metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages m46-m47

Crystal structure of di­chlorido­{N1-phenyl-N4-[(quinolin-2-yl-κN)methyl­idene]benzene-1,4-di­amine-κN4}mercury(II)

aDepartment of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India, bDepartment of Chemistry, Kyiv National University of Construction and Architecture, Povitroflotsky Avenue 31, 03680 Kiev, Ukraine, and cNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kyiv, Ukraine
*Correspondence e-mail: eprisyazhnaya@ukr.net

Edited by M. Weil, Vienna University of Technology, Austria (Received 19 January 2015; accepted 24 January 2015; online 31 January 2015)

In the mononuclear title complex, [HgCl2(C22H17N3)], synthesized from the quinoline-derived Schiff base N1-phenyl-N4-[(quinolin-2-yl)methyl­idene]benzene-1,4-di­amine (PQMBD) and HgCl2, the coordination sphere around the Hg2+ atom is distorted tetra­hedral, comprising two Cl atoms [Hg—Cl = 2.3487 (14) and 2.4490 (15) Å] and two N atom donors from the PQMBD ligand, viz. the quinolyl and the imine N atom [Hg—N = 2.270 (4) and 2.346 (4) Å, respectively]. The dihedral angle between the two benzene rings attached to the amino group is 43.7 (3)°. In the crystal, N—H⋯Cl and C—H⋯Cl hydrogen bonds, as well as ππ stacking inter­actions between one phenyl ring and the pyridine ring of the quinoline moiety of an adjacent mol­ecule [centroid-to-centroid separation = 3.617 (4) Å] are observed, resulting in a three-dimensional network.

1. Related literature

For the haza­rds of mercury in organisms, see: Mandal et al. (2012[Mandal, A. K., Suresh, M., Das, P., Suresh, E., Baidya, M., Ghosh, S. K. & Das, A. (2012). Org. Lett. 14, 2980-2983.]). For reports of quinolyl derivatives of Schiff bases, see: Motswainyana et al. (2013[Motswainyana, W. M., Onani, M. O., Madiehe, A. M., Saibu, M., Jacobs, J. & van Meervelt, L. (2013). Inorg. Chim. Acta, 400, 197-202.]); Das et al. (2013[Das, P., Mandal, A. K., Reddy, G. U., Baidya, M., Ghosh, S. K. & Das, A. (2013). Org. Biomol. Chem. 11, 6604-6614.]); Song et al. (2011[Song, S., Zhao, W., Wang, L., Redshaw, C., Wang, F. & Sun, W.-H. (2011). J. Organomet. Chem. 696, 3029-3035.]); Jursic et al. (2002[Jursic, B. S., Douelle, F., Bowdy, K. & Stevens, E. D. (2002). Tetrahedron Lett. 43, 5361-5365.]). For background to related Schiff base–metal complexes, see: Faizi & Hussain (2014[Faizi, M. S. H. & Hussain, S. (2014). Acta Cryst. E70, m197.]); Faizi et al. (2014[Faizi, M. S. H., Mashrai, A., Garandal, S. & Shahid, M. (2014). Acta Cryst. E70, o905-o906.]); Moroz et al. (2012[Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445-7447.]). For related Hg-containing structures, see: Marjani et al. (2009[Marjani, K., Asgarian, J., Mousavi, M. & Amani, V. (2009). Z. Anorg. Allg. Chem. 635, 1633-1637.]); Faizi & Sen (2014[Faizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m173.]), and for related Schiff base complexes, see: Penkova et al. (2009[Penkova, L. V., Maci\,ag, A., Rybak-Akimova, E. V., Haukka, M., Pavlenko, V. A., Iskenderov, T. S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2009). Inorg. Chem. 48, 6960-6971.], 2010[Penkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chim. Acta, 363, 3036-3040.]); Strotmeyer et al. (2003[Strotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529-547.]); Petrusenko et al. (1997[Petrusenko, S. R., Kokozay, V. N. & Fritsky, I. O. (1997). Polyhedron, 16, 267-274.]). The amino group of the title compound is separated from the chelating unit which makes this complex a possible precursor for further functionalization, eventually yielding binuclear compounds as reported by Fritsky et al. (1998[Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269-3274.], 2006[Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125-4127.]) and Kanderal et al. (2005[Kanderal, O. M., Kozlowski, H., Dobosz, A., Swiatek-Kozlowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428-1437.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [HgCl2(C22H17N3)]

  • Mr = 594.88

  • Monoclinic, C 2/c

  • a = 29.265 (5) Å

  • b = 7.5671 (13) Å

  • c = 18.811 (3) Å

  • β = 99.271 (7)°

  • V = 4111.4 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 7.76 mm−1

  • T = 100 K

  • 0.18 × 0.15 × 0.10 mm

2.2. Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.336, Tmax = 0.511

  • 22545 measured reflections

  • 5133 independent reflections

  • 3182 reflections with I > 2σ(I)

  • Rint = 0.059

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.087

  • S = 1.00

  • 5133 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.99 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯Cl2i 0.86 2.58 3.363 (4) 151
C10—H10⋯Cl2ii 0.93 2.81 3.679 (7) 157
C20—H20⋯Cl1iii 0.93 2.80 3.692 (11) 160
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2006[Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact, Bonn, Germany.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Related literature top

For the hazards of mercury in organisms, see: Mandal et al. (2012). For reports of quinolyl derivatives of Schiff bases, see: Motswainyana et al. (2013); Das et al. (2013); Song et al. (2011); Jursic et al. (2002). For background to related Schiff base–metal complexes, see: Faizi & Hussain (2014); Faizi et al. (2014); Moroz et al. (2012). For related Hg-containing structures, see: Marjani et al. (2009); Faizi & Sen (2014), and for related Schiff base complexes, see: Penkova et al. (2009, 2010); Strotmeyer et al. (2003); Petrusenko et al. (1997). The amino group of the title compound is separated from the chelating unit which makes this complex a possible precursor for further functionalization, eventually yielding binuclear compounds as reported by Fritsky et al. (1998, 2006) and Kanderal et al. (2005).

Experimental top

The iminoquinolyl ligand N1-phenyl-N4-[(quinolin-2-yl)methylidene]benzene-1,4-diamine (PQMBD) was prepared by reacting 2-quinolinecarboxaldehyde (0.085 g, 0.54 mmol) with one equivalent of N-phenyl-p-phenylenediamine (0.100 g, 0.54 mmol) and was obtained in 88% yield (0.15 g). The obtained compound was characterized by FT–IR, NMR and ESI-mass spectroscopy: IR (KBr, ν / cm-1): 3417, 3052 (C-H arom), 1620 (CN), 1515, 1313, 843, 756. 1H NMR (400 MHz, CDCl3, δ /p.p.m.): 8.85 (1H, S), 8.37 (1H, d), 8.23 (1H, d), 8.16 (1H, d), 7.86 (1H, d), 7.75 (1H, t), 7.58 (1H, t), 7.40 (2H, d), 7.30 (1H, t), 7.13 (5H, m), 6.51 (1H, t). ESI-MS m/z: 324 (M+1).

PQMBD (0.10 g, 0.31 mmol), mercury(II) chloride (0.08 g, 0.31 mmol) and ethanol (5 ml) were stirred vigorously for 1 h, after which the precipitate was filtered off and redissolved in dimethylformamide. Crystals of the title complex suitable for X-ray analysis was obtained within 3 days by slow evaporation of the DMF solvent.

Refinement top

The N-bound H-atom was located in a difference Fourier maps, and the positions restrained to N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N). All other H-atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2006) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure and the atom-numbering scheme of the title complex, with non-H atoms drawn as displacement ellipsoids at the 40% probability level.
[Figure 2] Fig. 2. N—H···Cl hydrogen bonds between adjacent molecules as viewed along [010].
[Figure 3] Fig. 3. The packing of molecules in the title compound, showing intermolecular interactions as dashed lines.
Dichlorido{N1-phenyl-N4-[(quinolin-2-yl-κN)methylidene]benzene-1,4-diamine-κN4}mercury(II) top
Crystal data top
[HgCl2(C22H17N3)]F(000) = 2272
Mr = 594.88Dx = 1.922 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7479 reflections
a = 29.265 (5) Åθ = 2.8–24.6°
b = 7.5671 (13) ŵ = 7.76 mm1
c = 18.811 (3) ÅT = 100 K
β = 99.271 (7)°Block, colourless
V = 4111.4 (12) Å30.18 × 0.15 × 0.10 mm
Z = 8
Data collection top
Bruker SMART APEX CCD
diffractometer
5133 independent reflections
Radiation source: fine-focus sealed tube3182 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ω scansθmax = 28.4°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 3838
Tmin = 0.336, Tmax = 0.511k = 109
22545 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0374P)2 + 1.5818P]
where P = (Fo2 + 2Fc2)/3
5133 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 0.99 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
[HgCl2(C22H17N3)]V = 4111.4 (12) Å3
Mr = 594.88Z = 8
Monoclinic, C2/cMo Kα radiation
a = 29.265 (5) ŵ = 7.76 mm1
b = 7.5671 (13) ÅT = 100 K
c = 18.811 (3) Å0.18 × 0.15 × 0.10 mm
β = 99.271 (7)°
Data collection top
Bruker SMART APEX CCD
diffractometer
5133 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
3182 reflections with I > 2σ(I)
Tmin = 0.336, Tmax = 0.511Rint = 0.059
22545 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.00Δρmax = 0.99 e Å3
5133 reflectionsΔρmin = 0.56 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.42861 (15)0.2191 (5)0.5298 (2)0.0396 (10)
N20.50810 (14)0.2420 (6)0.4703 (2)0.0389 (10)
N30.65162 (17)0.3036 (7)0.3095 (2)0.0603 (14)
H3A0.64100.30370.26410.072*
C110.54666 (17)0.2526 (7)0.4348 (2)0.0373 (12)
C100.50915 (18)0.2791 (7)0.5369 (3)0.0422 (13)
H100.53690.31440.56440.051*
C170.6984 (2)0.3274 (7)0.3265 (3)0.0507 (14)
C120.59004 (18)0.3146 (7)0.4656 (2)0.0431 (13)
H120.59520.34670.51400.052*
C10.3891 (2)0.2106 (7)0.5581 (3)0.0475 (14)
C160.5400 (2)0.2029 (7)0.3633 (3)0.0509 (15)
H160.51150.15880.34180.061*
C90.46781 (18)0.2673 (7)0.5702 (3)0.0392 (12)
C150.5752 (2)0.2181 (8)0.3236 (3)0.0572 (16)
H150.56970.18610.27530.069*
C130.62510 (18)0.3293 (7)0.4263 (3)0.0447 (13)
H130.65370.37290.44810.054*
C60.3892 (2)0.2468 (8)0.6324 (3)0.0479 (14)
C70.4309 (2)0.2985 (7)0.6737 (3)0.0543 (15)
H70.43190.32710.72200.065*
C80.4699 (2)0.3076 (8)0.6443 (3)0.0559 (16)
H80.49780.34000.67220.067*
C140.61872 (19)0.2795 (7)0.3533 (3)0.0469 (14)
Hg10.432753 (8)0.18401 (3)0.411137 (10)0.05198 (10)
Cl20.40186 (6)0.4552 (2)0.35050 (7)0.0702 (5)
Cl10.41693 (5)0.0647 (2)0.33652 (7)0.0593 (4)
C20.3473 (2)0.1623 (7)0.5149 (3)0.0553 (15)
H20.34710.13430.46670.066*
C40.3076 (2)0.1986 (8)0.6148 (4)0.0699 (19)
H40.27980.19880.63270.084*
C30.3070 (2)0.1557 (8)0.5420 (3)0.0656 (18)
H30.27950.12330.51290.079*
C50.3471 (2)0.2397 (9)0.6601 (3)0.0624 (17)
H50.34650.26280.70850.075*
C180.7240 (2)0.2570 (9)0.3877 (3)0.0632 (17)
H180.70960.19680.42100.076*
C190.7715 (3)0.2770 (13)0.3989 (4)0.098 (3)
H190.78900.22720.43960.118*
C220.7218 (3)0.4179 (9)0.2794 (3)0.0700 (19)
H220.70500.46960.23840.084*
C210.7680 (3)0.4324 (11)0.2915 (5)0.091 (3)
H210.78260.48860.25730.110*
C200.7937 (3)0.3686 (15)0.3512 (5)0.115 (4)
H200.82560.38560.36020.138*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.046 (3)0.040 (3)0.033 (2)0.002 (2)0.0060 (19)0.0038 (18)
N20.043 (3)0.040 (2)0.033 (2)0.003 (2)0.0032 (18)0.0005 (18)
N30.050 (3)0.101 (4)0.030 (2)0.000 (3)0.007 (2)0.001 (2)
C110.039 (3)0.041 (3)0.034 (3)0.001 (2)0.011 (2)0.006 (2)
C100.045 (3)0.044 (3)0.034 (3)0.003 (2)0.002 (2)0.007 (2)
C170.053 (4)0.056 (4)0.046 (3)0.003 (3)0.015 (3)0.004 (3)
C120.050 (3)0.050 (3)0.029 (2)0.002 (3)0.003 (2)0.002 (2)
C10.055 (4)0.040 (3)0.047 (3)0.009 (3)0.008 (3)0.008 (2)
C160.048 (3)0.064 (4)0.039 (3)0.007 (3)0.000 (2)0.014 (3)
C90.048 (3)0.038 (3)0.033 (3)0.007 (2)0.007 (2)0.000 (2)
C150.055 (4)0.085 (5)0.030 (3)0.009 (3)0.002 (3)0.013 (3)
C130.037 (3)0.058 (4)0.037 (3)0.005 (3)0.000 (2)0.007 (3)
C60.057 (4)0.048 (3)0.042 (3)0.006 (3)0.015 (3)0.009 (3)
C70.070 (4)0.061 (4)0.034 (3)0.002 (3)0.015 (3)0.003 (3)
C80.060 (4)0.071 (4)0.034 (3)0.001 (3)0.000 (3)0.003 (3)
C140.046 (3)0.058 (4)0.037 (3)0.005 (3)0.007 (2)0.000 (3)
Hg10.05736 (16)0.05833 (16)0.03782 (13)0.00317 (12)0.00037 (9)0.00853 (11)
Cl20.1027 (13)0.0504 (9)0.0476 (8)0.0032 (9)0.0178 (8)0.0030 (7)
Cl10.0732 (10)0.0508 (9)0.0524 (8)0.0083 (8)0.0053 (7)0.0122 (7)
C20.052 (4)0.064 (4)0.052 (3)0.002 (3)0.012 (3)0.000 (3)
C40.066 (4)0.078 (5)0.073 (5)0.007 (4)0.032 (4)0.001 (4)
C30.049 (4)0.078 (5)0.070 (4)0.003 (3)0.011 (3)0.007 (4)
C50.069 (5)0.068 (4)0.058 (4)0.009 (4)0.034 (4)0.010 (3)
C180.051 (4)0.087 (5)0.052 (4)0.003 (4)0.010 (3)0.009 (3)
C190.057 (5)0.174 (9)0.062 (4)0.006 (5)0.006 (4)0.022 (5)
C220.082 (5)0.076 (5)0.061 (4)0.009 (4)0.040 (4)0.008 (4)
C210.094 (6)0.097 (6)0.098 (6)0.031 (5)0.061 (5)0.025 (5)
C200.069 (6)0.179 (10)0.107 (7)0.036 (6)0.045 (5)0.069 (7)
Geometric parameters (Å, º) top
N1—C91.322 (6)C13—H130.9300
N1—C11.349 (7)C6—C71.394 (8)
N1—Hg12.270 (4)C6—C51.413 (8)
N2—C101.279 (6)C7—C81.347 (8)
N2—C111.402 (6)C7—H70.9300
N2—Hg12.346 (4)C8—H80.9300
N3—C171.367 (7)Hg1—Cl12.3487 (14)
N3—C141.377 (7)Hg1—Cl22.4490 (15)
N3—H3A0.8600C2—C31.359 (8)
C11—C161.380 (6)C2—H20.9300
C11—C121.389 (7)C4—C51.358 (9)
C10—C91.453 (7)C4—C31.403 (8)
C10—H100.9300C4—H40.9300
C17—C221.385 (8)C3—H30.9300
C17—C181.375 (8)C5—H50.9300
C12—C131.362 (7)C18—C191.381 (9)
C12—H120.9300C18—H180.9300
C1—C21.404 (8)C19—C201.375 (12)
C1—C61.425 (7)C19—H190.9300
C16—C151.370 (8)C22—C211.340 (9)
C16—H160.9300C22—H220.9300
C9—C81.418 (7)C21—C201.338 (11)
C15—C141.385 (7)C21—H210.9300
C15—H150.9300C20—H200.9300
C13—C141.409 (7)
C9—N1—C1120.4 (4)C6—C7—H7119.7
C9—N1—Hg1114.8 (3)C7—C8—C9119.1 (5)
C1—N1—Hg1124.5 (4)C7—C8—H8120.4
C10—N2—C11124.0 (4)C9—C8—H8120.4
C10—N2—Hg1112.2 (3)C15—C14—N3119.3 (5)
C11—N2—Hg1123.5 (3)C15—C14—C13116.8 (5)
C17—N3—C14130.3 (5)N3—C14—C13123.6 (5)
C17—N3—H3A114.8N1—Hg1—N272.96 (15)
C14—N3—H3A114.8N1—Hg1—Cl1130.14 (11)
C16—C11—C12118.3 (5)N2—Hg1—Cl1120.86 (11)
C16—C11—N2116.8 (5)N1—Hg1—Cl2106.60 (11)
C12—C11—N2124.9 (4)N2—Hg1—Cl2108.21 (11)
N2—C10—C9121.3 (5)Cl1—Hg1—Cl2111.75 (5)
N2—C10—H10119.4C3—C2—C1121.4 (6)
C9—C10—H10119.4C3—C2—H2119.3
N3—C17—C22119.6 (5)C1—C2—H2119.3
N3—C17—C18122.4 (5)C5—C4—C3122.7 (6)
C22—C17—C18118.0 (6)C5—C4—H4118.7
C13—C12—C11121.2 (4)C3—C4—H4118.7
C13—C12—H12119.4C2—C3—C4118.9 (6)
C11—C12—H12119.4C2—C3—H3120.6
N1—C1—C2120.5 (5)C4—C3—H3120.6
N1—C1—C6120.8 (5)C4—C5—C6118.8 (6)
C2—C1—C6118.7 (5)C4—C5—H5120.6
C15—C16—C11120.5 (5)C6—C5—H5120.6
C15—C16—H16119.7C19—C18—C17119.0 (6)
C11—C16—H16119.7C19—C18—H18120.5
N1—C9—C8121.4 (5)C17—C18—H18120.5
N1—C9—C10118.3 (4)C18—C19—C20121.7 (8)
C8—C9—C10120.3 (5)C18—C19—H19119.2
C16—C15—C14122.1 (5)C20—C19—H19119.2
C16—C15—H15118.9C21—C22—C17121.4 (7)
C14—C15—H15118.9C21—C22—H22119.3
C12—C13—C14121.0 (5)C17—C22—H22119.3
C12—C13—H13119.5C22—C21—C20121.9 (7)
C14—C13—H13119.5C22—C21—H21119.0
C7—C6—C5122.9 (5)C20—C21—H21119.0
C7—C6—C1117.6 (5)C21—C20—C19118.0 (8)
C5—C6—C1119.4 (6)C21—C20—H20121.0
C8—C7—C6120.6 (5)C19—C20—H20121.0
C8—C7—H7119.7
C10—N2—C11—C16178.2 (5)C16—C15—C14—N3175.4 (6)
Hg1—N2—C11—C168.8 (7)C16—C15—C14—C131.1 (9)
C10—N2—C11—C124.2 (8)C17—N3—C14—C15165.2 (6)
Hg1—N2—C11—C12168.9 (4)C17—N3—C14—C1320.9 (10)
C11—N2—C10—C9179.3 (5)C12—C13—C14—C150.9 (8)
Hg1—N2—C10—C95.6 (6)C12—C13—C14—N3174.9 (5)
C14—N3—C17—C22153.7 (6)C9—N1—Hg1—N25.3 (3)
C14—N3—C17—C1829.6 (10)C1—N1—Hg1—N2178.8 (4)
C16—C11—C12—C131.1 (8)C9—N1—Hg1—Cl1121.6 (3)
N2—C11—C12—C13176.5 (5)C1—N1—Hg1—Cl164.9 (4)
C9—N1—C1—C2178.9 (5)C9—N1—Hg1—Cl299.2 (3)
Hg1—N1—C1—C25.8 (7)C1—N1—Hg1—Cl274.3 (4)
C9—N1—C1—C62.3 (8)C10—N2—Hg1—N15.6 (3)
Hg1—N1—C1—C6175.5 (4)C11—N2—Hg1—N1179.4 (4)
C12—C11—C16—C151.3 (8)C10—N2—Hg1—Cl1132.7 (3)
N2—C11—C16—C15176.6 (5)C11—N2—Hg1—Cl153.5 (4)
C1—N1—C9—C81.3 (7)C10—N2—Hg1—Cl296.7 (4)
Hg1—N1—C9—C8175.1 (4)C11—N2—Hg1—Cl277.1 (4)
C1—N1—C9—C10178.3 (5)N1—C1—C2—C3178.9 (5)
Hg1—N1—C9—C104.6 (6)C6—C1—C2—C32.3 (8)
N2—C10—C9—N10.9 (8)C1—C2—C3—C40.1 (9)
N2—C10—C9—C8179.5 (5)C5—C4—C3—C22.7 (10)
C11—C16—C15—C141.3 (10)C3—C4—C5—C62.7 (10)
C11—C12—C13—C141.0 (8)C7—C6—C5—C4175.9 (6)
N1—C1—C6—C72.8 (8)C1—C6—C5—C40.1 (9)
C2—C1—C6—C7178.5 (5)N3—C17—C18—C19175.8 (6)
N1—C1—C6—C5178.9 (5)C22—C17—C18—C190.9 (10)
C2—C1—C6—C52.3 (8)C17—C18—C19—C201.4 (12)
C5—C6—C7—C8178.2 (6)N3—C17—C22—C21174.9 (6)
C1—C6—C7—C82.2 (9)C18—C17—C22—C211.9 (10)
C6—C7—C8—C91.3 (9)C17—C22—C21—C203.5 (13)
N1—C9—C8—C70.8 (8)C22—C21—C20—C193.8 (14)
C10—C9—C8—C7178.9 (5)C18—C19—C20—C212.8 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···Cl2i0.862.583.363 (4)151
C10—H10···Cl2ii0.932.813.679 (7)157
C20—H20···Cl1iii0.932.803.692 (11)160
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···Cl2i0.862.583.363 (4)151
C10—H10···Cl2ii0.932.813.679 (7)156.7
C20—H20···Cl1iii0.932.803.692 (11)160.0
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1/2, y+1/2, z.
 

Acknowledgements

The authors are grateful to the Department of Chemistry, IIT Kanpur, Kanpur 208 016, India, for the X-ray data collection.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDas, P., Mandal, A. K., Reddy, G. U., Baidya, M., Ghosh, S. K. & Das, A. (2013). Org. Biomol. Chem. 11, 6604–6614.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFaizi, M. S. H. & Hussain, S. (2014). Acta Cryst. E70, m197.  CSD CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H., Mashrai, A., Garandal, S. & Shahid, M. (2014). Acta Cryst. E70, o905–o906.  CSD CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m173.  CSD CrossRef IUCr Journals Google Scholar
First citationFritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127.  Web of Science CSD CrossRef Google Scholar
First citationFritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269–3274.  Web of Science CSD CrossRef Google Scholar
First citationJursic, B. S., Douelle, F., Bowdy, K. & Stevens, E. D. (2002). Tetrahedron Lett. 43, 5361–5365.  Web of Science CSD CrossRef CAS Google Scholar
First citationKanderal, O. M., Kozlowski, H., Dobosz, A., Swiatek-Kozlowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428–1437.  Web of Science CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMandal, A. K., Suresh, M., Das, P., Suresh, E., Baidya, M., Ghosh, S. K. & Das, A. (2012). Org. Lett. 14, 2980–2983.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMarjani, K., Asgarian, J., Mousavi, M. & Amani, V. (2009). Z. Anorg. Allg. Chem. 635, 1633–1637.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMotswainyana, W. M., Onani, M. O., Madiehe, A. M., Saibu, M., Jacobs, J. & van Meervelt, L. (2013). Inorg. Chim. Acta, 400, 197–202.  Web of Science CSD CrossRef CAS Google Scholar
First citationPenkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chim. Acta, 363, 3036–3040.  Web of Science CSD CrossRef CAS Google Scholar
First citationPenkova, L. V., Maci\,ag, A., Rybak-Akimova, E. V., Haukka, M., Pavlenko, V. A., Iskenderov, T. S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2009). Inorg. Chem. 48, 6960–6971.  Google Scholar
First citationPetrusenko, S. R., Kokozay, V. N. & Fritsky, I. O. (1997). Polyhedron, 16, 267–274.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSong, S., Zhao, W., Wang, L., Redshaw, C., Wang, F. & Sun, W.-H. (2011). J. Organomet. Chem. 696, 3029–3035.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStrotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529–547.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages m46-m47
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds