metal-organic compounds
κ2N,O)copper(II)
of bis(2-{[(3-bromopropyl)imino]methyl}phenolato-aLaboratoire d'Electrochimie, d'Ingénierie Moléculaire et de Catalyse Redox (LEIMCR), Faculté des Sciences de l'Ingénieur, Université Farhat Abbas, Sétif 19000, Algeria, bDépartement Sciences de la Matière, Faculté des sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria, and cUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine 1, 25000 , Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr
In the title compound, [Cu(C10H11BrNO)2], the consists of one-half of the molecule, the other half being generated by an inversion centre. Hence the CuII cation is symmetrically coordinated by two bidentate Schiff base anions in a slightly distorted square-planar environment with Cu—O and Cu—N bond lengths of 1.8786 (19) and 2.009 (2) Å, respectively. In the crystal, individual molecules are packed in alternating zigzag layers parallel to (001). Weak C—H⋯π interactions exist between the molecules.
Keywords: crystal structure; copper(II) complex; C—H⋯π interactions.
CCDC reference: 1044698
1. Related literature
For synthesis and applications of similar complexes derived from salicylaldehyde, see: Ghelenji et al. (2011); Kia et al. (2010); Zhang et al. (2013). For the importance of copper in biological systems, see: Siegel (1973); Mohan et al. (1998). For isotypic structures, see: Floyd et al. (2005); Ourari et al. (2015).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
Data collection: APEX2 (Bruker, 2011); cell SAINT (Bruker, 2011); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 1044698
10.1107/S2056989015001309/wm5116sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015001309/wm5116Isup2.hkl
Ligand (HL) synthesis: 331.5 mg (1.5 mmol) of 2-bromopropyl ammonium hydrobromide were dissolved in absolute ethanol (15 ml). First, 756 mg (1.5 mmol; excess of 5%) and then 183 mg salicylaldehyde, each dissolved in 10 ml of absolute ethanol, were added and the resulting solution was refluxed under nitrogen atmosphere for 2 h at 333 K. The solvent was removed under reduced pressure and 15 ml of dichloromethane were added to the residue obtained. The mixture was stirred for 15 min, filtered and the solvent evaporated, resulting in a yellow viscous oil (yield: 82%).
Synthesis of the copper complex (I): 215 mg ligand HL (1 mmol) were placed in 10 ml of absolute ethanol. 99.8 mg of copper acetate monohydrate (0.5 mmol), dissolved in 5 ml of absolute ethanol, were added to this solution. The content of the flask was refluxed under stirring and nitrogen atmosphere for 2 h at 333 K. The precipitate obtained was filtered, washed with ethanol and then dried in an oven at moderate temperature (yield 70%; m. p. 393 K). Suitable single crystals were obtained from acetone solution by slow evaporation yielding green single crystals.
H atoms were localized in Fourier maps but introduced in calculated positions and treated as riding on their parent atom, with C—H = 0.97 Å (methylene) or 0.93 Å (aromatic) and with Uiso(H) = 1.2Ueq. Reflection 101 was obstructed from the beam stop and was omitted from the refinement.
Data collection: APEX2 (Bruker, 2011); cell
SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).[Cu(C10H11BrNO)2] | F(000) = 542.0 |
Mr = 545.75 | Dx = 1.757 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 10.6478 (4) Å | Cell parameters from 3645 reflections |
b = 7.1990 (3) Å | θ = 3.2–27.7° |
c = 13.9283 (5) Å | µ = 4.95 mm−1 |
β = 104.900 (2)° | T = 295 K |
V = 1031.75 (7) Å3 | Prism, green |
Z = 2 | 0.19 × 0.18 × 0.15 mm |
Bruker APEXII diffractometer | 2088 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
CCD rotation images, thin slices scans | θmax = 28.5°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2011) | h = −12→14 |
Tmin = 0.677, Tmax = 0.796 | k = −9→6 |
8212 measured reflections | l = −18→18 |
2594 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.089 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0419P)2 + 0.8205P] where P = (Fo2 + 2Fc2)/3 |
2594 reflections | (Δ/σ)max = 0.001 |
124 parameters | Δρmax = 0.62 e Å−3 |
0 restraints | Δρmin = −0.58 e Å−3 |
[Cu(C10H11BrNO)2] | V = 1031.75 (7) Å3 |
Mr = 545.75 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.6478 (4) Å | µ = 4.95 mm−1 |
b = 7.1990 (3) Å | T = 295 K |
c = 13.9283 (5) Å | 0.19 × 0.18 × 0.15 mm |
β = 104.900 (2)° |
Bruker APEXII diffractometer | 2594 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2011) | 2088 reflections with I > 2σ(I) |
Tmin = 0.677, Tmax = 0.796 | Rint = 0.020 |
8212 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.089 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.62 e Å−3 |
2594 reflections | Δρmin = −0.58 e Å−3 |
124 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 1 | 0 | 1 | 0.03472 (12) | |
Br1 | 1.32859 (3) | −0.62235 (6) | 0.86101 (3) | 0.06803 (14) | |
O1 | 0.81891 (18) | −0.0114 (3) | 0.98050 (16) | 0.0559 (6) | |
N1 | 0.99577 (19) | −0.2004 (3) | 0.89887 (15) | 0.0350 (4) | |
C5 | 0.7594 (2) | −0.2139 (3) | 0.84019 (19) | 0.0368 (5) | |
C8 | 0.5014 (3) | −0.1335 (4) | 0.8310 (2) | 0.0476 (7) | |
H8 | 0.4152 | −0.1059 | 0.8282 | 0.057* | |
C4 | 0.8909 (2) | −0.2635 (4) | 0.84046 (19) | 0.0382 (5) | |
H4 | 0.9006 | −0.3503 | 0.7934 | 0.046* | |
C9 | 0.5984 (3) | −0.0546 (4) | 0.9037 (2) | 0.0468 (6) | |
H9 | 0.5767 | 0.0251 | 0.9494 | 0.056* | |
C6 | 0.6576 (3) | −0.2913 (4) | 0.7663 (2) | 0.0492 (7) | |
H6 | 0.677 | −0.3702 | 0.7192 | 0.059* | |
C3 | 1.1185 (2) | −0.2808 (4) | 0.88563 (19) | 0.0394 (5) | |
H3A | 1.1795 | −0.1817 | 0.8837 | 0.047* | |
H3B | 1.1011 | −0.3469 | 0.8229 | 0.047* | |
C10 | 0.7306 (2) | −0.0917 (4) | 0.91054 (19) | 0.0392 (5) | |
C2 | 1.1783 (3) | −0.4136 (4) | 0.9701 (2) | 0.0471 (6) | |
H2A | 1.1776 | −0.3551 | 1.0326 | 0.056* | |
H2B | 1.1249 | −0.5245 | 0.9633 | 0.056* | |
C7 | 0.5294 (3) | −0.2529 (5) | 0.7621 (2) | 0.0522 (7) | |
H7 | 0.4628 | −0.3068 | 0.7134 | 0.063* | |
C1 | 1.3158 (3) | −0.4696 (4) | 0.9730 (2) | 0.0493 (7) | |
H1A | 1.3521 | −0.5375 | 1.034 | 0.059* | |
H1B | 1.3676 | −0.3584 | 0.9742 | 0.059* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0302 (2) | 0.0403 (2) | 0.0355 (2) | −0.00058 (17) | 0.01176 (16) | −0.00451 (17) |
Br1 | 0.0490 (2) | 0.0798 (3) | 0.0742 (2) | 0.01763 (16) | 0.01380 (16) | −0.01284 (18) |
O1 | 0.0347 (9) | 0.0754 (15) | 0.0616 (12) | −0.0084 (9) | 0.0195 (9) | −0.0318 (11) |
N1 | 0.0324 (10) | 0.0359 (11) | 0.0380 (10) | 0.0046 (8) | 0.0115 (8) | 0.0000 (8) |
C5 | 0.0342 (12) | 0.0326 (12) | 0.0428 (13) | 0.0009 (10) | 0.0083 (10) | 0.0000 (10) |
C8 | 0.0324 (12) | 0.0529 (17) | 0.0582 (16) | 0.0005 (12) | 0.0129 (12) | 0.0067 (13) |
C4 | 0.0403 (12) | 0.0333 (12) | 0.0416 (13) | 0.0047 (10) | 0.0118 (10) | −0.0034 (10) |
C9 | 0.0382 (13) | 0.0504 (15) | 0.0570 (16) | −0.0021 (12) | 0.0213 (12) | −0.0063 (13) |
C6 | 0.0428 (14) | 0.0445 (15) | 0.0576 (17) | 0.0020 (12) | 0.0082 (12) | −0.0117 (13) |
C3 | 0.0372 (12) | 0.0427 (14) | 0.0405 (13) | 0.0073 (11) | 0.0141 (10) | −0.0014 (11) |
C10 | 0.0344 (12) | 0.0411 (14) | 0.0443 (13) | −0.0041 (10) | 0.0140 (10) | −0.0024 (11) |
C2 | 0.0452 (15) | 0.0470 (16) | 0.0515 (15) | 0.0099 (12) | 0.0172 (12) | 0.0093 (13) |
C7 | 0.0359 (13) | 0.0553 (17) | 0.0590 (17) | −0.0034 (13) | 0.0008 (12) | −0.0053 (14) |
C1 | 0.0411 (14) | 0.0502 (17) | 0.0534 (16) | 0.0057 (12) | 0.0062 (12) | 0.0030 (13) |
Cu1—O1i | 1.8786 (19) | C4—H4 | 0.93 |
Cu1—O1 | 1.8786 (19) | C9—C10 | 1.412 (4) |
Cu1—N1 | 2.009 (2) | C9—H9 | 0.93 |
Cu1—N1i | 2.009 (2) | C6—C7 | 1.380 (4) |
Br1—C1 | 1.942 (3) | C6—H6 | 0.93 |
O1—C10 | 1.302 (3) | C3—C2 | 1.522 (4) |
N1—C4 | 1.284 (3) | C3—H3A | 0.97 |
N1—C3 | 1.484 (3) | C3—H3B | 0.97 |
C5—C6 | 1.404 (4) | C2—C1 | 1.509 (4) |
C5—C10 | 1.408 (4) | C2—H2A | 0.97 |
C5—C4 | 1.444 (3) | C2—H2B | 0.97 |
C8—C9 | 1.369 (4) | C7—H7 | 0.93 |
C8—C7 | 1.377 (4) | C1—H1A | 0.97 |
C8—H8 | 0.93 | C1—H1B | 0.97 |
O1i—Cu1—O1 | 180.0000 (10) | N1—C3—C2 | 110.9 (2) |
O1i—Cu1—N1 | 88.28 (8) | N1—C3—H3A | 109.5 |
O1—Cu1—N1 | 91.72 (8) | C2—C3—H3A | 109.5 |
O1i—Cu1—N1i | 91.72 (8) | N1—C3—H3B | 109.5 |
O1—Cu1—N1i | 88.28 (8) | C2—C3—H3B | 109.5 |
N1—Cu1—N1i | 180.0000 (10) | H3A—C3—H3B | 108.1 |
C10—O1—Cu1 | 130.10 (17) | O1—C10—C5 | 123.6 (2) |
C4—N1—C3 | 115.7 (2) | O1—C10—C9 | 118.8 (2) |
C4—N1—Cu1 | 123.89 (16) | C5—C10—C9 | 117.6 (2) |
C3—N1—Cu1 | 120.39 (16) | C1—C2—C3 | 113.5 (2) |
C6—C5—C10 | 119.5 (2) | C1—C2—H2A | 108.9 |
C6—C5—C4 | 118.0 (2) | C3—C2—H2A | 108.9 |
C10—C5—C4 | 122.5 (2) | C1—C2—H2B | 108.9 |
C9—C8—C7 | 121.1 (3) | C3—C2—H2B | 108.9 |
C9—C8—H8 | 119.4 | H2A—C2—H2B | 107.7 |
C7—C8—H8 | 119.4 | C8—C7—C6 | 118.9 (3) |
N1—C4—C5 | 126.8 (2) | C8—C7—H7 | 120.5 |
N1—C4—H4 | 116.6 | C6—C7—H7 | 120.5 |
C5—C4—H4 | 116.6 | C2—C1—Br1 | 113.4 (2) |
C8—C9—C10 | 121.4 (3) | C2—C1—H1A | 108.9 |
C8—C9—H9 | 119.3 | Br1—C1—H1A | 108.9 |
C10—C9—H9 | 119.3 | C2—C1—H1B | 108.9 |
C7—C6—C5 | 121.4 (3) | Br1—C1—H1B | 108.9 |
C7—C6—H6 | 119.3 | H1A—C1—H1B | 107.7 |
C5—C6—H6 | 119.3 | ||
N1—Cu1—O1—C10 | −13.1 (3) | Cu1—N1—C3—C2 | 75.6 (3) |
N1i—Cu1—O1—C10 | 166.9 (3) | Cu1—O1—C10—C5 | 9.8 (4) |
O1i—Cu1—N1—C4 | −170.0 (2) | Cu1—O1—C10—C9 | −169.8 (2) |
O1—Cu1—N1—C4 | 10.0 (2) | C6—C5—C10—O1 | −178.9 (3) |
O1i—Cu1—N1—C3 | 7.98 (19) | C4—C5—C10—O1 | 1.0 (4) |
O1—Cu1—N1—C3 | −172.02 (19) | C6—C5—C10—C9 | 0.8 (4) |
C3—N1—C4—C5 | 177.6 (2) | C4—C5—C10—C9 | −179.4 (3) |
Cu1—N1—C4—C5 | −4.3 (4) | C8—C9—C10—O1 | 179.3 (3) |
C6—C5—C4—N1 | 176.5 (3) | C8—C9—C10—C5 | −0.3 (4) |
C10—C5—C4—N1 | −3.3 (4) | N1—C3—C2—C1 | −168.0 (2) |
C7—C8—C9—C10 | 0.3 (5) | C9—C8—C7—C6 | −0.7 (5) |
C10—C5—C6—C7 | −1.2 (4) | C5—C6—C7—C8 | 1.1 (5) |
C4—C5—C6—C7 | 179.0 (3) | C3—C2—C1—Br1 | −67.5 (3) |
C4—N1—C3—C2 | −106.3 (3) |
Symmetry code: (i) −x+2, −y, −z+2. |
Cg1 is the centroid of the C5–C10 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···Cg1ii | 0.97 | 2.74 | 3.645 (4) | 155 |
C4—H4···Cg1iii | 0.93 | 2.90 | 3.805 (3) | 164 |
Symmetry codes: (ii) −x+2, −y−1, −z+2; (iii) −x+3/2, y−1/2, −z+3/2. |
Cg1 is the centroid of the C5–C10 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···Cg1i | 0.97 | 2.74 | 3.645 (4) | 155 |
C4—H4···Cg1ii | 0.93 | 2.90 | 3.805 (3) | 164 |
Symmetry codes: (i) −x+2, −y−1, −z+2; (ii) −x+3/2, y−1/2, −z+3/2. |
Acknowledgements
We acknowledge the MESRS and DG–RSDT (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique et la Direction Générale de la Recherche - Algérie) for financial support.
References
Brandenburg, K. (2001). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Floyd, J. M., Gray, G. M., VanEngen Spivey, A. G., Lawson, C. M., Pritchett, T. M., Ferry, M. J., Hoffman, R. C. & Mott, A. G. (2005). Inorg. Chim. Acta, 358, 3773–3785. Google Scholar
Ghelenji, S., Kargar, H., Sharafi, Z. & Kia, R. (2011). Acta Cryst. E67, m1393. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kia, R., Kargar, H., Zare, K. & Khan, I. U. (2010). Acta Cryst. E66, m366–m367. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mohan, A., Radha, K. & Srinivas Mohan, M. (1998). Asian J. Chem., 10, 50–55. Google Scholar
Ourari, A., Zoubeidi, C., Derafa, W., Bouacida, S. & Merazig, H. (2015). Spectrochim. Acta Part A. Submitted. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siegel, H. (1973). Metal Ions in Biological Systems, Vol. 2, ch. 2. New York: Marcel Dekker. Google Scholar
Zhang, S. H., Zhang, Y. D., Zou, H. H., Guo, J. J., Li, H. P., Song, Y. & Liang, H. (2013). Inorg. Chim. Acta, 396, 119–125. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.