9) has a stacking inter­action with the pyridine plane (N4i/C12i–C16i) of HL in a neighbouring complex [symmetry code: (i) –x, –y + 1, –z + 2]; the shortest C···C distance between these rings is C6···C16i = 3.444 (8) Å and the centroid-to-centroid distance between the planes C1–C6 and N4i/C12i–C16i is 3.793 (3) Å. One of the bpy ligands, N5/C17–C26/N6, is stacked with the same symmetry-related ligand, N5ii/C17ii–C26ii/N6ii, in a neighbouring complex [symmetry code: (ii) –x, –y + 1, –z + 1]; the shortest C···C distance between them is C20···C25i = 3.373 (8) Å, and the centroid-to-centroid distance between the N6/C22–C26 and N6ii/C22ii–C26ii planes is 3.864 (3) Å. For the other bpy ligand, N7/C27–C36/N8, a similar inter­action is observed, and the shortest C···C distance between them is C32···C35iii = 3.509 (8) Å and the centroid-to-centroid distance between planes N8/C32–C36 and N8iii/C32iii–C36iii is 3.918 (3) Å [symmetry code: (iii) –x, –y, –z + 1]. Considering these stacking inter­actions, the complex cations are arranged in a three-dimensional extended structure in the crystal.

Database survey top

Four geometrical and linkage isomers of [RuCl2(PPh3)2(HL)] with the same picolinoylhydrazone ligand, HL, have been reported previously (Mori et al., 2014). There is no record of any [RuII(bpy)2(carbonyl­hydrazone)]2+ complexes with its protonated (neutral) hydrazone form in the CSD database (Version 5.35, last update May 2014; Groom & Allen, 2014). The deprotonated (anionic) hydrazonate analogues, [Ru(bpy)2{3-py-C(O)NNCHC6H4(4-NMe2)}]ClO4 (Duan et al., 1998) and [Ru(bpy)2{2-C6H4(OH)–C(O)NN CH-2-furyl}]PF6 as well as the thio­phene analogue have been reported (Ghosh et al., 2014). The structurally related compound [RuII(bpy)2{C6H5C(O)NNC6H5}]PF6 with a monoanionic (radical) ligand has also been reported (Ehret et al., 2012).

Synthesis and crystallization top

All reagents and solvents were commercially available and used without further purification. The starting ruthenium(II) complex, cis-[RuCl2(bpy)2]·2H2O (Sullivan et al., 1978), and hydrazone ligand, Z-HL (Mori et al., 2014), were prepared according to literature procedures. A mixture of cis-[RuCl2(bpy)2]·2H2O (618 mg, 1.19 mmol) and AgBF4 (463 mg, 2.38 mmol) in ethanol (80 ml) was stirred in the dark at room temperature overnight. The resulting white precipitate (AgCl) was filtered off, and Z-HL (328 mg, 1.19 mmol) was added to the filtrate. The mixture was heated to reflux for 9 h and then cooled to room temperature. The solution was concentrated to ca. 10 ml under reduced pressure, and the resulting microcrystalline powder was collected by filtration and dried in air. Yield: 869 mg (81%). Analysis calculated for C36H28B2F8N8ORu·2H2O: C 48.08, H 3.59, N 12.46%. Found: C 48.11, H 3.42, N 12.18%. Orange prismatic crystals of (I) suitable for X-ray analysis were obtained by diffusion of layered hexane into a di­chloro­methane solution.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The position of the hydrazone (N—)H atom was located in a difference Fourier map and refined with Uiso = 1.2Ueq(N). All other H atoms were refined using a riding model, with C—H = 0.95 (aromatic) or 0.99 (methyl­ene) Å and Uiso = 1.2Ueq(C).

Related literature top

For related literature, see: Bernhardt et al. (2007); Chang et al. (2010); Duan et al. (1998); Ehret et al. (2012); Ghosh et al. (2014); Groom & Allen (2014); Mori et al. (2014); Nonoyama (1974); Raveendran & Pal (2005, 2006); Su & Aprahamian (2014); Sullivan et al. (1978).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku, 2010); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the cationic complex in the title compound, showing the atom-numbering scheme, with displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms except for the hydrazone N—H group are omitted for clarity.
[Figure 2] Fig. 2. View of the crystal packing of the title compound, illustrating three ππ stacking interactions between the complex cations. Colour code: Ru, purple; Cl, green; F, yellow–green; O, red; N, blue; C, black; B, pink; H, grey.
Bis(2,2'-bipyridine)[N'-(quinolin-2-ylmethylidene)pyridine-2-carbohydrazide]ruthenium(II) bis(tetrafluoridoborate) dichloromethane trisolvate top
Crystal data top
[Ru(C10H8N2)2(C16H12N2)](BF4)2·3CH2Cl2Z = 2
Mr = 1118.13F(000) = 1120
Triclinic, P1Dx = 1.627 Mg m3
a = 11.0165 (12) ÅMo Kα radiation, λ = 0.71075 Å
b = 13.2508 (15) ÅCell parameters from 15690 reflections
c = 16.4285 (19) Åθ = 3.0–27.6°
α = 77.812 (4)°µ = 0.77 mm1
β = 76.924 (4)°T = 192 K
γ = 88.367 (4)°Prism, orange
V = 2282.9 (4) Å30.40 × 0.30 × 0.25 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
8147 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.076
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
h = 1413
Tmin = 0.658, Tmax = 0.825k = 1617
22472 measured reflectionsl = 2121
10378 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.208H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.1064P)2 + 2.2063P]
where P = (Fo2 + 2Fc2)/3
10378 reflections(Δ/σ)max = 0.001
589 parametersΔρmax = 1.49 e Å3
0 restraintsΔρmin = 1.02 e Å3
Crystal data top
[Ru(C10H8N2)2(C16H12N2)](BF4)2·3CH2Cl2γ = 88.367 (4)°
Mr = 1118.13V = 2282.9 (4) Å3
Triclinic, P1Z = 2
a = 11.0165 (12) ÅMo Kα radiation
b = 13.2508 (15) ŵ = 0.77 mm1
c = 16.4285 (19) ÅT = 192 K
α = 77.812 (4)°0.40 × 0.30 × 0.25 mm
β = 76.924 (4)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
10378 independent reflections
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
8147 reflections with I > 2σ(I)
Tmin = 0.658, Tmax = 0.825Rint = 0.076
22472 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.208H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 1.49 e Å3
10378 reflectionsΔρmin = 1.02 e Å3
589 parameters
Special details top

Experimental. 1H NMR (600 MHz, 22 °C, CD3CN): δ = 9.08 (d, J = 4.5 Hz, 1H), 8.84 (d, J = 5.6 Hz, 1H), 8.61 (d, J = 5.6 Hz, 1H), 8.58 (d, J = 8.2 Hz, 2H), 8.56 (d, J = 8.7 Hz, 1H), 8.52 (d, J = 8.1 Hz, 1H), 8.48 (d, J = 7.8 Hz, 1H), 8.48 (d, J = 8.6 Hz, 1H), 8.19 (td, J = 5.4, 7.6 Hz, 2H), 8.13 (d, J = 7.8 Hz, 1H), 8.08–8.04 (m, 4H), 8.01 (td, J = 5.3, 1.3 Hz, 1H), 7.83 (t, J = 7.6 Hz, 1H), 7.79–7.77 (m, 2H), 7.74 (d, J = 6.4 Hz, 1H), 7.65 (ddd, J = 5.0, 3.9, 1.4 Hz, 1H), 7.60 (ddd, J = 5.0, 3.9, 1.4 Hz, 1H), 7.58 (d, J = 8.7 Hz, 1H), 7.46 (s, azomethine-H, 1H), 7.39 (ddd, J = 5.0, 4.0, 1.3 Hz, 1H), 7.33 (ddd, J = 4.5, 3.9, 1.5 Hz, 1H) p.p.m.. UV-vis (in CH3CN) {λmax/nm (εmax M-1 cm-1)}: 488 (16600), 332 (18000), 287 (62200), 237 (36700). Cyclic voltammetry (CH3CN with 0.1 M Bu4NClO4) {E1/2/V vs. Fc+/Fc (ΔE/mV) assignment}: 0.79 (80) RuIII/RuII, –1.04 (72) bpy/bpy, –1.64 (69) bpy/bpy.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.13367 (3)0.24405 (3)0.60979 (2)0.03128 (14)
Cl10.3771 (2)0.4243 (2)0.9729 (2)0.1164 (9)
Cl20.4195 (2)0.28556 (19)0.85446 (17)0.1000 (7)
Cl30.0761 (3)0.5854 (4)0.8926 (3)0.1842 (19)
Cl40.1269 (3)0.4703 (3)0.8292 (2)0.1411 (12)
Cl50.3573 (4)0.3917 (3)0.2711 (2)0.1552 (15)
Cl60.3391 (3)0.2153 (3)0.1932 (3)0.1427 (12)
F10.5184 (4)0.2510 (4)0.6277 (3)0.0938 (14)
F20.6920 (4)0.2642 (3)0.6752 (3)0.0857 (13)
F30.6154 (4)0.1074 (3)0.6818 (3)0.0758 (11)
F40.7026 (4)0.2090 (3)0.5556 (2)0.0735 (10)
F50.7015 (4)0.2350 (3)0.1999 (3)0.0807 (12)
F60.7975 (6)0.2465 (3)0.3049 (3)0.0990 (16)
F70.7015 (3)0.0997 (3)0.3094 (2)0.0667 (9)
F80.8746 (4)0.1479 (5)0.2093 (3)0.1044 (17)
O10.0113 (3)0.2934 (2)0.69791 (18)0.0355 (6)
N10.1994 (4)0.0784 (3)0.8936 (2)0.0405 (9)
N20.1737 (4)0.1702 (3)0.7231 (2)0.0346 (8)
N30.0834 (4)0.1913 (3)0.7909 (2)0.0391 (9)
N40.0749 (4)0.2339 (3)0.9244 (3)0.0455 (9)
N50.2334 (3)0.3775 (3)0.5961 (2)0.0339 (8)
N60.0848 (3)0.3335 (3)0.5041 (2)0.0334 (7)
N70.2688 (3)0.1771 (3)0.5329 (2)0.0341 (8)
N80.0439 (3)0.1104 (3)0.6106 (2)0.0317 (7)
C10.2168 (5)0.0357 (4)0.9730 (3)0.0412 (10)
C20.1309 (5)0.0572 (4)1.0445 (3)0.0499 (12)
H20.06120.09901.03690.060*
C30.1478 (6)0.0181 (5)1.1250 (3)0.0555 (14)
H30.09000.03281.17330.067*
C40.2513 (6)0.0441 (5)1.1362 (3)0.0542 (13)
H40.26320.07011.19230.065*
C50.3334 (5)0.0673 (4)1.0690 (3)0.0464 (11)
H50.40070.11141.07830.056*
C60.3207 (5)0.0268 (4)0.9845 (3)0.0419 (10)
C70.4028 (5)0.0460 (4)0.9110 (3)0.0445 (11)
H70.47170.08960.91640.053*
C80.3847 (5)0.0026 (4)0.8321 (3)0.0420 (10)
H80.44130.01430.78220.050*
C90.2804 (4)0.0601 (4)0.8257 (3)0.0380 (9)
C100.2615 (4)0.1096 (3)0.7413 (3)0.0363 (9)
H100.32160.09520.69390.044*
C110.0066 (4)0.2541 (4)0.7732 (3)0.0362 (9)
C120.0996 (4)0.2757 (4)0.8476 (3)0.0383 (10)
C130.2028 (5)0.3326 (4)0.8370 (3)0.0449 (11)
H130.21710.35870.78150.054*
C140.2851 (5)0.3510 (5)0.9086 (4)0.0523 (12)
H140.35700.39110.90390.063*
C150.2605 (5)0.3099 (5)0.9873 (4)0.0546 (13)
H150.31570.32141.03780.066*
C160.1564 (5)0.2522 (4)0.9926 (3)0.0508 (12)
H160.14160.22401.04760.061*
C170.3043 (5)0.3965 (4)0.6477 (3)0.0462 (11)
H170.30870.34530.69700.055*
C180.3708 (6)0.4873 (5)0.6321 (4)0.0636 (16)
H180.42040.49830.66990.076*
C190.3650 (6)0.5618 (5)0.5616 (4)0.0606 (15)
H190.40930.62550.55060.073*
C200.2942 (5)0.5436 (4)0.5065 (4)0.0505 (12)
H200.29090.59400.45650.061*
C210.2283 (4)0.4512 (4)0.5250 (3)0.0383 (9)
C220.1449 (4)0.4264 (3)0.4740 (3)0.0364 (9)
C230.1209 (5)0.4921 (4)0.4014 (3)0.0464 (11)
H230.16200.55770.38100.056*
C240.0392 (5)0.4629 (4)0.3597 (3)0.0494 (12)
H240.02540.50660.30890.059*
C250.0240 (5)0.3690 (4)0.3916 (3)0.0472 (12)
H250.08300.34780.36410.057*
C260.0011 (5)0.3071 (4)0.4642 (3)0.0405 (10)
H260.04280.24300.48700.049*
C270.3784 (4)0.2201 (4)0.4883 (3)0.0418 (10)
H270.39870.28760.49290.050*
C280.4621 (5)0.1703 (4)0.4364 (4)0.0495 (12)
H280.53920.20320.40540.059*
C290.4349 (5)0.0727 (4)0.4290 (3)0.0464 (11)
H290.49160.03800.39190.056*
C300.3234 (5)0.0257 (4)0.4765 (3)0.0415 (10)
H300.30370.04280.47410.050*
C310.2414 (4)0.0790 (3)0.5273 (3)0.0329 (9)
C320.1175 (4)0.0400 (3)0.5761 (3)0.0337 (9)
C330.0747 (5)0.0597 (4)0.5847 (3)0.0415 (10)
H330.12830.10950.56220.050*
C340.0470 (5)0.0855 (4)0.6263 (3)0.0437 (11)
H340.07740.15420.63480.052*
C350.1245 (4)0.0112 (4)0.6554 (3)0.0410 (10)
H350.21020.02670.68050.049*
C360.0763 (4)0.0853 (4)0.6478 (3)0.0370 (9)
H360.12930.13600.66930.044*
C370.3274 (11)0.3094 (8)0.9504 (7)0.106 (3)
H37A0.33290.25050.99780.127*
H37B0.23920.31550.94600.127*
C380.0773 (10)0.5757 (8)0.8701 (6)0.104 (3)
H38A0.10780.57250.92280.125*
H38B0.11430.63860.82840.125*
C390.4343 (9)0.3132 (9)0.2089 (7)0.115 (3)
H39A0.50170.27960.23510.138*
H39B0.47380.35580.15240.138*
B10.6282 (6)0.2076 (5)0.6370 (4)0.0492 (13)
B20.7686 (6)0.1829 (5)0.2559 (4)0.0522 (14)
H10.093 (5)0.165 (4)0.835 (4)0.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.0285 (2)0.0341 (2)0.03044 (19)0.00236 (14)0.00396 (14)0.00737 (14)
Cl10.0815 (15)0.1179 (19)0.158 (2)0.0026 (13)0.0007 (15)0.0754 (18)
Cl20.1014 (16)0.0982 (15)0.1238 (18)0.0138 (13)0.0511 (15)0.0491 (13)
Cl30.098 (2)0.242 (5)0.222 (5)0.018 (3)0.008 (3)0.103 (4)
Cl40.144 (3)0.151 (3)0.171 (3)0.030 (2)0.078 (2)0.087 (2)
Cl50.161 (3)0.189 (3)0.132 (2)0.082 (3)0.038 (2)0.073 (2)
Cl60.128 (2)0.119 (2)0.162 (3)0.0202 (19)0.008 (2)0.010 (2)
F10.058 (2)0.112 (4)0.116 (4)0.025 (2)0.033 (3)0.021 (3)
F20.095 (3)0.091 (3)0.088 (3)0.012 (2)0.041 (3)0.034 (2)
F30.078 (3)0.057 (2)0.073 (2)0.0024 (19)0.007 (2)0.0039 (18)
F40.089 (3)0.057 (2)0.062 (2)0.0085 (19)0.0078 (19)0.0097 (16)
F50.083 (3)0.091 (3)0.073 (2)0.005 (2)0.037 (2)0.007 (2)
F60.151 (5)0.073 (3)0.086 (3)0.035 (3)0.056 (3)0.010 (2)
F70.063 (2)0.070 (2)0.059 (2)0.0186 (18)0.0040 (17)0.0126 (17)
F80.053 (2)0.157 (5)0.080 (3)0.013 (3)0.012 (2)0.005 (3)
O10.0318 (15)0.0429 (17)0.0311 (14)0.0014 (13)0.0034 (12)0.0099 (12)
N10.036 (2)0.049 (2)0.0353 (18)0.0017 (17)0.0058 (16)0.0083 (16)
N20.0312 (18)0.039 (2)0.0313 (17)0.0015 (15)0.0015 (15)0.0081 (15)
N30.036 (2)0.048 (2)0.0317 (18)0.0078 (17)0.0050 (16)0.0075 (17)
N40.045 (2)0.052 (2)0.039 (2)0.0017 (19)0.0054 (18)0.0112 (18)
N50.0287 (18)0.0363 (19)0.0356 (18)0.0000 (15)0.0026 (15)0.0098 (15)
N60.0325 (19)0.0349 (19)0.0321 (17)0.0021 (15)0.0044 (15)0.0081 (14)
N70.0290 (18)0.040 (2)0.0335 (17)0.0039 (15)0.0030 (15)0.0107 (15)
N80.0304 (18)0.0337 (18)0.0292 (16)0.0000 (14)0.0049 (14)0.0042 (14)
C10.038 (2)0.043 (3)0.039 (2)0.003 (2)0.008 (2)0.0024 (19)
C20.045 (3)0.059 (3)0.040 (2)0.003 (2)0.005 (2)0.005 (2)
C30.055 (3)0.068 (4)0.040 (3)0.002 (3)0.006 (2)0.009 (2)
C40.055 (3)0.069 (4)0.036 (2)0.008 (3)0.015 (2)0.001 (2)
C50.046 (3)0.049 (3)0.045 (3)0.003 (2)0.019 (2)0.002 (2)
C60.037 (2)0.045 (3)0.044 (2)0.007 (2)0.012 (2)0.004 (2)
C70.037 (2)0.046 (3)0.052 (3)0.003 (2)0.014 (2)0.009 (2)
C80.037 (2)0.048 (3)0.039 (2)0.001 (2)0.006 (2)0.009 (2)
C90.035 (2)0.039 (2)0.038 (2)0.0033 (19)0.0049 (19)0.0068 (18)
C100.030 (2)0.041 (2)0.036 (2)0.0007 (18)0.0043 (18)0.0088 (18)
C110.032 (2)0.039 (2)0.037 (2)0.0015 (18)0.0025 (18)0.0122 (18)
C120.034 (2)0.043 (2)0.037 (2)0.0055 (19)0.0028 (19)0.0114 (19)
C130.038 (3)0.050 (3)0.044 (2)0.005 (2)0.004 (2)0.009 (2)
C140.042 (3)0.061 (3)0.053 (3)0.008 (2)0.004 (2)0.018 (3)
C150.047 (3)0.064 (3)0.049 (3)0.003 (3)0.005 (2)0.021 (3)
C160.053 (3)0.061 (3)0.036 (2)0.002 (3)0.003 (2)0.014 (2)
C170.042 (3)0.050 (3)0.049 (3)0.004 (2)0.011 (2)0.014 (2)
C180.056 (3)0.066 (4)0.079 (4)0.017 (3)0.023 (3)0.025 (3)
C190.052 (3)0.052 (3)0.079 (4)0.019 (3)0.012 (3)0.016 (3)
C200.041 (3)0.044 (3)0.060 (3)0.010 (2)0.003 (2)0.003 (2)
C210.031 (2)0.038 (2)0.043 (2)0.0027 (18)0.0013 (19)0.0098 (19)
C220.033 (2)0.036 (2)0.036 (2)0.0003 (18)0.0014 (18)0.0081 (18)
C230.055 (3)0.038 (2)0.041 (2)0.002 (2)0.003 (2)0.0031 (19)
C240.055 (3)0.046 (3)0.043 (3)0.005 (2)0.011 (2)0.002 (2)
C250.051 (3)0.050 (3)0.047 (3)0.005 (2)0.020 (2)0.014 (2)
C260.041 (3)0.041 (2)0.040 (2)0.002 (2)0.010 (2)0.0094 (19)
C270.030 (2)0.048 (3)0.046 (2)0.006 (2)0.0010 (19)0.013 (2)
C280.032 (2)0.058 (3)0.055 (3)0.007 (2)0.002 (2)0.016 (2)
C290.036 (2)0.058 (3)0.047 (3)0.003 (2)0.002 (2)0.023 (2)
C300.038 (2)0.044 (3)0.045 (2)0.001 (2)0.009 (2)0.015 (2)
C310.032 (2)0.036 (2)0.033 (2)0.0001 (17)0.0099 (17)0.0092 (17)
C320.032 (2)0.035 (2)0.034 (2)0.0029 (18)0.0084 (17)0.0051 (16)
C330.042 (3)0.040 (2)0.044 (2)0.000 (2)0.009 (2)0.0115 (19)
C340.045 (3)0.038 (2)0.045 (2)0.011 (2)0.007 (2)0.0057 (19)
C350.033 (2)0.046 (3)0.041 (2)0.009 (2)0.0024 (19)0.006 (2)
C360.030 (2)0.043 (2)0.035 (2)0.0026 (19)0.0031 (18)0.0073 (18)
C370.111 (8)0.100 (7)0.106 (7)0.020 (6)0.017 (6)0.026 (5)
C380.105 (7)0.101 (6)0.095 (6)0.039 (6)0.006 (5)0.022 (5)
C390.070 (6)0.151 (9)0.121 (8)0.012 (6)0.004 (5)0.051 (7)
B10.043 (3)0.054 (3)0.050 (3)0.003 (3)0.009 (3)0.011 (3)
B20.045 (3)0.059 (4)0.051 (3)0.004 (3)0.011 (3)0.008 (3)
Geometric parameters (Å, º) top
Ru1—N72.036 (4)C9—C101.461 (6)
Ru1—N22.047 (4)C10—H100.9500
Ru1—N82.049 (4)C11—C121.480 (6)
Ru1—N52.054 (4)C12—C131.370 (7)
Ru1—N62.056 (4)C13—C141.376 (7)
Ru1—O12.090 (3)C13—H130.9500
Cl1—C371.770 (9)C14—C151.377 (8)
Cl2—C371.755 (10)C14—H140.9500
Cl3—C381.654 (11)C15—C161.369 (8)
Cl4—C381.700 (10)C15—H150.9500
Cl5—C391.688 (10)C16—H160.9500
Cl6—C391.786 (11)C17—C181.374 (8)
F1—B11.351 (8)C17—H170.9500
F2—B11.371 (7)C18—C191.365 (9)
F3—B11.369 (8)C18—H180.9500
F4—B11.399 (7)C19—C201.382 (8)
F5—B21.372 (7)C19—H190.9500
F6—B21.371 (8)C20—C211.383 (7)
F7—B21.370 (7)C20—H200.9500
F8—B21.370 (8)C21—C221.460 (6)
O1—C111.248 (5)C22—C231.394 (7)
N1—C91.322 (6)C23—C241.358 (8)
N1—C11.362 (6)C23—H230.9500
N2—C101.287 (6)C24—C251.385 (8)
N2—N31.386 (5)C24—H240.9500
N3—C111.321 (6)C25—C261.377 (7)
N3—H10.76 (6)C25—H250.9500
N4—C161.330 (7)C26—H260.9500
N4—C121.350 (6)C27—C281.364 (7)
N5—C171.338 (6)C27—H270.9500
N5—C211.367 (6)C28—C291.373 (7)
N6—C261.337 (6)C28—H280.9500
N6—C221.356 (6)C29—C301.382 (7)
N7—C271.335 (6)C29—H290.9500
N7—C311.368 (5)C30—C311.372 (6)
N8—C361.345 (6)C30—H300.9500
N8—C321.351 (6)C31—C321.464 (6)
C1—C21.407 (7)C32—C331.383 (6)
C1—C61.417 (7)C33—C341.376 (7)
C2—C31.367 (7)C33—H330.9500
C2—H20.9500C34—C351.375 (7)
C3—C41.412 (8)C34—H340.9500
C3—H30.9500C35—C361.368 (6)
C4—C51.344 (8)C35—H350.9500
C4—H40.9500C36—H360.9500
C5—C61.416 (6)C37—H37A0.9900
C5—H50.9500C37—H37B0.9900
C6—C71.400 (7)C38—H38A0.9900
C7—C81.359 (7)C38—H38B0.9900
C7—H70.9500C39—H39A0.9900
C8—C91.409 (7)C39—H39B0.9900
C8—H80.9500
N7—Ru1—N296.41 (15)C19—C18—C17119.4 (5)
N7—Ru1—N879.11 (14)C19—C18—H18120.3
N2—Ru1—N887.08 (14)C17—C18—H18120.3
N7—Ru1—N595.80 (14)C18—C19—C20119.4 (5)
N2—Ru1—N596.69 (14)C18—C19—H19120.3
N8—Ru1—N5174.01 (13)C20—C19—H19120.3
N7—Ru1—N690.26 (15)C19—C20—C21119.2 (5)
N2—Ru1—N6172.50 (14)C19—C20—H20120.4
N8—Ru1—N697.59 (14)C21—C20—H20120.4
N5—Ru1—N679.15 (14)N5—C21—C20121.0 (4)
N7—Ru1—O1172.56 (13)N5—C21—C22115.1 (4)
N2—Ru1—O178.77 (13)C20—C21—C22123.8 (5)
N8—Ru1—O194.89 (13)N6—C22—C23120.0 (4)
N5—Ru1—O190.42 (13)N6—C22—C21115.2 (4)
N6—Ru1—O194.92 (13)C23—C22—C21124.8 (4)
C11—O1—Ru1111.9 (3)C24—C23—C22120.3 (5)
C9—N1—C1119.3 (4)C24—C23—H23119.9
C10—N2—N3117.3 (4)C22—C23—H23119.9
C10—N2—Ru1132.9 (3)C23—C24—C25119.6 (5)
N3—N2—Ru1109.9 (3)C23—C24—H24120.2
C11—N3—N2117.9 (4)C25—C24—H24120.2
C11—N3—H1128 (4)C26—C25—C24118.2 (5)
N2—N3—H1114 (4)C26—C25—H25120.9
C16—N4—C12116.4 (5)C24—C25—H25120.9
C17—N5—C21118.5 (4)N6—C26—C25122.7 (5)
C17—N5—Ru1126.5 (3)N6—C26—H26118.6
C21—N5—Ru1114.9 (3)C25—C26—H26118.6
C26—N6—C22119.2 (4)N7—C27—C28122.1 (4)
C26—N6—Ru1125.6 (3)N7—C27—H27118.9
C22—N6—Ru1115.2 (3)C28—C27—H27118.9
C27—N7—C31118.5 (4)C27—C28—C29119.9 (5)
C27—N7—Ru1126.1 (3)C27—C28—H28120.0
C31—N7—Ru1115.3 (3)C29—C28—H28120.0
C36—N8—C32119.0 (4)C28—C29—C30118.8 (5)
C36—N8—Ru1125.9 (3)C28—C29—H29120.6
C32—N8—Ru1114.9 (3)C30—C29—H29120.6
N1—C1—C2118.6 (5)C31—C30—C29119.3 (4)
N1—C1—C6121.4 (4)C31—C30—H30120.4
C2—C1—C6120.0 (4)C29—C30—H30120.4
C3—C2—C1120.0 (5)N7—C31—C30121.3 (4)
C3—C2—H2120.0N7—C31—C32114.4 (4)
C1—C2—H2120.0C30—C31—C32124.2 (4)
C2—C3—C4119.8 (5)N8—C32—C33121.2 (4)
C2—C3—H3120.1N8—C32—C31114.8 (4)
C4—C3—H3120.1C33—C32—C31124.0 (4)
C5—C4—C3121.2 (5)C34—C33—C32118.9 (5)
C5—C4—H4119.4C34—C33—H33120.6
C3—C4—H4119.4C32—C33—H33120.6
C4—C5—C6120.7 (5)C35—C34—C33119.6 (4)
C4—C5—H5119.6C35—C34—H34120.2
C6—C5—H5119.6C33—C34—H34120.2
C7—C6—C5124.4 (5)C36—C35—C34119.0 (4)
C7—C6—C1117.5 (4)C36—C35—H35120.5
C5—C6—C1118.1 (5)C34—C35—H35120.5
C8—C7—C6120.5 (5)N8—C36—C35122.0 (4)
C8—C7—H7119.7N8—C36—H36119.0
C6—C7—H7119.7C35—C36—H36119.0
C7—C8—C9118.8 (4)Cl2—C37—Cl1111.0 (6)
C7—C8—H8120.6Cl2—C37—H37A109.4
C9—C8—H8120.6Cl1—C37—H37A109.4
N1—C9—C8122.5 (4)Cl2—C37—H37B109.4
N1—C9—C10118.1 (4)Cl1—C37—H37B109.4
C8—C9—C10119.4 (4)H37A—C37—H37B108.0
N2—C10—C9128.1 (4)Cl3—C38—Cl4113.1 (6)
N2—C10—H10115.9Cl3—C38—H38A109.0
C9—C10—H10115.9Cl4—C38—H38A109.0
O1—C11—N3121.4 (4)Cl3—C38—H38B109.0
O1—C11—C12122.6 (4)Cl4—C38—H38B109.0
N3—C11—C12116.0 (4)H38A—C38—H38B107.8
N4—C12—C13124.1 (4)Cl5—C39—Cl6114.6 (6)
N4—C12—C11114.9 (4)Cl5—C39—H39A108.6
C13—C12—C11121.0 (4)Cl6—C39—H39A108.6
C12—C13—C14118.3 (5)Cl5—C39—H39B108.6
C12—C13—H13120.9Cl6—C39—H39B108.6
C14—C13—H13120.9H39A—C39—H39B107.6
C13—C14—C15118.3 (5)F1—B1—F3113.2 (5)
C13—C14—H14120.9F1—B1—F2111.3 (5)
C15—C14—H14120.9F3—B1—F2109.4 (5)
C16—C15—C14119.9 (5)F1—B1—F4108.2 (5)
C16—C15—H15120.1F3—B1—F4108.2 (5)
C14—C15—H15120.1F2—B1—F4106.3 (5)
N4—C16—C15123.0 (5)F8—B2—F7108.7 (6)
N4—C16—H16118.5F8—B2—F6110.9 (6)
C15—C16—H16118.5F7—B2—F6108.2 (5)
N5—C17—C18122.5 (5)F8—B2—F5108.1 (5)
N5—C17—H17118.8F7—B2—F5110.7 (5)
C18—C17—H17118.8F6—B2—F5110.3 (6)
C10—N2—N3—C11179.3 (4)C17—N5—C21—C200.2 (7)
Ru1—N2—N3—C111.9 (5)Ru1—N5—C21—C20178.0 (4)
C9—N1—C1—C2179.0 (5)C17—N5—C21—C22177.6 (4)
C9—N1—C1—C60.8 (7)Ru1—N5—C21—C224.7 (5)
N1—C1—C2—C3178.0 (5)C19—C20—C21—N50.8 (8)
C6—C1—C2—C30.2 (8)C19—C20—C21—C22176.3 (5)
C1—C2—C3—C40.2 (9)C26—N6—C22—C231.2 (7)
C2—C3—C4—C51.0 (9)Ru1—N6—C22—C23178.5 (4)
C3—C4—C5—C62.2 (8)C26—N6—C22—C21176.1 (4)
C4—C5—C6—C7179.1 (5)Ru1—N6—C22—C214.2 (5)
C4—C5—C6—C12.2 (7)N5—C21—C22—N60.3 (6)
N1—C1—C6—C72.1 (7)C20—C21—C22—N6177.6 (5)
C2—C1—C6—C7179.8 (5)N5—C21—C22—C23176.8 (4)
N1—C1—C6—C5179.1 (4)C20—C21—C22—C230.4 (8)
C2—C1—C6—C51.0 (7)N6—C22—C23—C241.2 (7)
C5—C6—C7—C8178.9 (5)C21—C22—C23—C24178.2 (5)
C1—C6—C7—C82.3 (7)C22—C23—C24—C252.5 (8)
C6—C7—C8—C91.4 (7)C23—C24—C25—C261.5 (8)
C1—N1—C9—C80.3 (7)C22—N6—C26—C252.3 (7)
C1—N1—C9—C10178.1 (4)Ru1—N6—C26—C25177.4 (4)
C7—C8—C9—N10.0 (7)C24—C25—C26—N60.9 (8)
C7—C8—C9—C10178.3 (4)C31—N7—C27—C281.3 (7)
N3—N2—C10—C91.0 (7)Ru1—N7—C27—C28178.1 (4)
Ru1—N2—C10—C9179.4 (3)N7—C27—C28—C290.2 (8)
N1—C9—C10—N20.4 (7)C27—C28—C29—C301.6 (8)
C8—C9—C10—N2178.8 (5)C28—C29—C30—C312.3 (7)
Ru1—O1—C11—N31.5 (5)C27—N7—C31—C300.7 (6)
Ru1—O1—C11—C12179.3 (3)Ru1—N7—C31—C30178.8 (3)
N2—N3—C11—O10.3 (7)C27—N7—C31—C32178.0 (4)
N2—N3—C11—C12179.0 (4)Ru1—N7—C31—C321.6 (5)
C16—N4—C12—C131.3 (7)C29—C30—C31—N71.1 (7)
C16—N4—C12—C11179.7 (4)C29—C30—C31—C32175.9 (4)
O1—C11—C12—N4174.6 (4)C36—N8—C32—C335.6 (6)
N3—C11—C12—N44.6 (6)Ru1—N8—C32—C33169.3 (3)
O1—C11—C12—C136.4 (7)C36—N8—C32—C31172.1 (4)
N3—C11—C12—C13174.4 (5)Ru1—N8—C32—C3112.9 (4)
N4—C12—C13—C141.8 (8)N7—C31—C32—N87.5 (5)
C11—C12—C13—C14179.3 (5)C30—C31—C32—N8169.7 (4)
C12—C13—C14—C151.0 (8)N7—C31—C32—C33174.8 (4)
C13—C14—C15—C160.1 (9)C30—C31—C32—C338.0 (7)
C12—N4—C16—C150.1 (8)N8—C32—C33—C342.7 (7)
C14—C15—C16—N40.6 (9)C31—C32—C33—C34174.8 (4)
C21—N5—C17—C180.6 (8)C32—C33—C34—C352.4 (7)
Ru1—N5—C17—C18178.0 (4)C33—C34—C35—C364.6 (7)
N5—C17—C18—C190.2 (9)C32—N8—C36—C353.4 (6)
C17—C18—C19—C201.2 (10)Ru1—N8—C36—C35170.9 (3)
C18—C19—C20—C211.5 (9)C34—C35—C36—N81.7 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···N10.76 (6)1.90 (6)2.553 (6)145 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···N10.76 (6)1.90 (6)2.553 (6)145 (6)

Experimental details

Crystal data
Chemical formula[Ru(C10H8N2)2(C16H12N2)](BF4)2·3CH2Cl2
Mr1118.13
Crystal system, space groupTriclinic, P1
Temperature (K)192
a, b, c (Å)11.0165 (12), 13.2508 (15), 16.4285 (19)
α, β, γ (°)77.812 (4), 76.924 (4), 88.367 (4)
V3)2282.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.40 × 0.30 × 0.25
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Rigaku, 1999)
Tmin, Tmax0.658, 0.825
No. of measured, independent and
observed [I > 2σ(I)] reflections
22472, 10378, 8147
Rint0.076
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.208, 1.04
No. of reflections10378
No. of parameters589
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.49, 1.02

Computer programs: RAPID-AUTO (Rigaku, 2006), CrystalStructure (Rigaku, 2010), SIR2004 (Burla et al., 2005), SHELXL2013 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012).

 

Acknowledgements

This work was partly supported by a Grant-in-Aid for Scientific Research [Nos. 25410070 (to TS) and 24550076 (to KN)] from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

References

First citationBernhardt, P. V., Chin, P., Sharpe, P. C. & Richardson, D. R. (2007). Dalton Trans. pp. 3232–3244.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChang, M., Horiki, H., Nakajima, K., Kobayashi, A., Chang, H.-C. & Kato, M. (2010). Bull. Chem. Soc. Jpn, 83, 905–910.  Google Scholar
First citationDuan, C.-Y., Lu, Z.-L., Wu, D.-B. & You, X.-Z. (1998). Transition Met. Chem. 23, 631–634.  Google Scholar
First citationEhret, F., Bubrin, M., Hübner, R., Schweinfurth, D., Hartenbach, I., Záliš, S. & Kaim, W. (2012). Inorg. Chem. 51, 6237–6244.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhosh, B., Naskar, S., Naskar, S., Espinosa, A., Hau, S. C. K., Mak, T. C. W., Sekiya, R., Kuroda, R. & Chattopadhyay, S. K. (2014). Polyhedron, 72, 115–121.  Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationMori, A., Suzuki, T., Sunatsuki, Y., Kobayashi, A., Kato, M. & Nakajima, K. (2014). Eur. J. Inorg. Chem. pp. 186–197.  Google Scholar
First citationNonoyama, M. (1974). Inorg. Chim. Acta, 10, 133–137.  Google Scholar
First citationRaveendran, R. & Pal, S. (2005). Polyhedron, 24, 57–63.  Google Scholar
First citationRaveendran, R. & Pal, S. (2006). Inorg. Chim. Acta, 359, 3212–3220.  Google Scholar
First citationRigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, X. & Aprahamian, I. (2014). Chem. Soc. Rev. 43, 1963–1981.  Google Scholar
First citationSullivan, B. P., Salmon, D. J. & Meyer, T. J. (1978). Inorg. Chem. 17, 3334–3341.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 142-145
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds