metal-organic compounds
κ3O,N,O′)molybdenum(VI)
of aquadioxido(2-{[(2-oxidoethyl)imino]methyl}phenolato-aNational Centre for Catalysis Research and Department of Chemistry, Indian Institute of Technology-Madras, Chennai 600 036, India, bNew Industry Creation Hatchery Center, Tohoku University, Sendai 980 8579, Japan, and cSchool of Science and Health, University of Western Australia, Sydney, Penrith, NSW 275, Australia
*Correspondence e-mail: selvam@iitm.ac.in
The mononuclear title complex, [Mo(C9H9NO2)O2(H2O)], contains an Mo(VI) atom in a distorted octahedral coordination sphere defined by an Mo=O and an Mo—(OH2) bond to the axial ligands and two Mo—O bonds to phenolate and alcoholate O atoms, another Mo=O bond and one Mo—N bond to the imino N atom in the equatorial plane. The five-membered metalla-ring shows an In the crystal, individual molecules are connected into a layered arrangement parallel to (100) by means of O—H⋯O hydrogen bonds involving the water molecule as a donor group and the O atoms of neighbouring complexes as acceptor atoms. These interactions lead to the formation of a three-dimensional network.
CCDC reference: 1044382
1. Related literature
For dioxidomolybdenum complexes used as potential oxidation catalysts for the epoxidation of et al. (2005); Masteri-Farahani et al. (2006). For chiral molybdenum complexes, see: Burke (2008); Kühn et al. (2005). These compounds are good catalysts for the oxidation of organic compounds, see: Rayati et al. (2012). For heterogenization of polymer-supported molybdenum complexes, see: Sherrington et al. (2000); Maurya (2012), and for molybdenum systems on silica supports, see: Tangestaninejad et al. (2008).
see: Sakthivel2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
|
Data collection: APEX2 (Bruker, 2012); cell SAINT (Bruker, 2012); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 1044382
10.1107/S2056989015001231/wm5114sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015001231/wm5114Isup2.hkl
Molybdenyl acetylacetone (MoO2(acac)2) (4.03 g, 0.012 mol) dissolved in methanol (20 ml) was added to a refluxing solution of salicylaldehyde (2.62 ml, 0.012 mol) and ethanolamine (1.5 ml, 0.012 mol) in ethanol (30 ml). The mixture was refluxed for five hours, and the solvent removed under vacuum at room temperature. The resulting yellow solution was filtered, evaporated slowly, to yield yellow crystals. The crystals were purified by washing with ethanol/methanol mixture and dried at room temperature. The obtained crystals have incorporated water. The used solvents ethanol and methanol have not been dried prior to the reaction and thus contain water. Another source of water is the condensation reaction between salicylaldehyde and ethanolamine.
All H atoms were identified from difference electron density maps. However, C-bound H atoms were treated as riding with C—H = 0.97 Å for (CH2) and C—H = 0.93 Å for aromatic H atoms, both with Uiso(H) = 1.2Ueq. The H atoms of the water molecule were refined freely.
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).[Mo(C9H9NO2)O2(H2O)] | F(000) = 616 |
Mr = 309.13 | Dx = 1.909 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 14.9710 (3) Å | Cell parameters from 6907 reflections |
b = 6.7026 (1) Å | θ = 2.8–27.2° |
c = 10.8673 (2) Å | µ = 1.22 mm−1 |
β = 99.486 (1)° | T = 296 K |
V = 1075.56 (3) Å3 | Block, yellow |
Z = 4 | 0.25 × 0.16 × 0.10 mm |
Bruker APEXII CCD diffractometer | 2263 reflections with I > 2σ(I) |
ϕ and ω scans | Rint = 0.012 |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | θmax = 27.2°, θmin = 1.4° |
Tmin = 0.813, Tmax = 0.934 | h = −19→18 |
8837 measured reflections | k = −8→8 |
2392 independent reflections | l = −13→13 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.016 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.042 | w = 1/[σ2(Fo2) + (0.0163P)2 + 0.8254P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max = 0.001 |
2392 reflections | Δρmax = 0.31 e Å−3 |
153 parameters | Δρmin = −0.30 e Å−3 |
[Mo(C9H9NO2)O2(H2O)] | V = 1075.56 (3) Å3 |
Mr = 309.13 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 14.9710 (3) Å | µ = 1.22 mm−1 |
b = 6.7026 (1) Å | T = 296 K |
c = 10.8673 (2) Å | 0.25 × 0.16 × 0.10 mm |
β = 99.486 (1)° |
Bruker APEXII CCD diffractometer | 2392 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | 2263 reflections with I > 2σ(I) |
Tmin = 0.813, Tmax = 0.934 | Rint = 0.012 |
8837 measured reflections |
R[F2 > 2σ(F2)] = 0.016 | 0 restraints |
wR(F2) = 0.042 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | Δρmax = 0.31 e Å−3 |
2392 reflections | Δρmin = −0.30 e Å−3 |
153 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.37800 (15) | −0.3126 (3) | 0.4461 (2) | 0.0394 (5) | |
H1A | 0.3281 | −0.3758 | 0.4778 | 0.047* | |
H1B | 0.4281 | −0.4060 | 0.4541 | 0.047* | |
C2 | 0.34936 (14) | −0.2553 (3) | 0.31132 (19) | 0.0384 (5) | |
H2A | 0.4018 | −0.2223 | 0.2734 | 0.046* | |
H2B | 0.3169 | −0.3641 | 0.2649 | 0.046* | |
C3 | 0.22629 (12) | −0.0467 (3) | 0.22157 (16) | 0.0288 (4) | |
H3 | 0.2174 | −0.1379 | 0.1562 | 0.035* | |
C4 | 0.16677 (11) | 0.1238 (3) | 0.21392 (16) | 0.0267 (4) | |
C5 | 0.09354 (13) | 0.1343 (3) | 0.11473 (18) | 0.0371 (4) | |
H5 | 0.0846 | 0.0313 | 0.0567 | 0.044* | |
C6 | 0.03507 (13) | 0.2930 (4) | 0.10178 (19) | 0.0427 (5) | |
H6 | −0.0136 | 0.2961 | 0.0365 | 0.051* | |
C7 | 0.04887 (13) | 0.4486 (4) | 0.1865 (2) | 0.0404 (5) | |
H7 | 0.0090 | 0.5561 | 0.1780 | 0.049* | |
C8 | 0.12118 (13) | 0.4458 (3) | 0.28334 (18) | 0.0331 (4) | |
H8 | 0.1304 | 0.5525 | 0.3387 | 0.040* | |
C9 | 0.18051 (11) | 0.2837 (3) | 0.29870 (15) | 0.0244 (3) | |
Mo1 | 0.32157 (2) | 0.08935 (2) | 0.49415 (2) | 0.02134 (5) | |
N1 | 0.29025 (10) | −0.0807 (2) | 0.31202 (14) | 0.0254 (3) | |
O1 | 0.40476 (8) | −0.13539 (19) | 0.51476 (12) | 0.0286 (3) | |
O2 | 0.25056 (8) | 0.29088 (18) | 0.39282 (11) | 0.0275 (3) | |
O3 | 0.42590 (10) | 0.2153 (2) | 0.37755 (13) | 0.0306 (3) | |
O4 | 0.37757 (10) | 0.2275 (2) | 0.61586 (12) | 0.0372 (3) | |
O5 | 0.23417 (9) | −0.0248 (2) | 0.54594 (13) | 0.0392 (3) | |
H1O | 0.4715 (17) | 0.176 (4) | 0.395 (2) | 0.037 (7)* | |
H2O | 0.4144 (17) | 0.221 (4) | 0.305 (3) | 0.048 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0454 (11) | 0.0219 (9) | 0.0463 (12) | 0.0080 (8) | −0.0058 (9) | −0.0057 (8) |
C2 | 0.0417 (11) | 0.0331 (10) | 0.0382 (11) | 0.0118 (8) | −0.0003 (8) | −0.0154 (8) |
C3 | 0.0325 (9) | 0.0312 (9) | 0.0219 (8) | −0.0039 (7) | 0.0024 (7) | −0.0059 (7) |
C4 | 0.0239 (8) | 0.0331 (9) | 0.0223 (8) | −0.0025 (7) | 0.0019 (6) | 0.0033 (7) |
C5 | 0.0344 (10) | 0.0460 (12) | 0.0274 (9) | −0.0061 (9) | −0.0045 (8) | 0.0021 (9) |
C6 | 0.0301 (10) | 0.0601 (14) | 0.0341 (10) | −0.0005 (9) | −0.0064 (8) | 0.0154 (10) |
C7 | 0.0325 (10) | 0.0508 (13) | 0.0384 (11) | 0.0142 (9) | 0.0068 (8) | 0.0183 (10) |
C8 | 0.0351 (10) | 0.0363 (10) | 0.0286 (9) | 0.0097 (8) | 0.0075 (7) | 0.0061 (8) |
C9 | 0.0231 (8) | 0.0295 (9) | 0.0207 (8) | 0.0010 (7) | 0.0038 (6) | 0.0059 (7) |
Mo1 | 0.02586 (8) | 0.02184 (8) | 0.01569 (8) | 0.00375 (5) | 0.00161 (5) | −0.00128 (5) |
N1 | 0.0283 (7) | 0.0234 (7) | 0.0241 (7) | 0.0011 (6) | 0.0031 (6) | −0.0047 (6) |
O1 | 0.0297 (6) | 0.0241 (6) | 0.0295 (6) | 0.0054 (5) | −0.0023 (5) | −0.0007 (5) |
O2 | 0.0306 (6) | 0.0243 (6) | 0.0247 (6) | 0.0054 (5) | −0.0035 (5) | −0.0023 (5) |
O3 | 0.0250 (7) | 0.0404 (8) | 0.0251 (7) | 0.0017 (6) | 0.0007 (5) | 0.0052 (6) |
O4 | 0.0479 (8) | 0.0381 (8) | 0.0219 (6) | 0.0062 (6) | −0.0049 (6) | −0.0085 (6) |
O5 | 0.0370 (7) | 0.0451 (8) | 0.0382 (8) | 0.0037 (6) | 0.0144 (6) | 0.0072 (7) |
C1—O1 | 1.425 (2) | C6—H6 | 0.9300 |
C1—C2 | 1.507 (3) | C7—C8 | 1.380 (3) |
C1—H1A | 0.9700 | C7—H7 | 0.9300 |
C1—H1B | 0.9700 | C8—C9 | 1.396 (2) |
C2—N1 | 1.468 (2) | C8—H8 | 0.9300 |
C2—H2A | 0.9700 | C9—O2 | 1.3397 (19) |
C2—H2B | 0.9700 | Mo1—O5 | 1.6902 (14) |
C3—N1 | 1.275 (2) | Mo1—O4 | 1.7160 (13) |
C3—C4 | 1.443 (3) | Mo1—O1 | 1.9438 (12) |
C3—H3 | 0.9300 | Mo1—O2 | 1.9446 (12) |
C4—C9 | 1.406 (3) | Mo1—N1 | 2.2652 (14) |
C4—C5 | 1.407 (2) | Mo1—O3 | 2.3259 (14) |
C5—C6 | 1.370 (3) | O3—H1O | 0.73 (2) |
C5—H5 | 0.9300 | O3—H2O | 0.78 (3) |
C6—C7 | 1.384 (3) | ||
O1—C1—C2 | 107.86 (16) | C7—C8—H8 | 119.8 |
O1—C1—H1A | 110.1 | C9—C8—H8 | 119.8 |
C2—C1—H1A | 110.1 | O2—C9—C8 | 117.79 (16) |
O1—C1—H1B | 110.1 | O2—C9—C4 | 122.62 (15) |
C2—C1—H1B | 110.1 | C8—C9—C4 | 119.56 (16) |
H1A—C1—H1B | 108.4 | O5—Mo1—O4 | 107.11 (7) |
N1—C2—C1 | 105.88 (15) | O5—Mo1—O1 | 97.32 (6) |
N1—C2—H2A | 110.6 | O4—Mo1—O1 | 96.15 (6) |
C1—C2—H2A | 110.6 | O5—Mo1—O2 | 97.01 (6) |
N1—C2—H2B | 110.6 | O4—Mo1—O2 | 102.33 (6) |
C1—C2—H2B | 110.6 | O1—Mo1—O2 | 152.09 (5) |
H2A—C2—H2B | 108.7 | O5—Mo1—N1 | 90.18 (6) |
N1—C3—C4 | 124.35 (16) | O4—Mo1—N1 | 161.73 (6) |
N1—C3—H3 | 117.8 | O1—Mo1—N1 | 75.35 (5) |
C4—C3—H3 | 117.8 | O2—Mo1—N1 | 80.78 (5) |
C9—C4—C5 | 118.37 (17) | O5—Mo1—O3 | 166.38 (6) |
C9—C4—C3 | 122.93 (15) | O4—Mo1—O3 | 86.41 (6) |
C5—C4—C3 | 118.66 (17) | O1—Mo1—O3 | 82.47 (5) |
C6—C5—C4 | 121.4 (2) | O2—Mo1—O3 | 78.05 (5) |
C6—C5—H5 | 119.3 | N1—Mo1—O3 | 76.56 (5) |
C4—C5—H5 | 119.3 | C3—N1—C2 | 121.04 (15) |
C5—C6—C7 | 119.60 (18) | C3—N1—Mo1 | 127.21 (12) |
C5—C6—H6 | 120.2 | C2—N1—Mo1 | 111.56 (11) |
C7—C6—H6 | 120.2 | C1—O1—Mo1 | 117.80 (11) |
C8—C7—C6 | 120.62 (19) | C9—O2—Mo1 | 133.92 (11) |
C8—C7—H7 | 119.7 | Mo1—O3—H1O | 114.5 (19) |
C6—C7—H7 | 119.7 | Mo1—O3—H2O | 120.8 (18) |
C7—C8—C9 | 120.37 (19) | H1O—O3—H2O | 109 (3) |
O1—C1—C2—N1 | −46.2 (2) | C3—C4—C9—O2 | 0.6 (3) |
N1—C3—C4—C9 | 8.2 (3) | C5—C4—C9—C8 | 0.8 (3) |
N1—C3—C4—C5 | −174.14 (18) | C3—C4—C9—C8 | 178.44 (16) |
C9—C4—C5—C6 | −1.7 (3) | C4—C3—N1—C2 | −178.44 (18) |
C3—C4—C5—C6 | −179.50 (19) | C4—C3—N1—Mo1 | 7.0 (3) |
C4—C5—C6—C7 | 1.2 (3) | C1—C2—N1—C3 | −149.68 (18) |
C5—C6—C7—C8 | 0.3 (3) | C1—C2—N1—Mo1 | 25.66 (19) |
C6—C7—C8—C9 | −1.3 (3) | C2—C1—O1—Mo1 | 51.2 (2) |
C7—C8—C9—O2 | 178.67 (17) | C8—C9—O2—Mo1 | 152.01 (14) |
C7—C8—C9—C4 | 0.7 (3) | C4—C9—O2—Mo1 | −30.1 (2) |
C5—C4—C9—O2 | −177.10 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1O···O1i | 0.73 (2) | 1.97 (3) | 2.6656 (19) | 161 (3) |
O3—H2O···O4ii | 0.78 (3) | 2.07 (3) | 2.8425 (19) | 173 (3) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, −y+1/2, z−1/2. |
Mo1—O5 | 1.6902 (14) | Mo1—O2 | 1.9446 (12) |
Mo1—O4 | 1.7160 (13) | Mo1—N1 | 2.2652 (14) |
Mo1—O1 | 1.9438 (12) | Mo1—O3 | 2.3259 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1O···O1i | 0.73 (2) | 1.97 (3) | 2.6656 (19) | 161 (3) |
O3—H2O···O4ii | 0.78 (3) | 2.07 (3) | 2.8425 (19) | 173 (3) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, −y+1/2, z−1/2. |
Acknowledgements
The authors thank the Department of Science and Technology (DST), Government of India, for funding the National Centre for Catalysis Research (NCCR), IIT-Madras. They also thank Mr V. Ramkumar and Dr R. Jagan for the data collection and technical assistance in the preparation of the manuscript.
References
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burke, A. (2008). Coord. Chem. Rev. 252, 170–175. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kühn, F. E. J., Zhao, J. & Herrmann, W. A. (2005). Tetrahedron Asymmetry, 16, 3469–3479. Google Scholar
Masteri-Farahani, M., Farzaneh, F. & Ghandi, M. J. (2006). J. Mol. Catal. A Chem. 248, 53–60. Google Scholar
Maurya, R. (2012). Curr. Org Chem. 16, 73–88. Google Scholar
Rayati, S., Rafiee, N. & Wojtczak, A. (2012). Inorg. Chim. Acta, 386, 27–35. Google Scholar
Sakthivel, A., Zhao, J., Raudaschl-Sieber, G., Hanzlik, M., Chiang, A. S. T. & Kühn, F. E. (2005). Appl. Catal. Gen. 281, 267–273. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sherrington, D. C. (2000). Catal. Today, 57, 87–104. Google Scholar
Tangestaninejad, S., Moghadam, M., Mirkhani, V., Mohammadpoor-Baltork, I. & Ghani, K. (2008). J. Iran Chem. Soc. 5, s71–S79. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.