metal-organic compounds
κN)bis[2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole-κ2N2,N3]nickel(II)
of bis(azido-aLaboratoire de Chimie de Coordination et d'Analytique (LCCA), Faculté des Sciences, Université Chouaib Doukkali, BP 20, M-24000 El Jadida, Morocco, bLaboratoire de Catalyse et de Corrosion de Matériaux (LCCM), Faculté des Sciences, Université Chouaib Doukkali, BP 20, M-24000 El Jadida, Morocco, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: f_bentiss@yahoo.fr
Reaction of 2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole and sodium azide with nickel(II) triflate yielded the mononuclear title complex, [Ni(N3)2(C12H8N4S)2]. The NiII ion is located on a centre of symmetry and is octahedrally coordinated by four N atoms of the two bidentate heterocyclic ligands in the equatorial plane. The axial positions are occupied by the N atoms of two almost linear azide ions [N—N—N = 178.8 (2)°]. The thiadiazole and pyridine rings of the heterocyclic ligand are almost coplanar, with a maximum deviation from the mean plane of 0.0802 (9) Å. The cohesion of the is ensured by π–π interactions between parallel pyridine rings of neighbouring molecules [centroid-to-centroid distance = 3.6413 (14) Å], leading to a layered arrangement of the molecules parallel to (001).
Keywords: crystal structure; mononuclear nickel(II) complex; 1,3,4-thiadiazole; azide ligand; π–π interactions.
CCDC reference: 1042351
1. Related literature
2,5-Bis(pyridin-2-yl)-1,3,4-thiadiazole has been used as a bidentate or tetradentate ligand forming mononuclear (Bentiss et al., 2004, 2011a, 2012; Zheng et al., 2006) or dinuclear complexes (Laachir et al., 2013). Coordination of the azide ion to transition metals results in compounds with interesting magnetic properties (Machura et al., 2011; Świtlicka-Olszewska et al., 2014). The iron salt with the same heterocyclic ligand and thiocyanate as the pseudohalide was reported by Klingele et al. (2010). For the of the related tetrafluoridoborate salt of [Ni(C12H8N4S)2(H2O)2], see: Bentiss et al. (2011b). For the synthesis of the heterocyclic ligand, see: Lebrini et al. (2005).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 1042351
10.1107/S2056989015000201/wm5108sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015000201/wm5108Isup2.hkl
The 2,5-bis(2-pyridyl)-1,3,4-thiadiazole ligand (noted L) was synthesized as described previously by Lebrini et al. (2005). Ni2L2(N3)2 was obtained in bulk quantity by dropwise addition of an aqueous solution of NaN3 (0.4 mmol, 26 mg) to an ethanol/water solution of L (0.1 mmol, 24 mg) and Ni(O3SCF3)2 (0.1 mmol, 36 mg) under constant stirring at room temperature. An orange coloured solid was precipitated, filtered and washed with cold ethanol. Single crystals of Ni2L2(N3)2 were grown by slow interdiffusion of a solution of Ni(O3SCF3)2 and L in acetonitrile into NaN3 dissolved in water. Orange block-shaped single crystals appeared after one month. The crystals were washed with water and dried under vacuum (yield 50%).
CAUTION. Azide compounds are potentially explosive. Only a small amount of material should be prepared and handled with care.
H atoms were located in a difference map and treated as riding with C—H = 0.96 Å and with Uiso(H) = 1.2Ueq(C). The highest electron density was found 1.65 Å from atom H1. The vicinity of this peak to the H1 atom and the requirement for electroneutrality made it seem possible that this electron density might be associated with an underoccupied water molecule. However, the Ueq value of the so modelled O atom (occupancy < 0.05) refined to negative values and hence this electron density was not considered in the final model.
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).[Ni(N3)2(C12H8N4S)2] | F(000) = 636 |
Mr = 623.34 | Dx = 1.601 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3077 reflections |
a = 7.7981 (3) Å | θ = 2.6–27.9° |
b = 8.2410 (3) Å | µ = 0.96 mm−1 |
c = 20.1555 (7) Å | T = 296 K |
β = 93.141 (2)° | Block, orange |
V = 1293.33 (8) Å3 | 0.39 × 0.31 × 0.18 mm |
Z = 2 |
Bruker APEXII CCD diffractometer | 3077 independent reflections |
Radiation source: fine-focus sealed tube | 2643 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
ϕ and ω scans | θmax = 27.9°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −10→9 |
Tmin = 0.640, Tmax = 0.747 | k = −10→10 |
15710 measured reflections | l = −26→26 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0522P)2 + 0.8063P] where P = (Fo2 + 2Fc2)/3 |
3077 reflections | (Δ/σ)max < 0.001 |
187 parameters | Δρmax = 1.25 e Å−3 |
0 restraints | Δρmin = −0.35 e Å−3 |
[Ni(N3)2(C12H8N4S)2] | V = 1293.33 (8) Å3 |
Mr = 623.34 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.7981 (3) Å | µ = 0.96 mm−1 |
b = 8.2410 (3) Å | T = 296 K |
c = 20.1555 (7) Å | 0.39 × 0.31 × 0.18 mm |
β = 93.141 (2)° |
Bruker APEXII CCD diffractometer | 3077 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 2643 reflections with I > 2σ(I) |
Tmin = 0.640, Tmax = 0.747 | Rint = 0.033 |
15710 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.04 | Δρmax = 1.25 e Å−3 |
3077 reflections | Δρmin = −0.35 e Å−3 |
187 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 1.3016 (3) | 0.4676 (3) | 0.90640 (11) | 0.0356 (5) | |
H1 | 1.3538 | 0.4022 | 0.9392 | 0.043* | |
C2 | 1.3853 (3) | 0.4935 (3) | 0.84813 (12) | 0.0397 (5) | |
H2 | 1.4916 | 0.4460 | 0.8423 | 0.048* | |
C3 | 1.3091 (3) | 0.5902 (3) | 0.79925 (10) | 0.0380 (5) | |
H3 | 1.3630 | 0.6089 | 0.7599 | 0.046* | |
C4 | 1.1511 (3) | 0.6589 (3) | 0.80960 (10) | 0.0350 (4) | |
H4 | 1.0966 | 0.7246 | 0.7774 | 0.042* | |
C5 | 1.0759 (2) | 0.6281 (2) | 0.86873 (9) | 0.0292 (4) | |
C6 | 0.9114 (3) | 0.6956 (3) | 0.88563 (9) | 0.0304 (4) | |
C7 | 0.6422 (2) | 0.8193 (2) | 0.90011 (10) | 0.0313 (4) | |
C8 | 0.4793 (3) | 0.9088 (3) | 0.89219 (11) | 0.0336 (4) | |
C9 | 0.3101 (4) | 1.0642 (4) | 0.82288 (15) | 0.0575 (7) | |
H9 | 0.2915 | 1.1167 | 0.7823 | 0.069* | |
C10 | 0.1844 (3) | 1.0747 (3) | 0.86751 (15) | 0.0536 (7) | |
H10 | 0.0843 | 1.1332 | 0.8575 | 0.064* | |
C11 | 0.2099 (3) | 0.9966 (3) | 0.92746 (14) | 0.0498 (6) | |
H11 | 0.1274 | 1.0021 | 0.9590 | 0.060* | |
C12 | 0.3601 (3) | 0.9095 (3) | 0.94026 (11) | 0.0401 (5) | |
H12 | 0.3799 | 0.8534 | 0.9800 | 0.048* | |
N1 | 1.1488 (2) | 0.5333 (2) | 0.91692 (8) | 0.0298 (4) | |
N2 | 0.8473 (2) | 0.6603 (2) | 0.94235 (8) | 0.0313 (4) | |
N3 | 0.6911 (2) | 0.7303 (2) | 0.95059 (8) | 0.0320 (4) | |
N4 | 0.4563 (3) | 0.9844 (2) | 0.83359 (11) | 0.0463 (5) | |
N5 | 0.8723 (3) | 0.3030 (2) | 0.95247 (9) | 0.0427 (4) | |
N6 | 0.8332 (2) | 0.3118 (2) | 0.89483 (9) | 0.0385 (4) | |
N7 | 0.7973 (3) | 0.3188 (3) | 0.83827 (11) | 0.0645 (7) | |
S1 | 0.78523 (7) | 0.82456 (7) | 0.83744 (3) | 0.03745 (15) | |
Ni1 | 1.0000 | 0.5000 | 1.0000 | 0.02650 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0333 (11) | 0.0420 (11) | 0.0319 (10) | 0.0063 (9) | 0.0056 (8) | 0.0008 (9) |
C2 | 0.0340 (11) | 0.0477 (13) | 0.0387 (12) | 0.0036 (9) | 0.0120 (9) | −0.0044 (9) |
C3 | 0.0386 (11) | 0.0478 (13) | 0.0288 (10) | −0.0037 (10) | 0.0128 (8) | −0.0036 (9) |
C4 | 0.0374 (11) | 0.0451 (12) | 0.0228 (9) | 0.0007 (9) | 0.0050 (8) | 0.0023 (8) |
C5 | 0.0301 (9) | 0.0351 (10) | 0.0226 (9) | 0.0005 (8) | 0.0046 (7) | −0.0011 (7) |
C6 | 0.0309 (9) | 0.0385 (11) | 0.0219 (9) | 0.0017 (8) | 0.0008 (7) | 0.0026 (8) |
C7 | 0.0290 (9) | 0.0367 (10) | 0.0283 (9) | 0.0022 (8) | 0.0027 (7) | 0.0006 (8) |
C8 | 0.0291 (10) | 0.0329 (10) | 0.0385 (11) | 0.0033 (8) | 0.0006 (8) | −0.0013 (8) |
C9 | 0.0508 (15) | 0.0563 (16) | 0.0656 (17) | 0.0155 (13) | 0.0046 (13) | 0.0247 (14) |
C10 | 0.0362 (12) | 0.0439 (14) | 0.081 (2) | 0.0158 (11) | 0.0015 (12) | −0.0001 (13) |
C11 | 0.0355 (12) | 0.0543 (15) | 0.0608 (16) | −0.0010 (10) | 0.0129 (11) | −0.0183 (12) |
C12 | 0.0398 (12) | 0.0451 (13) | 0.0354 (11) | −0.0025 (10) | 0.0021 (9) | −0.0026 (9) |
N1 | 0.0312 (8) | 0.0357 (9) | 0.0229 (8) | 0.0022 (7) | 0.0045 (6) | 0.0003 (6) |
N2 | 0.0298 (8) | 0.0410 (9) | 0.0235 (8) | 0.0063 (7) | 0.0045 (6) | 0.0019 (7) |
N3 | 0.0283 (8) | 0.0407 (9) | 0.0271 (8) | 0.0072 (7) | 0.0029 (6) | 0.0014 (7) |
N4 | 0.0380 (10) | 0.0508 (12) | 0.0507 (12) | 0.0098 (9) | 0.0090 (9) | 0.0182 (9) |
N5 | 0.0501 (11) | 0.0467 (11) | 0.0315 (9) | −0.0058 (9) | 0.0040 (8) | −0.0017 (8) |
N6 | 0.0304 (9) | 0.0464 (11) | 0.0387 (10) | 0.0060 (8) | 0.0015 (7) | −0.0129 (8) |
N7 | 0.0631 (15) | 0.0907 (19) | 0.0379 (12) | 0.0154 (13) | −0.0121 (10) | −0.0185 (12) |
S1 | 0.0343 (3) | 0.0496 (3) | 0.0289 (3) | 0.0091 (2) | 0.00513 (19) | 0.0117 (2) |
Ni1 | 0.02602 (19) | 0.0358 (2) | 0.01789 (17) | 0.00586 (14) | 0.00320 (12) | 0.00259 (13) |
C1—N1 | 1.336 (3) | C9—N4 | 1.324 (3) |
C1—C2 | 1.391 (3) | C9—C10 | 1.369 (4) |
C1—H1 | 0.9300 | C9—H9 | 0.9300 |
C2—C3 | 1.376 (3) | C10—C11 | 1.374 (4) |
C2—H2 | 0.9300 | C10—H10 | 0.9300 |
C3—C4 | 1.382 (3) | C11—C12 | 1.386 (3) |
C3—H3 | 0.9300 | C11—H11 | 0.9300 |
C4—C5 | 1.380 (3) | C12—H12 | 0.9300 |
C4—H4 | 0.9300 | N1—Ni1 | 2.1069 (17) |
C5—N1 | 1.348 (2) | N2—N3 | 1.366 (2) |
C5—C6 | 1.456 (3) | N2—Ni1 | 2.0885 (16) |
C6—N2 | 1.305 (3) | N5—N6 | 1.187 (3) |
C6—S1 | 1.714 (2) | N5—Ni1 | 2.1075 (19) |
C7—N3 | 1.295 (2) | N6—N7 | 1.160 (3) |
C7—C8 | 1.470 (3) | Ni1—N2i | 2.0885 (16) |
C7—S1 | 1.731 (2) | Ni1—N1i | 2.1069 (17) |
C8—N4 | 1.339 (3) | Ni1—N5i | 2.108 (2) |
C8—C12 | 1.379 (3) | ||
N1—C1—C2 | 122.4 (2) | C10—C11—H11 | 120.5 |
N1—C1—H1 | 118.8 | C12—C11—H11 | 120.5 |
C2—C1—H1 | 118.8 | C8—C12—C11 | 117.8 (2) |
C3—C2—C1 | 119.3 (2) | C8—C12—H12 | 121.1 |
C3—C2—H2 | 120.4 | C11—C12—H12 | 121.1 |
C1—C2—H2 | 120.4 | C1—N1—C5 | 117.71 (18) |
C2—C3—C4 | 118.9 (2) | C1—N1—Ni1 | 127.46 (15) |
C2—C3—H3 | 120.6 | C5—N1—Ni1 | 114.79 (13) |
C4—C3—H3 | 120.6 | C6—N2—N3 | 113.55 (16) |
C5—C4—C3 | 118.63 (19) | C6—N2—Ni1 | 113.19 (13) |
C5—C4—H4 | 120.7 | N3—N2—Ni1 | 133.19 (13) |
C3—C4—H4 | 120.7 | C7—N3—N2 | 111.69 (16) |
N1—C5—C4 | 123.14 (19) | C9—N4—C8 | 116.6 (2) |
N1—C5—C6 | 113.27 (17) | N6—N5—Ni1 | 119.16 (16) |
C4—C5—C6 | 123.58 (18) | N7—N6—N5 | 178.8 (2) |
N2—C6—C5 | 120.32 (18) | C6—S1—C7 | 86.77 (9) |
N2—C6—S1 | 113.49 (15) | N2—Ni1—N2i | 180.00 (7) |
C5—C6—S1 | 126.18 (15) | N2—Ni1—N1 | 78.32 (6) |
N3—C7—C8 | 125.80 (19) | N2i—Ni1—N1 | 101.68 (6) |
N3—C7—S1 | 114.47 (15) | N2—Ni1—N1i | 101.68 (6) |
C8—C7—S1 | 119.72 (15) | N2i—Ni1—N1i | 78.32 (6) |
N4—C8—C12 | 123.7 (2) | N1—Ni1—N1i | 180.000 (1) |
N4—C8—C7 | 113.74 (19) | N2—Ni1—N5 | 89.63 (8) |
C12—C8—C7 | 122.5 (2) | N2i—Ni1—N5 | 90.37 (8) |
N4—C9—C10 | 124.4 (3) | N1—Ni1—N5 | 90.35 (7) |
N4—C9—H9 | 117.8 | N1i—Ni1—N5 | 89.65 (7) |
C10—C9—H9 | 117.8 | N2—Ni1—N5i | 90.37 (8) |
C9—C10—C11 | 118.3 (2) | N2i—Ni1—N5i | 89.63 (8) |
C9—C10—H10 | 120.8 | N1—Ni1—N5i | 89.65 (7) |
C11—C10—H10 | 120.8 | N1i—Ni1—N5i | 90.35 (7) |
C10—C11—C12 | 119.1 (2) | N5—Ni1—N5i | 179.998 (1) |
Symmetry code: (i) −x+2, −y+1, −z+2. |
Experimental details
Crystal data | |
Chemical formula | [Ni(N3)2(C12H8N4S)2] |
Mr | 623.34 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 7.7981 (3), 8.2410 (3), 20.1555 (7) |
β (°) | 93.141 (2) |
V (Å3) | 1293.33 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.96 |
Crystal size (mm) | 0.39 × 0.31 × 0.18 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.640, 0.747 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15710, 3077, 2643 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.658 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.100, 1.04 |
No. of reflections | 3077 |
No. of parameters | 187 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.25, −0.35 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).
Acknowledgements
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.
References
Bentiss, F., Capet, F., Lagrenée, M., Saadi, M. & El Ammari, L. (2011a). Acta Cryst. E67, m1052–m1053. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bentiss, F., Capet, F., Lagrenée, M., Saadi, M. & El Ammari, L. (2011b). Acta Cryst. E67, m834–m835. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bentiss, F., Lagrenée, M., Vezin, H., Wignacourt, J. P. & Holt, E. M. (2004). Polyhedron, 23, 1903–1907. Web of Science CSD CrossRef CAS Google Scholar
Bentiss, F., Outirite, M., Lagrenée, M., Saadi, M. & El Ammari, L. (2012). Acta Cryst. E68, m360–m361. CSD CrossRef CAS IUCr Journals Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Klingele, J., Kaase, D., Klingele, M. H., Lach, J. & Demeshko, S. (2010). Dalton Trans. 39, 1689–1691. Web of Science CrossRef CAS PubMed Google Scholar
Laachir, A., Bentiss, F., Guesmi, S., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, m351–m352. CSD CrossRef IUCr Journals Google Scholar
Lebrini, M., Bentiss, F. & Lagrenée, M. (2005). J. Heterocycl. Chem. 42, 991–994. CrossRef CAS Google Scholar
Machura, B., Świtlicka, A., Nawrot, I., Mroziński, J. & Michalik, K. (2011). Polyhedron, 30, 2815–2823. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Świtlicka-Olszewska, A., Machura, B. & Mroziński, J. (2014). Inorg. Chem. Commun. 43, 86–89. Google Scholar
Zheng, X.-F., Wan, X.-S., Liu, W., Niu, C.-Y. & Kou, C.-H. (2006). Z. Kristallogr., 221, 543–544. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.