metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages m35-m36

Crystal structure of aquadioxido(2-{[(2-oxido­ethyl)­imino]­meth­yl}phenol­ato-κ3O,N,O′)molybdenum(VI)

aNational Centre for Catalysis Research and Department of Chemistry, Indian Institute of Technology-Madras, Chennai 600 036, India, bNew Industry Creation Hatchery Center, Tohoku University, Sendai 980 8579, Japan, and cSchool of Science and Health, University of Western Australia, Sydney, Penrith, NSW 275, Australia
*Correspondence e-mail: selvam@iitm.ac.in

Edited by M. Weil, Vienna University of Technology, Austria (Received 9 January 2015; accepted 20 January 2015; online 24 January 2015)

The mononuclear title complex, [Mo(C9H9NO2)O2(H2O)], contains an Mo(VI) atom in a distorted octa­hedral coordination sphere defined by an Mo=O and an Mo—(OH2) bond to the axial ligands and two Mo—O bonds to phenolate and alcoholate O atoms, another Mo=O bond and one Mo—N bond to the imino N atom in the equatorial plane. The five-membered metalla-ring shows an envelope conformation. In the crystal, individual mol­ecules are connected into a layered arrangement parallel to (100) by means of O—H⋯O hydrogen bonds involving the water mol­ecule as a donor group and the O atoms of neighbouring complexes as acceptor atoms. These inter­actions lead to the formation of a three-dimensional network.

1. Related literature

For dioxidomolybdenum complexes used as potential oxidation catalysts for the epoxidation of alkenes, see: Sakthivel et al. (2005[Sakthivel, A., Zhao, J., Raudaschl-Sieber, G., Hanzlik, M., Chiang, A. S. T. & Kühn, F. E. (2005). Appl. Catal. Gen. 281, 267-273.]); Masteri-Farahani et al. (2006[Masteri-Farahani, M., Farzaneh, F. & Ghandi, M. J. (2006). J. Mol. Catal. A Chem. 248, 53-60.]). For chiral molybdenum complexes, see: Burke (2008[Burke, A. (2008). Coord. Chem. Rev. 252, 170-175.]); Kühn et al. (2005[Kühn, F. E. J., Zhao, J. & Herrmann, W. A. (2005). Tetrahedron Asymmetry, 16, 3469-3479.]). These compounds are good catalysts for the oxidation of organic compounds, see: Rayati et al. (2012[Rayati, S., Rafiee, N. & Wojtczak, A. (2012). Inorg. Chim. Acta, 386, 27-35.]). For heterogenization of polymer-supported molybdenum complexes, see: Sherrington et al. (2000[Sherrington, D. C. (2000). Catal. Today, 57, 87-104.]); Maurya (2012[Maurya, R. (2012). Curr. Org Chem. 16, 73-88.]), and for molybdenum systems on silica supports, see: Tangestaninejad et al. (2008[Tangestaninejad, S., Moghadam, M., Mirkhani, V., Mohammadpoor-Baltork, I. & Ghani, K. (2008). J. Iran Chem. Soc. 5, s71-S79.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Mo(C9H9NO2)O2(H2O)]

  • Mr = 309.13

  • Monoclinic, P 21 /c

  • a = 14.9710 (3) Å

  • b = 6.7026 (1) Å

  • c = 10.8673 (2) Å

  • β = 99.486 (1)°

  • V = 1075.56 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.22 mm−1

  • T = 296 K

  • 0.25 × 0.16 × 0.10 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.813, Tmax = 0.934

  • 8837 measured reflections

  • 2392 independent reflections

  • 2263 reflections with I > 2σ(I)

  • Rint = 0.012

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.016

  • wR(F2) = 0.042

  • S = 1.10

  • 2392 reflections

  • 153 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected bond lengths (Å)

Mo1—O5 1.6902 (14)
Mo1—O4 1.7160 (13)
Mo1—O1 1.9438 (12)
Mo1—O2 1.9446 (12)
Mo1—N1 2.2652 (14)
Mo1—O3 2.3259 (14)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O⋯O1i 0.73 (2) 1.97 (3) 2.6656 (19) 161 (3)
O3—H2O⋯O4ii 0.78 (3) 2.07 (3) 2.8425 (19) 173 (3)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Related literature top

For dioxidomolybdenum complexes used as potential oxidation catalysts for the epoxidation of alkenes, see: Sakthivel et al. (2005); Masteri-Farahani et al. (2006). For chiral molybdenum complexes, see: Burke (2008); Kühn et al. (2005). These compounds are good catalysts for the oxidation of organic compounds, see: Rayati et al. (2012). For heterogenization of polymer-supported molybdenum complexes, see: Sherrington et al. (2000); Maurya (2012), and for molybdenum systems on silica supports, see: Tangestaninejad et al. (2008).

Experimental top

Molybdenyl acetylacetone (MoO2(acac)2) (4.03 g, 0.012 mol) dissolved in methanol (20 ml) was added to a refluxing solution of salicylaldehyde (2.62 ml, 0.012 mol) and ethanolamine (1.5 ml, 0.012 mol) in ethanol (30 ml). The mixture was refluxed for five hours, and the solvent removed under vacuum at room temperature. The resulting yellow solution was filtered, evaporated slowly, to yield yellow crystals. The crystals were purified by washing with ethanol/methanol mixture and dried at room temperature. The obtained crystals have incorporated water. The used solvents ethanol and methanol have not been dried prior to the reaction and thus contain water. Another source of water is the condensation reaction between salicylaldehyde and ethanolamine.

Refinement top

All H atoms were identified from difference electron density maps. However, C-bound H atoms were treated as riding with C—H = 0.97 Å for (CH2) and C—H = 0.93 Å for aromatic H atoms, both with Uiso(H) = 1.2Ueq. The H atoms of the water molecule were refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Unit-cell packing diagram of the title compound with hydrogen bonds shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.
Aquadioxido(2-{[(2-oxidoethyl)imino]methyl}phenolato-κ3O,N,O')molybdenum(VI) top
Crystal data top
[Mo(C9H9NO2)O2(H2O)]F(000) = 616
Mr = 309.13Dx = 1.909 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.9710 (3) ÅCell parameters from 6907 reflections
b = 6.7026 (1) Åθ = 2.8–27.2°
c = 10.8673 (2) ŵ = 1.22 mm1
β = 99.486 (1)°T = 296 K
V = 1075.56 (3) Å3Block, yellow
Z = 40.25 × 0.16 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
2263 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.012
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
θmax = 27.2°, θmin = 1.4°
Tmin = 0.813, Tmax = 0.934h = 1918
8837 measured reflectionsk = 88
2392 independent reflectionsl = 1313
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.016H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.042 w = 1/[σ2(Fo2) + (0.0163P)2 + 0.8254P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
2392 reflectionsΔρmax = 0.31 e Å3
153 parametersΔρmin = 0.30 e Å3
Crystal data top
[Mo(C9H9NO2)O2(H2O)]V = 1075.56 (3) Å3
Mr = 309.13Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.9710 (3) ŵ = 1.22 mm1
b = 6.7026 (1) ÅT = 296 K
c = 10.8673 (2) Å0.25 × 0.16 × 0.10 mm
β = 99.486 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2392 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
2263 reflections with I > 2σ(I)
Tmin = 0.813, Tmax = 0.934Rint = 0.012
8837 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0160 restraints
wR(F2) = 0.042H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.31 e Å3
2392 reflectionsΔρmin = 0.30 e Å3
153 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.37800 (15)0.3126 (3)0.4461 (2)0.0394 (5)
H1A0.32810.37580.47780.047*
H1B0.42810.40600.45410.047*
C20.34936 (14)0.2553 (3)0.31132 (19)0.0384 (5)
H2A0.40180.22230.27340.046*
H2B0.31690.36410.26490.046*
C30.22629 (12)0.0467 (3)0.22157 (16)0.0288 (4)
H30.21740.13790.15620.035*
C40.16677 (11)0.1238 (3)0.21392 (16)0.0267 (4)
C50.09354 (13)0.1343 (3)0.11473 (18)0.0371 (4)
H50.08460.03130.05670.044*
C60.03507 (13)0.2930 (4)0.10178 (19)0.0427 (5)
H60.01360.29610.03650.051*
C70.04887 (13)0.4486 (4)0.1865 (2)0.0404 (5)
H70.00900.55610.17800.049*
C80.12118 (13)0.4458 (3)0.28334 (18)0.0331 (4)
H80.13040.55250.33870.040*
C90.18051 (11)0.2837 (3)0.29870 (15)0.0244 (3)
Mo10.32157 (2)0.08935 (2)0.49415 (2)0.02134 (5)
N10.29025 (10)0.0807 (2)0.31202 (14)0.0254 (3)
O10.40476 (8)0.13539 (19)0.51476 (12)0.0286 (3)
O20.25056 (8)0.29088 (18)0.39282 (11)0.0275 (3)
O30.42590 (10)0.2153 (2)0.37755 (13)0.0306 (3)
O40.37757 (10)0.2275 (2)0.61586 (12)0.0372 (3)
O50.23417 (9)0.0248 (2)0.54594 (13)0.0392 (3)
H1O0.4715 (17)0.176 (4)0.395 (2)0.037 (7)*
H2O0.4144 (17)0.221 (4)0.305 (3)0.048 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0454 (11)0.0219 (9)0.0463 (12)0.0080 (8)0.0058 (9)0.0057 (8)
C20.0417 (11)0.0331 (10)0.0382 (11)0.0118 (8)0.0003 (8)0.0154 (8)
C30.0325 (9)0.0312 (9)0.0219 (8)0.0039 (7)0.0024 (7)0.0059 (7)
C40.0239 (8)0.0331 (9)0.0223 (8)0.0025 (7)0.0019 (6)0.0033 (7)
C50.0344 (10)0.0460 (12)0.0274 (9)0.0061 (9)0.0045 (8)0.0021 (9)
C60.0301 (10)0.0601 (14)0.0341 (10)0.0005 (9)0.0064 (8)0.0154 (10)
C70.0325 (10)0.0508 (13)0.0384 (11)0.0142 (9)0.0068 (8)0.0183 (10)
C80.0351 (10)0.0363 (10)0.0286 (9)0.0097 (8)0.0075 (7)0.0061 (8)
C90.0231 (8)0.0295 (9)0.0207 (8)0.0010 (7)0.0038 (6)0.0059 (7)
Mo10.02586 (8)0.02184 (8)0.01569 (8)0.00375 (5)0.00161 (5)0.00128 (5)
N10.0283 (7)0.0234 (7)0.0241 (7)0.0011 (6)0.0031 (6)0.0047 (6)
O10.0297 (6)0.0241 (6)0.0295 (6)0.0054 (5)0.0023 (5)0.0007 (5)
O20.0306 (6)0.0243 (6)0.0247 (6)0.0054 (5)0.0035 (5)0.0023 (5)
O30.0250 (7)0.0404 (8)0.0251 (7)0.0017 (6)0.0007 (5)0.0052 (6)
O40.0479 (8)0.0381 (8)0.0219 (6)0.0062 (6)0.0049 (6)0.0085 (6)
O50.0370 (7)0.0451 (8)0.0382 (8)0.0037 (6)0.0144 (6)0.0072 (7)
Geometric parameters (Å, º) top
C1—O11.425 (2)C6—H60.9300
C1—C21.507 (3)C7—C81.380 (3)
C1—H1A0.9700C7—H70.9300
C1—H1B0.9700C8—C91.396 (2)
C2—N11.468 (2)C8—H80.9300
C2—H2A0.9700C9—O21.3397 (19)
C2—H2B0.9700Mo1—O51.6902 (14)
C3—N11.275 (2)Mo1—O41.7160 (13)
C3—C41.443 (3)Mo1—O11.9438 (12)
C3—H30.9300Mo1—O21.9446 (12)
C4—C91.406 (3)Mo1—N12.2652 (14)
C4—C51.407 (2)Mo1—O32.3259 (14)
C5—C61.370 (3)O3—H1O0.73 (2)
C5—H50.9300O3—H2O0.78 (3)
C6—C71.384 (3)
O1—C1—C2107.86 (16)C7—C8—H8119.8
O1—C1—H1A110.1C9—C8—H8119.8
C2—C1—H1A110.1O2—C9—C8117.79 (16)
O1—C1—H1B110.1O2—C9—C4122.62 (15)
C2—C1—H1B110.1C8—C9—C4119.56 (16)
H1A—C1—H1B108.4O5—Mo1—O4107.11 (7)
N1—C2—C1105.88 (15)O5—Mo1—O197.32 (6)
N1—C2—H2A110.6O4—Mo1—O196.15 (6)
C1—C2—H2A110.6O5—Mo1—O297.01 (6)
N1—C2—H2B110.6O4—Mo1—O2102.33 (6)
C1—C2—H2B110.6O1—Mo1—O2152.09 (5)
H2A—C2—H2B108.7O5—Mo1—N190.18 (6)
N1—C3—C4124.35 (16)O4—Mo1—N1161.73 (6)
N1—C3—H3117.8O1—Mo1—N175.35 (5)
C4—C3—H3117.8O2—Mo1—N180.78 (5)
C9—C4—C5118.37 (17)O5—Mo1—O3166.38 (6)
C9—C4—C3122.93 (15)O4—Mo1—O386.41 (6)
C5—C4—C3118.66 (17)O1—Mo1—O382.47 (5)
C6—C5—C4121.4 (2)O2—Mo1—O378.05 (5)
C6—C5—H5119.3N1—Mo1—O376.56 (5)
C4—C5—H5119.3C3—N1—C2121.04 (15)
C5—C6—C7119.60 (18)C3—N1—Mo1127.21 (12)
C5—C6—H6120.2C2—N1—Mo1111.56 (11)
C7—C6—H6120.2C1—O1—Mo1117.80 (11)
C8—C7—C6120.62 (19)C9—O2—Mo1133.92 (11)
C8—C7—H7119.7Mo1—O3—H1O114.5 (19)
C6—C7—H7119.7Mo1—O3—H2O120.8 (18)
C7—C8—C9120.37 (19)H1O—O3—H2O109 (3)
O1—C1—C2—N146.2 (2)C3—C4—C9—O20.6 (3)
N1—C3—C4—C98.2 (3)C5—C4—C9—C80.8 (3)
N1—C3—C4—C5174.14 (18)C3—C4—C9—C8178.44 (16)
C9—C4—C5—C61.7 (3)C4—C3—N1—C2178.44 (18)
C3—C4—C5—C6179.50 (19)C4—C3—N1—Mo17.0 (3)
C4—C5—C6—C71.2 (3)C1—C2—N1—C3149.68 (18)
C5—C6—C7—C80.3 (3)C1—C2—N1—Mo125.66 (19)
C6—C7—C8—C91.3 (3)C2—C1—O1—Mo151.2 (2)
C7—C8—C9—O2178.67 (17)C8—C9—O2—Mo1152.01 (14)
C7—C8—C9—C40.7 (3)C4—C9—O2—Mo130.1 (2)
C5—C4—C9—O2177.10 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O···O1i0.73 (2)1.97 (3)2.6656 (19)161 (3)
O3—H2O···O4ii0.78 (3)2.07 (3)2.8425 (19)173 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z1/2.
Selected bond lengths (Å) top
Mo1—O51.6902 (14)Mo1—O21.9446 (12)
Mo1—O41.7160 (13)Mo1—N12.2652 (14)
Mo1—O11.9438 (12)Mo1—O32.3259 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O···O1i0.73 (2)1.97 (3)2.6656 (19)161 (3)
O3—H2O···O4ii0.78 (3)2.07 (3)2.8425 (19)173 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank the Department of Science and Technology (DST), Government of India, for funding the National Centre for Catalysis Research (NCCR), IIT-Madras. They also thank Mr V. Ramkumar and Dr R. Jagan for the data collection and technical assistance in the preparation of the manuscript.

References

First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurke, A. (2008). Coord. Chem. Rev. 252, 170–175.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKühn, F. E. J., Zhao, J. & Herrmann, W. A. (2005). Tetrahedron Asymmetry, 16, 3469–3479.  Google Scholar
First citationMasteri-Farahani, M., Farzaneh, F. & Ghandi, M. J. (2006). J. Mol. Catal. A Chem. 248, 53–60.  Google Scholar
First citationMaurya, R. (2012). Curr. Org Chem. 16, 73–88.  Google Scholar
First citationRayati, S., Rafiee, N. & Wojtczak, A. (2012). Inorg. Chim. Acta, 386, 27–35.  Google Scholar
First citationSakthivel, A., Zhao, J., Raudaschl-Sieber, G., Hanzlik, M., Chiang, A. S. T. & Kühn, F. E. (2005). Appl. Catal. Gen. 281, 267–273.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSherrington, D. C. (2000). Catal. Today, 57, 87–104.  Google Scholar
First citationTangestaninejad, S., Moghadam, M., Mirkhani, V., Mohammadpoor-Baltork, I. & Ghani, K. (2008). J. Iran Chem. Soc. 5, s71–S79.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages m35-m36
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds