metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages m33-m34

Crystal structure of bis­­(2-{[(3-bromo­prop­yl)imino]­meth­yl}phenolato-κ2N,O)copper(II)

aLaboratoire d'Electrochimie, d'Ingénierie Moléculaire et de Catalyse Redox (LEIMCR), Faculté des Sciences de l'Ingénieur, Université Farhat Abbas, Sétif 19000, Algeria, bDépartement Sciences de la Matière, Faculté des sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria, and cUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine 1, 25000 , Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

Edited by M. Weil, Vienna University of Technology, Austria (Received 16 January 2015; accepted 21 January 2015; online 24 January 2015)

In the title compound, [Cu(C10H11BrNO)2], the asymmetric unit consists of one-half of the mol­ecule, the other half being generated by an inversion centre. Hence the CuII cation is symmetrically coordinated by two bidentate Schiff base anions in a slightly distorted square-planar environment with Cu—O and Cu—N bond lengths of 1.8786 (19) and 2.009 (2) Å, respectively. In the crystal, individual mol­ecules are packed in alternating zigzag layers parallel to (001). Weak C—H⋯π inter­actions exist between the mol­ecules.

1. Related literature

For synthesis and applications of similar complexes derived from salicyl­aldehyde, see: Ghelenji et al. (2011[Ghelenji, S., Kargar, H., Sharafi, Z. & Kia, R. (2011). Acta Cryst. E67, m1393.]); Kia et al. (2010[Kia, R., Kargar, H., Zare, K. & Khan, I. U. (2010). Acta Cryst. E66, m366-m367.]); Zhang et al. (2013[Zhang, S. H., Zhang, Y. D., Zou, H. H., Guo, J. J., Li, H. P., Song, Y. & Liang, H. (2013). Inorg. Chim. Acta, 396, 119-125.]). For the importance of copper in biological systems, see: Siegel (1973[Siegel, H. (1973). Metal Ions in Biological Systems, Vol. 2, ch. 2. New York: Marcel Dekker.]); Mohan et al. (1998[Mohan, A., Radha, K. & Srinivas Mohan, M. (1998). Asian J. Chem., 10, 50-55.]). For isotypic structures, see: Floyd et al. (2005[Floyd, J. M., Gray, G. M., VanEngen Spivey, A. G., Lawson, C. M., Pritchett, T. M., Ferry, M. J., Hoffman, R. C. & Mott, A. G. (2005). Inorg. Chim. Acta, 358, 3773-3785.]); Ourari et al. (2015[Ourari, A., Zoubeidi, C., Derafa, W., Bouacida, S. & Merazig, H. (2015). Spectrochim. Acta Part A. Submitted.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Cu(C10H11BrNO)2]

  • Mr = 545.75

  • Monoclinic, P 21 /n

  • a = 10.6478 (4) Å

  • b = 7.1990 (3) Å

  • c = 13.9283 (5) Å

  • β = 104.900 (2)°

  • V = 1031.75 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.95 mm−1

  • T = 295 K

  • 0.19 × 0.18 × 0.15 mm

2.2. Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.677, Tmax = 0.796

  • 8212 measured reflections

  • 2594 independent reflections

  • 2088 reflections with I > 2σ(I)

  • Rint = 0.020

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.089

  • S = 1.04

  • 2594 reflections

  • 124 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C5–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1ACg1i 0.97 2.74 3.645 (4) 155
C4—H4⋯Cg1ii 0.93 2.90 3.805 (3) 164
Symmetry codes: (i) -x+2, -y-1, -z+2; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Related literature top

For synthesis and applications of similar complexes derived from salicylaldehyde, see: Ghelenji et al. (2011); Kia et al. (2010); Zhang et al. (2013). For the importance of copper in biological systems, see: Siegel (1973); Mohan et al. (1998). For isotypic structures, see: Floyd et al. (2005); Ourari et al. (2015).

Experimental top

Ligand (HL) synthesis: 331.5 mg (1.5 mmol) of 2-bromopropyl ammonium hydrobromide were dissolved in absolute ethanol (15 ml). First, 756 mg (1.5 mmol; excess of 5%) and then 183 mg salicylaldehyde, each dissolved in 10 ml of absolute ethanol, were added and the resulting solution was refluxed under nitrogen atmosphere for 2 h at 333 K. The solvent was removed under reduced pressure and 15 ml of dichloromethane were added to the residue obtained. The mixture was stirred for 15 min, filtered and the solvent evaporated, resulting in a yellow viscous oil (yield: 82%).

Synthesis of the copper complex (I): 215 mg ligand HL (1 mmol) were placed in 10 ml of absolute ethanol. 99.8 mg of copper acetate monohydrate (0.5 mmol), dissolved in 5 ml of absolute ethanol, were added to this solution. The content of the flask was refluxed under stirring and nitrogen atmosphere for 2 h at 333 K. The precipitate obtained was filtered, washed with ethanol and then dried in an oven at moderate temperature (yield 70%; m. p. 393 K). Suitable single crystals were obtained from acetone solution by slow evaporation yielding green single crystals.

Refinement top

H atoms were localized in Fourier maps but introduced in calculated positions and treated as riding on their parent atom, with C—H = 0.97 Å (methylene) or 0.93 Å (aromatic) and with Uiso(H) = 1.2Ueq. Reflection 101 was obstructed from the beam stop and was omitted from the refinement.

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level. Non-labelled atoms are generated by symmetry code -x+2, -y, -z+2.
[Figure 2] Fig. 2. Formation of alternating zigzag layers parallel to (001).
[Figure 3] Fig. 3. A view of the layers along [010].
Bis(2-{[(3-bromopropyl)imino]methyl}phenolato-κ2N,O)copper(II) top
Crystal data top
[Cu(C10H11BrNO)2]F(000) = 542.0
Mr = 545.75Dx = 1.757 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.6478 (4) ÅCell parameters from 3645 reflections
b = 7.1990 (3) Åθ = 3.2–27.7°
c = 13.9283 (5) ŵ = 4.95 mm1
β = 104.900 (2)°T = 295 K
V = 1031.75 (7) Å3Prism, green
Z = 20.19 × 0.18 × 0.15 mm
Data collection top
Bruker APEXII
diffractometer
2088 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
CCD rotation images, thin slices scansθmax = 28.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
h = 1214
Tmin = 0.677, Tmax = 0.796k = 96
8212 measured reflectionsl = 1818
2594 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0419P)2 + 0.8205P]
where P = (Fo2 + 2Fc2)/3
2594 reflections(Δ/σ)max = 0.001
124 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Cu(C10H11BrNO)2]V = 1031.75 (7) Å3
Mr = 545.75Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.6478 (4) ŵ = 4.95 mm1
b = 7.1990 (3) ÅT = 295 K
c = 13.9283 (5) Å0.19 × 0.18 × 0.15 mm
β = 104.900 (2)°
Data collection top
Bruker APEXII
diffractometer
2594 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
2088 reflections with I > 2σ(I)
Tmin = 0.677, Tmax = 0.796Rint = 0.020
8212 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.04Δρmax = 0.62 e Å3
2594 reflectionsΔρmin = 0.58 e Å3
124 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11010.03472 (12)
Br11.32859 (3)0.62235 (6)0.86101 (3)0.06803 (14)
O10.81891 (18)0.0114 (3)0.98050 (16)0.0559 (6)
N10.99577 (19)0.2004 (3)0.89887 (15)0.0350 (4)
C50.7594 (2)0.2139 (3)0.84019 (19)0.0368 (5)
C80.5014 (3)0.1335 (4)0.8310 (2)0.0476 (7)
H80.41520.10590.82820.057*
C40.8909 (2)0.2635 (4)0.84046 (19)0.0382 (5)
H40.90060.35030.79340.046*
C90.5984 (3)0.0546 (4)0.9037 (2)0.0468 (6)
H90.57670.02510.94940.056*
C60.6576 (3)0.2913 (4)0.7663 (2)0.0492 (7)
H60.6770.37020.71920.059*
C31.1185 (2)0.2808 (4)0.88563 (19)0.0394 (5)
H3A1.17950.18170.88370.047*
H3B1.10110.34690.82290.047*
C100.7306 (2)0.0917 (4)0.91054 (19)0.0392 (5)
C21.1783 (3)0.4136 (4)0.9701 (2)0.0471 (6)
H2A1.17760.35511.03260.056*
H2B1.12490.52450.96330.056*
C70.5294 (3)0.2529 (5)0.7621 (2)0.0522 (7)
H70.46280.30680.71340.063*
C11.3158 (3)0.4696 (4)0.9730 (2)0.0493 (7)
H1A1.35210.53751.0340.059*
H1B1.36760.35840.97420.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0302 (2)0.0403 (2)0.0355 (2)0.00058 (17)0.01176 (16)0.00451 (17)
Br10.0490 (2)0.0798 (3)0.0742 (2)0.01763 (16)0.01380 (16)0.01284 (18)
O10.0347 (9)0.0754 (15)0.0616 (12)0.0084 (9)0.0195 (9)0.0318 (11)
N10.0324 (10)0.0359 (11)0.0380 (10)0.0046 (8)0.0115 (8)0.0000 (8)
C50.0342 (12)0.0326 (12)0.0428 (13)0.0009 (10)0.0083 (10)0.0000 (10)
C80.0324 (12)0.0529 (17)0.0582 (16)0.0005 (12)0.0129 (12)0.0067 (13)
C40.0403 (12)0.0333 (12)0.0416 (13)0.0047 (10)0.0118 (10)0.0034 (10)
C90.0382 (13)0.0504 (15)0.0570 (16)0.0021 (12)0.0213 (12)0.0063 (13)
C60.0428 (14)0.0445 (15)0.0576 (17)0.0020 (12)0.0082 (12)0.0117 (13)
C30.0372 (12)0.0427 (14)0.0405 (13)0.0073 (11)0.0141 (10)0.0014 (11)
C100.0344 (12)0.0411 (14)0.0443 (13)0.0041 (10)0.0140 (10)0.0024 (11)
C20.0452 (15)0.0470 (16)0.0515 (15)0.0099 (12)0.0172 (12)0.0093 (13)
C70.0359 (13)0.0553 (17)0.0590 (17)0.0034 (13)0.0008 (12)0.0053 (14)
C10.0411 (14)0.0502 (17)0.0534 (16)0.0057 (12)0.0062 (12)0.0030 (13)
Geometric parameters (Å, º) top
Cu1—O1i1.8786 (19)C4—H40.93
Cu1—O11.8786 (19)C9—C101.412 (4)
Cu1—N12.009 (2)C9—H90.93
Cu1—N1i2.009 (2)C6—C71.380 (4)
Br1—C11.942 (3)C6—H60.93
O1—C101.302 (3)C3—C21.522 (4)
N1—C41.284 (3)C3—H3A0.97
N1—C31.484 (3)C3—H3B0.97
C5—C61.404 (4)C2—C11.509 (4)
C5—C101.408 (4)C2—H2A0.97
C5—C41.444 (3)C2—H2B0.97
C8—C91.369 (4)C7—H70.93
C8—C71.377 (4)C1—H1A0.97
C8—H80.93C1—H1B0.97
O1i—Cu1—O1180.0000 (10)N1—C3—C2110.9 (2)
O1i—Cu1—N188.28 (8)N1—C3—H3A109.5
O1—Cu1—N191.72 (8)C2—C3—H3A109.5
O1i—Cu1—N1i91.72 (8)N1—C3—H3B109.5
O1—Cu1—N1i88.28 (8)C2—C3—H3B109.5
N1—Cu1—N1i180.0000 (10)H3A—C3—H3B108.1
C10—O1—Cu1130.10 (17)O1—C10—C5123.6 (2)
C4—N1—C3115.7 (2)O1—C10—C9118.8 (2)
C4—N1—Cu1123.89 (16)C5—C10—C9117.6 (2)
C3—N1—Cu1120.39 (16)C1—C2—C3113.5 (2)
C6—C5—C10119.5 (2)C1—C2—H2A108.9
C6—C5—C4118.0 (2)C3—C2—H2A108.9
C10—C5—C4122.5 (2)C1—C2—H2B108.9
C9—C8—C7121.1 (3)C3—C2—H2B108.9
C9—C8—H8119.4H2A—C2—H2B107.7
C7—C8—H8119.4C8—C7—C6118.9 (3)
N1—C4—C5126.8 (2)C8—C7—H7120.5
N1—C4—H4116.6C6—C7—H7120.5
C5—C4—H4116.6C2—C1—Br1113.4 (2)
C8—C9—C10121.4 (3)C2—C1—H1A108.9
C8—C9—H9119.3Br1—C1—H1A108.9
C10—C9—H9119.3C2—C1—H1B108.9
C7—C6—C5121.4 (3)Br1—C1—H1B108.9
C7—C6—H6119.3H1A—C1—H1B107.7
C5—C6—H6119.3
N1—Cu1—O1—C1013.1 (3)Cu1—N1—C3—C275.6 (3)
N1i—Cu1—O1—C10166.9 (3)Cu1—O1—C10—C59.8 (4)
O1i—Cu1—N1—C4170.0 (2)Cu1—O1—C10—C9169.8 (2)
O1—Cu1—N1—C410.0 (2)C6—C5—C10—O1178.9 (3)
O1i—Cu1—N1—C37.98 (19)C4—C5—C10—O11.0 (4)
O1—Cu1—N1—C3172.02 (19)C6—C5—C10—C90.8 (4)
C3—N1—C4—C5177.6 (2)C4—C5—C10—C9179.4 (3)
Cu1—N1—C4—C54.3 (4)C8—C9—C10—O1179.3 (3)
C6—C5—C4—N1176.5 (3)C8—C9—C10—C50.3 (4)
C10—C5—C4—N13.3 (4)N1—C3—C2—C1168.0 (2)
C7—C8—C9—C100.3 (5)C9—C8—C7—C60.7 (5)
C10—C5—C6—C71.2 (4)C5—C6—C7—C81.1 (5)
C4—C5—C6—C7179.0 (3)C3—C2—C1—Br167.5 (3)
C4—N1—C3—C2106.3 (3)
Symmetry code: (i) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cg1ii0.972.743.645 (4)155
C4—H4···Cg1iii0.932.903.805 (3)164
Symmetry codes: (ii) x+2, y1, z+2; (iii) x+3/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cg1i0.972.743.645 (4)155
C4—H4···Cg1ii0.932.903.805 (3)164
Symmetry codes: (i) x+2, y1, z+2; (ii) x+3/2, y1/2, z+3/2.
 

Acknowledgements

We acknowledge the MESRS and DG–RSDT (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique et la Direction Générale de la Recherche - Algérie) for financial support.

References

First citationBrandenburg, K. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFloyd, J. M., Gray, G. M., VanEngen Spivey, A. G., Lawson, C. M., Pritchett, T. M., Ferry, M. J., Hoffman, R. C. & Mott, A. G. (2005). Inorg. Chim. Acta, 358, 3773–3785.  Google Scholar
First citationGhelenji, S., Kargar, H., Sharafi, Z. & Kia, R. (2011). Acta Cryst. E67, m1393.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKia, R., Kargar, H., Zare, K. & Khan, I. U. (2010). Acta Cryst. E66, m366–m367.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMohan, A., Radha, K. & Srinivas Mohan, M. (1998). Asian J. Chem., 10, 50–55.  Google Scholar
First citationOurari, A., Zoubeidi, C., Derafa, W., Bouacida, S. & Merazig, H. (2015). Spectrochim. Acta Part A. Submitted.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiegel, H. (1973). Metal Ions in Biological Systems, Vol. 2, ch. 2. New York: Marcel Dekker.  Google Scholar
First citationZhang, S. H., Zhang, Y. D., Zou, H. H., Guo, J. J., Li, H. P., Song, Y. & Liang, H. (2013). Inorg. Chim. Acta, 396, 119–125.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages m33-m34
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds