metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages m24-m25

Crystal structure of bis­­(azido-κN)bis­­[2,5-bis­­(pyridin-2-yl)-1,3,4-thia­diazole-κ2N2,N3]nickel(II)

aLaboratoire de Chimie de Coordination et d'Analytique (LCCA), Faculté des Sciences, Université Chouaib Doukkali, BP 20, M-24000 El Jadida, Morocco, bLaboratoire de Catalyse et de Corrosion de Matériaux (LCCM), Faculté des Sciences, Université Chouaib Doukkali, BP 20, M-24000 El Jadida, Morocco, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: f_bentiss@yahoo.fr

Edited by M. Weil, Vienna University of Technology, Austria (Received 18 December 2014; accepted 6 January 2015; online 14 January 2015)

Reaction of 2,5-bis­(pyridin-2-yl)-1,3,4-thia­diazole and sodium azide with nickel(II) triflate yielded the mononuclear title complex, [Ni(N3)2(C12H8N4S)2]. The NiII ion is located on a centre of symmetry and is octa­hedrally coordinated by four N atoms of the two bidentate heterocyclic ligands in the equatorial plane. The axial positions are occupied by the N atoms of two almost linear azide ions [N—N—N = 178.8 (2)°]. The thia­diazole and pyridine rings of the heterocyclic ligand are almost coplanar, with a maximum deviation from the mean plane of 0.0802 (9) Å. The cohesion of the crystal structure is ensured by ππ inter­actions between parallel pyridine rings of neighbouring mol­ecules [centroid-to-centroid distance = 3.6413 (14) Å], leading to a layered arrangement of the mol­ecules parallel to (001).

1. Related literature

2,5-Bis(pyridin-2-yl)-1,3,4-thia­diazole has been used as a bidentate or tetra­dentate ligand forming mononuclear (Bentiss et al., 2004[Bentiss, F., Lagrenée, M., Vezin, H., Wignacourt, J. P. & Holt, E. M. (2004). Polyhedron, 23, 1903-1907.], 2011a[Bentiss, F., Capet, F., Lagrenée, M., Saadi, M. & El Ammari, L. (2011a). Acta Cryst. E67, m1052-m1053.], 2012[Bentiss, F., Outirite, M., Lagrenée, M., Saadi, M. & El Ammari, L. (2012). Acta Cryst. E68, m360-m361.]; Zheng et al., 2006[Zheng, X.-F., Wan, X.-S., Liu, W., Niu, C.-Y. & Kou, C.-H. (2006). Z. Kristallogr., 221, 543-544.]) or dinuclear complexes (Laachir et al., 2013[Laachir, A., Bentiss, F., Guesmi, S., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, m351-m352.]). Coordination of the azide ion to transition metals results in compounds with inter­esting magnetic properties (Machura et al., 2011[Machura, B., Świtlicka, A., Nawrot, I., Mroziński, J. & Michalik, K. (2011). Polyhedron, 30, 2815-2823.]; Świtlicka-Olszewska et al., 2014[Świtlicka-Olszewska, A., Machura, B. & Mroziński, J. (2014). Inorg. Chem. Commun. 43, 86-89.]). The iron salt with the same heterocyclic ligand and thio­cyanate as the pseudohalide was reported by Klingele et al. (2010[Klingele, J., Kaase, D., Klingele, M. H., Lach, J. & Demeshko, S. (2010). Dalton Trans. 39, 1689-1691.]). For the crystal structure of the related tetra­fluorido­borate salt of [Ni(C12H8N4S)2(H2O)2], see: Bentiss et al. (2011b[Bentiss, F., Capet, F., Lagrenée, M., Saadi, M. & El Ammari, L. (2011b). Acta Cryst. E67, m834-m835.]). For the synthesis of the heterocyclic ligand, see: Lebrini et al. (2005[Lebrini, M., Bentiss, F. & Lagrenée, M. (2005). J. Heterocycl. Chem. 42, 991-994.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Ni(N3)2(C12H8N4S)2]

  • Mr = 623.34

  • Monoclinic, P 21 /c

  • a = 7.7981 (3) Å

  • b = 8.2410 (3) Å

  • c = 20.1555 (7) Å

  • β = 93.141 (2)°

  • V = 1293.33 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.96 mm−1

  • T = 296 K

  • 0.39 × 0.31 × 0.18 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.640, Tmax = 0.747

  • 15710 measured reflections

  • 3077 independent reflections

  • 2643 reflections with I > 2σ(I)

  • Rint = 0.033

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.100

  • S = 1.04

  • 3077 reflections

  • 187 parameters

  • H-atom parameters constrained

  • Δρmax = 1.25 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Related literature top

2,5-Bis(pyridin-2-yl)-1,3,4-thiadiazole has been used as a bidentate or tetradentate ligand forming mononuclear (Bentiss et al., 2004, 2011a, 2012; Zheng et al., 2006) or dinuclear complexes (Laachir et al., 2013). Coordination of the azide ion to transition metals results in compounds with interesting magnetic properties (Machura et al., 2011; Świtlicka-Olszewska et al., 2014). The iron salt with the same heterocyclic ligand and thiocyanate as the pseudohalide was reported by Klingele et al. (2010). For the crystal structure of the related tetrafluoridoborate salt of [Ni(C12H8N4S)2(H2O)2], see: Bentiss et al. (2011b). For the synthesis of the heterocyclic ligand, see: Lebrini et al. (2005).

Experimental top

The 2,5-bis(2-pyridyl)-1,3,4-thiadiazole ligand (noted L) was synthesized as described previously by Lebrini et al. (2005). Ni2L2(N3)2 was obtained in bulk quantity by dropwise addition of an aqueous solution of NaN3 (0.4 mmol, 26 mg) to an ethanol/water solution of L (0.1 mmol, 24 mg) and Ni(O3SCF3)2 (0.1 mmol, 36 mg) under constant stirring at room temperature. An orange coloured solid was precipitated, filtered and washed with cold ethanol. Single crystals of Ni2L2(N3)2 were grown by slow interdiffusion of a solution of Ni(O3SCF3)2 and L in acetonitrile into NaN3 dissolved in water. Orange block-shaped single crystals appeared after one month. The crystals were washed with water and dried under vacuum (yield 50%).

CAUTION. Azide compounds are potentially explosive. Only a small amount of material should be prepared and handled with care.

Refinement top

H atoms were located in a difference map and treated as riding with C—H = 0.96 Å and with Uiso(H) = 1.2Ueq(C). The highest electron density was found 1.65 Å from atom H1. The vicinity of this peak to the H1 atom and the requirement for electroneutrality made it seem possible that this electron density might be associated with an underoccupied water molecule. However, the Ueq value of the so modelled O atom (occupancy < 0.05) refined to negative values and hence this electron density was not considered in the final model.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as spheres of arbitrary radius. [Symmetry code: (i) -x + 2, -y + 1, -z + 2.]
[Figure 2] Fig. 2. The crystal packing of the title compound, showing intermolecular ππ interactions between pyridyl rings (dashed green lines).
Bis(azido-κN)bis[2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole-κ2N2,N3]nickel(II) top
Crystal data top
[Ni(N3)2(C12H8N4S)2]F(000) = 636
Mr = 623.34Dx = 1.601 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3077 reflections
a = 7.7981 (3) Åθ = 2.6–27.9°
b = 8.2410 (3) ŵ = 0.96 mm1
c = 20.1555 (7) ÅT = 296 K
β = 93.141 (2)°Block, orange
V = 1293.33 (8) Å30.39 × 0.31 × 0.18 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
3077 independent reflections
Radiation source: fine-focus sealed tube2643 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 27.9°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 109
Tmin = 0.640, Tmax = 0.747k = 1010
15710 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0522P)2 + 0.8063P]
where P = (Fo2 + 2Fc2)/3
3077 reflections(Δ/σ)max < 0.001
187 parametersΔρmax = 1.25 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Ni(N3)2(C12H8N4S)2]V = 1293.33 (8) Å3
Mr = 623.34Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.7981 (3) ŵ = 0.96 mm1
b = 8.2410 (3) ÅT = 296 K
c = 20.1555 (7) Å0.39 × 0.31 × 0.18 mm
β = 93.141 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3077 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2643 reflections with I > 2σ(I)
Tmin = 0.640, Tmax = 0.747Rint = 0.033
15710 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.04Δρmax = 1.25 e Å3
3077 reflectionsΔρmin = 0.35 e Å3
187 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.3016 (3)0.4676 (3)0.90640 (11)0.0356 (5)
H11.35380.40220.93920.043*
C21.3853 (3)0.4935 (3)0.84813 (12)0.0397 (5)
H21.49160.44600.84230.048*
C31.3091 (3)0.5902 (3)0.79925 (10)0.0380 (5)
H31.36300.60890.75990.046*
C41.1511 (3)0.6589 (3)0.80960 (10)0.0350 (4)
H41.09660.72460.77740.042*
C51.0759 (2)0.6281 (2)0.86873 (9)0.0292 (4)
C60.9114 (3)0.6956 (3)0.88563 (9)0.0304 (4)
C70.6422 (2)0.8193 (2)0.90011 (10)0.0313 (4)
C80.4793 (3)0.9088 (3)0.89219 (11)0.0336 (4)
C90.3101 (4)1.0642 (4)0.82288 (15)0.0575 (7)
H90.29151.11670.78230.069*
C100.1844 (3)1.0747 (3)0.86751 (15)0.0536 (7)
H100.08431.13320.85750.064*
C110.2099 (3)0.9966 (3)0.92746 (14)0.0498 (6)
H110.12741.00210.95900.060*
C120.3601 (3)0.9095 (3)0.94026 (11)0.0401 (5)
H120.37990.85340.98000.048*
N11.1488 (2)0.5333 (2)0.91692 (8)0.0298 (4)
N20.8473 (2)0.6603 (2)0.94235 (8)0.0313 (4)
N30.6911 (2)0.7303 (2)0.95059 (8)0.0320 (4)
N40.4563 (3)0.9844 (2)0.83359 (11)0.0463 (5)
N50.8723 (3)0.3030 (2)0.95247 (9)0.0427 (4)
N60.8332 (2)0.3118 (2)0.89483 (9)0.0385 (4)
N70.7973 (3)0.3188 (3)0.83827 (11)0.0645 (7)
S10.78523 (7)0.82456 (7)0.83744 (3)0.03745 (15)
Ni11.00000.50001.00000.02650 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0333 (11)0.0420 (11)0.0319 (10)0.0063 (9)0.0056 (8)0.0008 (9)
C20.0340 (11)0.0477 (13)0.0387 (12)0.0036 (9)0.0120 (9)0.0044 (9)
C30.0386 (11)0.0478 (13)0.0288 (10)0.0037 (10)0.0128 (8)0.0036 (9)
C40.0374 (11)0.0451 (12)0.0228 (9)0.0007 (9)0.0050 (8)0.0023 (8)
C50.0301 (9)0.0351 (10)0.0226 (9)0.0005 (8)0.0046 (7)0.0011 (7)
C60.0309 (9)0.0385 (11)0.0219 (9)0.0017 (8)0.0008 (7)0.0026 (8)
C70.0290 (9)0.0367 (10)0.0283 (9)0.0022 (8)0.0027 (7)0.0006 (8)
C80.0291 (10)0.0329 (10)0.0385 (11)0.0033 (8)0.0006 (8)0.0013 (8)
C90.0508 (15)0.0563 (16)0.0656 (17)0.0155 (13)0.0046 (13)0.0247 (14)
C100.0362 (12)0.0439 (14)0.081 (2)0.0158 (11)0.0015 (12)0.0001 (13)
C110.0355 (12)0.0543 (15)0.0608 (16)0.0010 (10)0.0129 (11)0.0183 (12)
C120.0398 (12)0.0451 (13)0.0354 (11)0.0025 (10)0.0021 (9)0.0026 (9)
N10.0312 (8)0.0357 (9)0.0229 (8)0.0022 (7)0.0045 (6)0.0003 (6)
N20.0298 (8)0.0410 (9)0.0235 (8)0.0063 (7)0.0045 (6)0.0019 (7)
N30.0283 (8)0.0407 (9)0.0271 (8)0.0072 (7)0.0029 (6)0.0014 (7)
N40.0380 (10)0.0508 (12)0.0507 (12)0.0098 (9)0.0090 (9)0.0182 (9)
N50.0501 (11)0.0467 (11)0.0315 (9)0.0058 (9)0.0040 (8)0.0017 (8)
N60.0304 (9)0.0464 (11)0.0387 (10)0.0060 (8)0.0015 (7)0.0129 (8)
N70.0631 (15)0.0907 (19)0.0379 (12)0.0154 (13)0.0121 (10)0.0185 (12)
S10.0343 (3)0.0496 (3)0.0289 (3)0.0091 (2)0.00513 (19)0.0117 (2)
Ni10.02602 (19)0.0358 (2)0.01789 (17)0.00586 (14)0.00320 (12)0.00259 (13)
Geometric parameters (Å, º) top
C1—N11.336 (3)C9—N41.324 (3)
C1—C21.391 (3)C9—C101.369 (4)
C1—H10.9300C9—H90.9300
C2—C31.376 (3)C10—C111.374 (4)
C2—H20.9300C10—H100.9300
C3—C41.382 (3)C11—C121.386 (3)
C3—H30.9300C11—H110.9300
C4—C51.380 (3)C12—H120.9300
C4—H40.9300N1—Ni12.1069 (17)
C5—N11.348 (2)N2—N31.366 (2)
C5—C61.456 (3)N2—Ni12.0885 (16)
C6—N21.305 (3)N5—N61.187 (3)
C6—S11.714 (2)N5—Ni12.1075 (19)
C7—N31.295 (2)N6—N71.160 (3)
C7—C81.470 (3)Ni1—N2i2.0885 (16)
C7—S11.731 (2)Ni1—N1i2.1069 (17)
C8—N41.339 (3)Ni1—N5i2.108 (2)
C8—C121.379 (3)
N1—C1—C2122.4 (2)C10—C11—H11120.5
N1—C1—H1118.8C12—C11—H11120.5
C2—C1—H1118.8C8—C12—C11117.8 (2)
C3—C2—C1119.3 (2)C8—C12—H12121.1
C3—C2—H2120.4C11—C12—H12121.1
C1—C2—H2120.4C1—N1—C5117.71 (18)
C2—C3—C4118.9 (2)C1—N1—Ni1127.46 (15)
C2—C3—H3120.6C5—N1—Ni1114.79 (13)
C4—C3—H3120.6C6—N2—N3113.55 (16)
C5—C4—C3118.63 (19)C6—N2—Ni1113.19 (13)
C5—C4—H4120.7N3—N2—Ni1133.19 (13)
C3—C4—H4120.7C7—N3—N2111.69 (16)
N1—C5—C4123.14 (19)C9—N4—C8116.6 (2)
N1—C5—C6113.27 (17)N6—N5—Ni1119.16 (16)
C4—C5—C6123.58 (18)N7—N6—N5178.8 (2)
N2—C6—C5120.32 (18)C6—S1—C786.77 (9)
N2—C6—S1113.49 (15)N2—Ni1—N2i180.00 (7)
C5—C6—S1126.18 (15)N2—Ni1—N178.32 (6)
N3—C7—C8125.80 (19)N2i—Ni1—N1101.68 (6)
N3—C7—S1114.47 (15)N2—Ni1—N1i101.68 (6)
C8—C7—S1119.72 (15)N2i—Ni1—N1i78.32 (6)
N4—C8—C12123.7 (2)N1—Ni1—N1i180.000 (1)
N4—C8—C7113.74 (19)N2—Ni1—N589.63 (8)
C12—C8—C7122.5 (2)N2i—Ni1—N590.37 (8)
N4—C9—C10124.4 (3)N1—Ni1—N590.35 (7)
N4—C9—H9117.8N1i—Ni1—N589.65 (7)
C10—C9—H9117.8N2—Ni1—N5i90.37 (8)
C9—C10—C11118.3 (2)N2i—Ni1—N5i89.63 (8)
C9—C10—H10120.8N1—Ni1—N5i89.65 (7)
C11—C10—H10120.8N1i—Ni1—N5i90.35 (7)
C10—C11—C12119.1 (2)N5—Ni1—N5i179.998 (1)
Symmetry code: (i) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Ni(N3)2(C12H8N4S)2]
Mr623.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.7981 (3), 8.2410 (3), 20.1555 (7)
β (°) 93.141 (2)
V3)1293.33 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.39 × 0.31 × 0.18
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.640, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
15710, 3077, 2643
Rint0.033
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.100, 1.04
No. of reflections3077
No. of parameters187
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.25, 0.35

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBentiss, F., Capet, F., Lagrenée, M., Saadi, M. & El Ammari, L. (2011a). Acta Cryst. E67, m1052–m1053.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBentiss, F., Capet, F., Lagrenée, M., Saadi, M. & El Ammari, L. (2011b). Acta Cryst. E67, m834–m835.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBentiss, F., Lagrenée, M., Vezin, H., Wignacourt, J. P. & Holt, E. M. (2004). Polyhedron, 23, 1903–1907.  Web of Science CSD CrossRef CAS Google Scholar
First citationBentiss, F., Outirite, M., Lagrenée, M., Saadi, M. & El Ammari, L. (2012). Acta Cryst. E68, m360–m361.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKlingele, J., Kaase, D., Klingele, M. H., Lach, J. & Demeshko, S. (2010). Dalton Trans. 39, 1689–1691.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLaachir, A., Bentiss, F., Guesmi, S., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, m351–m352.  CSD CrossRef IUCr Journals Google Scholar
First citationLebrini, M., Bentiss, F. & Lagrenée, M. (2005). J. Heterocycl. Chem. 42, 991–994.  CrossRef CAS Google Scholar
First citationMachura, B., Świtlicka, A., Nawrot, I., Mroziński, J. & Michalik, K. (2011). Polyhedron, 30, 2815–2823.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationŚwitlicka-Olszewska, A., Machura, B. & Mroziński, J. (2014). Inorg. Chem. Commun. 43, 86–89.  Google Scholar
First citationZheng, X.-F., Wan, X.-S., Liu, W., Niu, C.-Y. & Kou, C.-H. (2006). Z. Kristallogr., 221, 543–544.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages m24-m25
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds