metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages m48-m49

Crystal structure of bis­­(tetra­phenyl­phospho­nium) bis­­(cyanido-κC)(29H,31H-tetra­benzo[b,g,l,q]porphinato-κ4N29,N30,N31,N32)ferrate(II) acetone disolvate

aDepartment of Chemistry, Kumamoto University, Kurokami 2-39-1, Chuo-ku, Kumamoto 860-8555, Japan, and bInstitute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
*Correspondence e-mail: masaki@sci.kumamoto-u.ac.jp

Edited by M. Weil, Vienna University of Technology, Austria (Received 20 January 2015; accepted 27 January 2015; online 31 January 2015)

The crystal structure of the title compound, (C24H20P)2[Fe(C36H20N4)(CN)2]·2C3H6O, is constructed from a tetra­hedral Ph4P+ (tetra­phenyl­phospho­nium) cation, one [Fe(tbp)(CN)2]2− anion (tbp = tetra­benzoporphyrin in its doubly deprotonated form), located on a centre of inversion, and an acetone mol­ecule as crystallization solvent. Since the mol­ecular structure of the M(tbp) moiety is insensitive to the kind of metal ion and its oxidation state, bond lengths and angles in the [Fe(tbp)(CN)2]2− anion are similar to those in other M(tbp) compounds. The Fe2+ ion, located on a centre of inversion, is coordinated by four N atoms of tpb in the equatorial plane and by two C atoms of the cyanide anion at axial positions in a slightly distorted octa­hedral configuration. The packing is stabilized by C—H⋯N inter­actions between the Ph4P+ cation and the CN ligand of the [Fe(tbp)(CN)2]2− anion, and by C—H⋯π inter­actions between the Ph4P+ cation, acetone solvent mol­ecules and the [Fe(tbp)(CN)2]2− anion.

1. Related literature

For [Fe(tbp)(CN)2] and [Co(tbp)(CN)2] complexes, see: Matsuda et al. (2011[Matsuda, M., Ohishi, H., Tofuku, M., Muramoto, N. & Yamaura, J. (2011). Chem. Lett. 40, 1257-1259.], 2014[Matsuda, M., Nishi, M., Koga, S., Fujishima, M., Hoshino, N., Akutagawa, T. & Hasegawa, H. (2014). Chem. Eur. J. 20, 11318-11321.]); Nishi et al. (2015[Nishi, M., Matsuda, M., Hoshino, N. & Akutagawa, T. (2015). Chem. Lett. 44. In the press.]). The crystal structure of metal-free tbp was reported by Aramaki & Mizuguchi (2003[Aramaki, S. & Mizuguchi, J. (2003). Acta Cryst. E59, o1556-o1558.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • (C24H20P)2[Fe(C36H20N4)(CN)2]·2C3H6O

  • Mr = 1411.35

  • Triclinic, [P \overline 1]

  • a = 11.8412 (3) Å

  • b = 12.7764 (3) Å

  • c = 13.8298 (3) Å

  • α = 67.217 (1)°

  • β = 66.915 (1)°

  • γ = 85.510 (1)°

  • V = 1767.88 (7) Å3

  • Z = 1

  • Cu Kα radiation

  • μ = 2.59 mm−1

  • T = 120 K

  • 0.20 × 0.10 × 0.05 mm

2.2. Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 2001[Higashi, T. (2001). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.764, Tmax = 1.000

  • 20279 measured reflections

  • 6348 independent reflections

  • 3518 reflections with I > 2σ(I)

  • Rint = 0.065

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.198

  • S = 0.98

  • 6348 reflections

  • 469 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the N2/C11/C12/C17/C18, C12–C17, C26–C31 and N1/C2/C3/C8/C9 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C34—H22⋯N3i 0.95 2.57 3.292 (7) 133
C41—H28⋯N3ii 0.95 2.45 3.181 (7) 134
C28—H17⋯Cg1iii 0.95 2.63 3.446 (4) 145
C29—H18⋯Cg2iii 0.95 2.76 3.582 (4) 145
C33—H21⋯Cg3iv 0.95 2.90 3.729 (5) 147
C35—H23⋯Cg4i 0.95 2.92 3.733 (4) 145
C45—H32⋯Cg2v 0.98 2.99 3.798 (6) 141
C45—H33⋯Cg1v 0.98 2.87 3.469 (5) 120
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y, -z; (iii) x, y, z+1; (iv) -x+1, -y+1, -z+1; (v) -x+1, -y, -z+1.

Data collection: RAPID-AUTO (Rigaku, 1999[Rigaku (1999). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: Yadokari-XG (Wakita, 2001[Wakita, K. (2001). Yadokari-XG. http://www.hat.hi-ho.ne.jp/k-wakita/yadokari ]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Synthesis and crystallization top

Fe(tbp) and (Ph4P)[Fe(tbp)(CN)2] were synthesized by the procedure reported by Nishi et al. (2015). Electroreduction of (Ph4P)[Fe(tbp)(CN)2] in acetone gave black single crystals of the title compound (Ph4P)2[Fe(tbp)(CN)2].

Refinement top

All hydrogen atoms were positioned geometrically with C—H = 0.95 Å for aromatic and C—H = 0.98 Å for methyl, and they were constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for aromatic and Uiso(H) = 1.5 Ueq(C) for methyl. Reflection 6 12 0 was obstructed from the beam stop and was omitted from the refinement.

Related literature top

For [Fe(tbp)(CN)2]- and [Co(tbp)(CN)2]- complexes, see: Matsuda et al. (2011, 2014); Nishi et al. (2015). The crystal structure of metal-free tbp was reported by Aramaki & Mizuguchi (2003).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1999); cell refinement: RAPID-AUTO (Rigaku, 1999); data reduction: RAPID-AUTO (Rigaku, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: Yadokari-XG (Wakita, 2001) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The Ph4P+, [Fe(tbp)(CN)2]2- and acetone molecular units in the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: i) -x, -y, -z.]
[Figure 2] Fig. 2. The packing of the title compound viewed down [010].
Bis(tetraphenylphosphonium) bis(cyanido-κC)(29H,31H-tetrabenzo[b,g,l,q]porphinato-κ4N29,N30,N31,N32)ferrate(II) acetone disolvate top
Crystal data top
(C24H20P)2[Fe(C36H20N4)(CN)2]·2C3H6OZ = 1
Mr = 1411.35F(000) = 738
Triclinic, P1Dx = 1.326 Mg m3
a = 11.8412 (3) ÅCu Kα radiation, λ = 1.54187 Å
b = 12.7764 (3) ÅCell parameters from 9659 reflections
c = 13.8298 (3) Åθ = 3.8–68.1°
α = 67.217 (1)°µ = 2.59 mm1
β = 66.915 (1)°T = 120 K
γ = 85.510 (1)°Block, black
V = 1767.88 (7) Å30.20 × 0.10 × 0.05 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6348 independent reflections
Radiation source: fine-focus sealed tube3518 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ω scansθmax = 68.2°, θmin = 3.8°
Absorption correction: multi-scan
(ABSCOR; Higashi, 2001)
h = 1414
Tmin = 0.764, Tmax = 1.000k = 1414
20279 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.198 w = 1/[σ2(Fo2) + (0.0991P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
6348 reflectionsΔρmax = 0.71 e Å3
469 parametersΔρmin = 0.36 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0038 (5)
Crystal data top
(C24H20P)2[Fe(C36H20N4)(CN)2]·2C3H6Oγ = 85.510 (1)°
Mr = 1411.35V = 1767.88 (7) Å3
Triclinic, P1Z = 1
a = 11.8412 (3) ÅCu Kα radiation
b = 12.7764 (3) ŵ = 2.59 mm1
c = 13.8298 (3) ÅT = 120 K
α = 67.217 (1)°0.20 × 0.10 × 0.05 mm
β = 66.915 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6348 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 2001)
3518 reflections with I > 2σ(I)
Tmin = 0.764, Tmax = 1.000Rint = 0.065
20279 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.198H-atom parameters constrained
S = 0.98Δρmax = 0.71 e Å3
6348 reflectionsΔρmin = 0.36 e Å3
469 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.00000.00000.00000.0631 (3)
N10.0906 (3)0.1372 (3)0.0160 (2)0.0632 (8)
N20.1223 (3)0.0411 (3)0.0499 (2)0.0607 (8)
N30.1490 (3)0.1625 (3)0.2526 (3)0.0708 (9)
C10.2519 (3)0.1171 (3)0.0458 (3)0.0642 (10)
H10.32170.14990.05970.077*
C20.1919 (4)0.1733 (3)0.0101 (3)0.0633 (10)
C30.2255 (4)0.2805 (3)0.0038 (3)0.0626 (10)
C40.3147 (4)0.3540 (3)0.0154 (3)0.0700 (11)
H20.37250.33570.03970.084*
C50.3175 (4)0.4548 (3)0.0017 (3)0.0727 (11)
H30.37700.50640.01190.087*
C60.2325 (4)0.4806 (3)0.0392 (3)0.0708 (11)
H40.23530.54980.05010.085*
C70.1459 (4)0.4077 (3)0.0602 (3)0.0647 (10)
H50.09040.42470.08760.078*
C80.1409 (3)0.3070 (3)0.0403 (3)0.0614 (10)
C90.0590 (4)0.2171 (3)0.0474 (3)0.0633 (10)
C100.0401 (4)0.2143 (3)0.0756 (3)0.0652 (10)
H60.05170.27400.09650.078*
C110.1248 (3)0.1345 (3)0.0770 (3)0.0641 (10)
C120.2283 (4)0.1355 (3)0.1073 (3)0.0659 (10)
C130.2707 (4)0.2092 (4)0.1409 (3)0.0710 (11)
H70.22860.27390.14840.085*
C140.3761 (4)0.1848 (4)0.1630 (3)0.0770 (12)
H80.40720.23460.18470.092*
C150.4377 (4)0.0903 (4)0.1544 (3)0.0743 (11)
H90.51010.07620.16990.089*
C160.3938 (4)0.0151 (4)0.1230 (3)0.0713 (11)
H100.43460.05080.11800.086*
C170.2886 (4)0.0396 (3)0.0992 (3)0.0663 (10)
C180.2207 (4)0.0179 (3)0.0635 (3)0.0628 (10)
C190.0970 (3)0.0993 (3)0.1600 (3)0.0612 (10)
P10.58963 (9)0.29255 (9)0.46006 (8)0.0668 (3)
C200.4674 (4)0.3415 (3)0.4124 (3)0.0688 (11)
C210.4919 (4)0.3757 (4)0.2970 (4)0.0797 (12)
H110.57360.37740.24460.096*
C220.3987 (5)0.4070 (4)0.2584 (4)0.0918 (14)
H120.41690.43070.17940.110*
C230.2798 (5)0.4047 (4)0.3323 (4)0.0914 (14)
H130.21590.42450.30470.110*
C240.2530 (4)0.3735 (4)0.4472 (4)0.0896 (14)
H140.17120.37320.49860.107*
C250.3463 (4)0.3429 (3)0.4864 (4)0.0777 (12)
H150.32810.32240.56500.093*
C260.5437 (3)0.2790 (3)0.6049 (3)0.0636 (10)
C270.4390 (3)0.2088 (3)0.6914 (3)0.0686 (10)
H160.39350.16530.67430.082*
C280.4017 (4)0.2025 (3)0.8011 (3)0.0689 (10)
H170.32780.15820.85870.083*
C290.4711 (4)0.2603 (3)0.8277 (3)0.0732 (11)
H180.44530.25470.90400.088*
C300.5782 (4)0.3266 (3)0.7441 (3)0.0753 (11)
H190.62730.36440.76310.090*
C310.6130 (4)0.3371 (3)0.6319 (3)0.0694 (11)
H200.68470.38440.57360.083*
C320.7236 (4)0.3919 (3)0.3697 (3)0.0646 (10)
C330.7121 (4)0.5078 (4)0.3189 (3)0.0752 (11)
H210.63300.53480.32810.090*
C340.8169 (4)0.5832 (4)0.2549 (3)0.0814 (13)
H220.80980.66210.21910.098*
C350.9311 (4)0.5443 (4)0.2431 (3)0.0826 (13)
H231.00230.59690.20040.099*
C360.9432 (4)0.4301 (4)0.2925 (3)0.0857 (13)
H241.02250.40350.28310.103*
C370.8384 (4)0.3537 (4)0.3563 (3)0.0746 (11)
H250.84620.27470.39090.090*
C380.6318 (4)0.1582 (3)0.4509 (3)0.0679 (10)
C390.6386 (4)0.0666 (4)0.5426 (3)0.0843 (13)
H260.61450.07190.61460.101*
C400.6812 (4)0.0337 (4)0.5290 (4)0.0928 (14)
H270.68430.09750.59250.111*
C410.7186 (4)0.0409 (4)0.4251 (3)0.0811 (12)
H280.74920.10910.41640.097*
C420.7123 (4)0.0496 (4)0.3336 (4)0.0839 (13)
H290.73810.04390.26170.101*
C430.6688 (4)0.1485 (4)0.3452 (3)0.0785 (12)
H300.66370.21070.28160.094*
C440.9787 (5)0.1696 (6)0.5651 (5)0.119 (2)
C450.9684 (5)0.0429 (5)0.6275 (4)0.129 (2)
H311.02480.00880.57620.193*
H320.88370.01200.65380.193*
H330.99010.02510.69330.193*
C460.9225 (5)0.2432 (6)0.6308 (5)0.141 (2)
H340.92850.32220.57760.212*
H350.96650.23930.67900.212*
H360.83560.21630.67890.212*
O11.0386 (3)0.2122 (3)0.4591 (3)0.1390 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0676 (6)0.0566 (6)0.0485 (5)0.0194 (4)0.0090 (4)0.0133 (4)
N10.071 (2)0.0558 (19)0.0446 (16)0.0205 (16)0.0090 (15)0.0100 (14)
N20.0626 (19)0.0485 (18)0.0501 (16)0.0144 (15)0.0066 (15)0.0106 (14)
N30.077 (2)0.062 (2)0.0551 (18)0.0193 (17)0.0078 (17)0.0175 (16)
C10.066 (2)0.059 (2)0.059 (2)0.0122 (19)0.0180 (19)0.0174 (19)
C20.070 (2)0.058 (2)0.0459 (19)0.013 (2)0.0130 (18)0.0115 (18)
C30.071 (2)0.053 (2)0.0461 (19)0.017 (2)0.0084 (18)0.0117 (17)
C40.079 (3)0.063 (3)0.057 (2)0.008 (2)0.020 (2)0.016 (2)
C50.081 (3)0.061 (3)0.065 (2)0.004 (2)0.021 (2)0.021 (2)
C60.085 (3)0.059 (3)0.056 (2)0.013 (2)0.016 (2)0.0188 (19)
C70.074 (2)0.059 (2)0.047 (2)0.018 (2)0.0132 (18)0.0128 (18)
C80.067 (2)0.052 (2)0.0452 (19)0.0191 (19)0.0066 (17)0.0106 (17)
C90.068 (2)0.058 (2)0.048 (2)0.021 (2)0.0099 (18)0.0124 (18)
C100.072 (3)0.056 (2)0.054 (2)0.017 (2)0.0136 (19)0.0151 (18)
C110.062 (2)0.060 (2)0.054 (2)0.017 (2)0.0110 (18)0.0135 (19)
C120.070 (2)0.061 (3)0.049 (2)0.019 (2)0.0112 (18)0.0125 (19)
C130.078 (3)0.067 (3)0.057 (2)0.013 (2)0.019 (2)0.017 (2)
C140.092 (3)0.063 (3)0.065 (2)0.019 (2)0.022 (2)0.018 (2)
C150.082 (3)0.070 (3)0.061 (2)0.018 (2)0.023 (2)0.016 (2)
C160.079 (3)0.063 (3)0.060 (2)0.013 (2)0.019 (2)0.017 (2)
C170.070 (3)0.059 (2)0.052 (2)0.017 (2)0.0132 (19)0.0105 (18)
C180.071 (2)0.055 (2)0.048 (2)0.016 (2)0.0112 (18)0.0154 (18)
C190.065 (2)0.055 (2)0.057 (2)0.0157 (18)0.0117 (19)0.0239 (19)
P10.0737 (7)0.0586 (6)0.0496 (6)0.0164 (5)0.0083 (5)0.0145 (5)
C200.074 (3)0.058 (2)0.057 (2)0.011 (2)0.014 (2)0.0137 (19)
C210.088 (3)0.074 (3)0.069 (3)0.006 (2)0.025 (2)0.024 (2)
C220.111 (4)0.083 (3)0.079 (3)0.010 (3)0.040 (3)0.024 (3)
C230.097 (4)0.074 (3)0.093 (4)0.018 (3)0.042 (3)0.013 (3)
C240.081 (3)0.071 (3)0.093 (3)0.017 (2)0.028 (3)0.010 (3)
C250.078 (3)0.065 (3)0.067 (3)0.021 (2)0.015 (2)0.010 (2)
C260.069 (2)0.057 (2)0.051 (2)0.0120 (19)0.0112 (18)0.0165 (17)
C270.075 (2)0.062 (2)0.055 (2)0.017 (2)0.0120 (19)0.0177 (19)
C280.072 (2)0.062 (2)0.053 (2)0.008 (2)0.0110 (19)0.0146 (19)
C290.087 (3)0.062 (3)0.057 (2)0.010 (2)0.017 (2)0.0183 (19)
C300.086 (3)0.069 (3)0.061 (2)0.016 (2)0.018 (2)0.022 (2)
C310.071 (2)0.062 (2)0.058 (2)0.014 (2)0.0109 (19)0.0171 (19)
C320.069 (2)0.061 (2)0.050 (2)0.016 (2)0.0108 (19)0.0164 (18)
C330.081 (3)0.067 (3)0.060 (2)0.018 (2)0.008 (2)0.022 (2)
C340.099 (3)0.062 (3)0.061 (2)0.026 (3)0.008 (2)0.019 (2)
C350.079 (3)0.085 (3)0.055 (2)0.035 (3)0.004 (2)0.015 (2)
C360.075 (3)0.095 (4)0.064 (3)0.019 (3)0.013 (2)0.017 (2)
C370.076 (3)0.071 (3)0.060 (2)0.011 (2)0.020 (2)0.012 (2)
C380.075 (2)0.052 (2)0.056 (2)0.0189 (19)0.0066 (19)0.0147 (19)
C390.110 (4)0.068 (3)0.057 (2)0.002 (3)0.017 (2)0.020 (2)
C400.124 (4)0.062 (3)0.063 (3)0.001 (3)0.014 (3)0.016 (2)
C410.089 (3)0.065 (3)0.061 (3)0.015 (2)0.004 (2)0.018 (2)
C420.098 (3)0.071 (3)0.069 (3)0.005 (3)0.016 (2)0.028 (2)
C430.096 (3)0.066 (3)0.058 (2)0.006 (2)0.016 (2)0.019 (2)
C440.086 (4)0.147 (6)0.086 (4)0.038 (4)0.034 (3)0.004 (4)
C450.128 (4)0.127 (5)0.088 (4)0.052 (4)0.033 (3)0.004 (3)
C460.096 (4)0.177 (6)0.107 (5)0.018 (4)0.020 (4)0.033 (5)
O10.124 (3)0.157 (4)0.083 (3)0.039 (3)0.029 (2)0.004 (2)
Geometric parameters (Å, º) top
Fe1—C19i1.971 (4)C22—C231.372 (6)
Fe1—C191.971 (4)C22—H120.9500
Fe1—N22.008 (3)C23—C241.386 (6)
Fe1—N2i2.008 (3)C23—H130.9500
Fe1—N1i2.023 (3)C24—C251.380 (6)
Fe1—N12.023 (3)C24—H140.9500
N1—C91.380 (4)C25—H150.9500
N1—C21.380 (5)C26—C311.384 (5)
N2—C181.373 (5)C26—C271.397 (4)
N2—C111.387 (4)C27—C281.375 (5)
N3—C191.154 (4)C27—H160.9500
C1—C21.377 (5)C28—C291.378 (5)
C1—C18i1.378 (5)C28—H170.9500
C1—H10.9500C29—C301.387 (5)
C2—C31.460 (5)C29—H180.9500
C3—C41.392 (5)C30—C311.394 (5)
C3—C81.398 (5)C30—H190.9500
C4—C51.392 (5)C31—H200.9500
C4—H20.9500C32—C371.374 (5)
C5—C61.408 (5)C32—C331.393 (5)
C5—H30.9500C33—C341.385 (5)
C6—C71.371 (5)C33—H210.9500
C6—H40.9500C34—C351.372 (6)
C7—C81.408 (5)C34—H220.9500
C7—H50.9500C35—C361.375 (6)
C8—C91.443 (5)C35—H230.9500
C9—C101.368 (5)C36—C371.391 (5)
C10—C111.373 (5)C36—H240.9500
C10—H60.9500C37—H250.9500
C11—C121.445 (5)C38—C391.379 (5)
C12—C171.389 (5)C38—C431.404 (5)
C12—C131.397 (5)C39—C401.394 (5)
C13—C141.383 (5)C39—H260.9500
C13—H70.9500C40—C411.366 (5)
C14—C151.382 (6)C40—H270.9500
C14—H80.9500C41—C421.368 (6)
C15—C161.400 (5)C41—H280.9500
C15—H90.9500C42—C431.369 (5)
C16—C171.392 (5)C42—H290.9500
C16—H100.9500C43—H300.9500
C17—C181.454 (5)C44—O11.255 (6)
C18—C1i1.378 (5)C44—C461.498 (8)
P1—C381.788 (4)C44—C451.499 (8)
P1—C201.792 (4)C45—H310.9800
P1—C321.795 (4)C45—H320.9800
P1—C261.797 (4)C45—H330.9800
C20—C211.392 (5)C46—H340.9800
C20—C251.401 (5)C46—H350.9800
C21—C221.376 (6)C46—H360.9800
C21—H110.9500
C19i—Fe1—C19180.0C22—C21—C20120.4 (4)
C19i—Fe1—N289.10 (12)C22—C21—H11119.8
C19—Fe1—N290.90 (12)C20—C21—H11119.8
C19i—Fe1—N2i90.90 (12)C23—C22—C21121.1 (4)
C19—Fe1—N2i89.10 (12)C23—C22—H12119.5
N2—Fe1—N2i180.0C21—C22—H12119.5
C19i—Fe1—N1i87.27 (13)C22—C23—C24119.8 (5)
C19—Fe1—N1i92.73 (13)C22—C23—H13120.1
N2—Fe1—N1i90.33 (13)C24—C23—H13120.1
N2i—Fe1—N1i89.67 (13)C25—C24—C23119.4 (5)
C19i—Fe1—N192.73 (13)C25—C24—H14120.3
C19—Fe1—N187.27 (13)C23—C24—H14120.3
N2—Fe1—N189.67 (13)C24—C25—C20121.2 (4)
N2i—Fe1—N190.33 (13)C24—C25—H15119.4
N1i—Fe1—N1180.0C20—C25—H15119.4
C9—N1—C2106.4 (3)C31—C26—C27119.4 (3)
C9—N1—Fe1127.1 (3)C31—C26—P1120.1 (3)
C2—N1—Fe1126.4 (3)C27—C26—P1120.5 (3)
C18—N2—C11106.3 (3)C28—C27—C26120.1 (4)
C18—N2—Fe1126.6 (2)C28—C27—H16119.9
C11—N2—Fe1127.1 (3)C26—C27—H16119.9
C2—C1—C18i126.4 (4)C27—C28—C29120.2 (4)
C2—C1—H1116.8C27—C28—H17119.9
C18i—C1—H1116.8C29—C28—H17119.9
C1—C2—N1124.8 (4)C28—C29—C30120.5 (4)
C1—C2—C3124.7 (4)C28—C29—H18119.7
N1—C2—C3110.5 (3)C30—C29—H18119.7
C4—C3—C8120.7 (4)C29—C30—C31119.2 (4)
C4—C3—C2133.6 (4)C29—C30—H19120.4
C8—C3—C2105.6 (4)C31—C30—H19120.4
C5—C4—C3118.7 (4)C26—C31—C30120.4 (3)
C5—C4—H2120.7C26—C31—H20119.8
C3—C4—H2120.7C30—C31—H20119.8
C4—C5—C6120.3 (4)C37—C32—C33119.9 (4)
C4—C5—H3119.8C37—C32—P1119.3 (3)
C6—C5—H3119.8C33—C32—P1120.7 (3)
C7—C6—C5121.3 (4)C34—C33—C32119.4 (4)
C7—C6—H4119.4C34—C33—H21120.3
C5—C6—H4119.4C32—C33—H21120.3
C6—C7—C8118.5 (4)C35—C34—C33120.3 (4)
C6—C7—H5120.8C35—C34—H22119.9
C8—C7—H5120.8C33—C34—H22119.9
C3—C8—C7120.5 (4)C34—C35—C36120.6 (4)
C3—C8—C9106.9 (3)C34—C35—H23119.7
C7—C8—C9132.6 (4)C36—C35—H23119.7
C10—C9—N1124.5 (4)C35—C36—C37119.5 (4)
C10—C9—C8124.9 (4)C35—C36—H24120.3
N1—C9—C8110.5 (3)C37—C36—H24120.3
C9—C10—C11127.1 (4)C32—C37—C36120.4 (4)
C9—C10—H6116.5C32—C37—H25119.8
C11—C10—H6116.5C36—C37—H25119.8
C10—C11—N2124.6 (4)C39—C38—C43119.1 (4)
C10—C11—C12124.9 (4)C39—C38—P1121.5 (3)
N2—C11—C12110.6 (4)C43—C38—P1119.2 (3)
C17—C12—C13120.9 (4)C38—C39—C40119.5 (4)
C17—C12—C11106.2 (4)C38—C39—H26120.2
C13—C12—C11132.9 (4)C40—C39—H26120.2
C14—C13—C12117.7 (4)C41—C40—C39120.5 (4)
C14—C13—H7121.2C41—C40—H27119.8
C12—C13—H7121.2C39—C40—H27119.8
C15—C14—C13122.1 (4)C40—C41—C42120.3 (4)
C15—C14—H8119.0C40—C41—H28119.8
C13—C14—H8119.0C42—C41—H28119.8
C14—C15—C16120.2 (4)C41—C42—C43120.3 (4)
C14—C15—H9119.9C41—C42—H29119.8
C16—C15—H9119.9C43—C42—H29119.8
C17—C16—C15118.2 (4)C42—C43—C38120.3 (4)
C17—C16—H10120.9C42—C43—H30119.9
C15—C16—H10120.9C38—C43—H30119.9
C12—C17—C16120.9 (4)O1—C44—C46121.3 (6)
C12—C17—C18106.7 (4)O1—C44—C45119.2 (7)
C16—C17—C18132.4 (4)C46—C44—C45119.5 (5)
N2—C18—C1i125.4 (4)C44—C45—H31109.5
N2—C18—C17110.2 (3)C44—C45—H32109.5
C1i—C18—C17124.4 (4)H31—C45—H32109.5
N3—C19—Fe1175.8 (3)C44—C45—H33109.5
C38—P1—C20110.89 (19)H31—C45—H33109.5
C38—P1—C32107.17 (18)H32—C45—H33109.5
C20—P1—C32109.48 (18)C44—C46—H34109.5
C38—P1—C26109.39 (18)C44—C46—H35109.5
C20—P1—C26110.28 (18)H34—C46—H35109.5
C32—P1—C26109.57 (17)C44—C46—H36109.5
C21—C20—C25118.0 (4)H34—C46—H36109.5
C21—C20—P1118.8 (3)H35—C46—H36109.5
C25—C20—P1123.1 (3)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the N2/C11/C12/C17/C18, C12–C17, C26–C31 and N1/C2/C3/C8/C9 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C25—H15···N3ii0.952.743.404 (4)127
C27—H16···N3ii0.952.663.259 (5)121
C34—H22···N3iii0.952.573.292 (7)133
C41—H28···N3iv0.952.453.181 (7)134
C28—H17···Cg1ii0.952.633.446 (4)145
C29—H18···Cg2ii0.952.763.582 (4)145
C33—H21···Cg3v0.952.903.729 (5)147
C35—H23···Cg4iii0.952.923.733 (4)145
C45—H32···Cg2vi0.982.993.798 (6)141
C45—H33···Cg1vi0.982.873.469 (5)120
Symmetry codes: (ii) x, y, z+1; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x+1, y+1, z+1; (vi) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the N2/C11/C12/C17/C18, C12–C17, C26–C31 and N1/C2/C3/C8/C9 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C34—H22···N3i0.952.573.292 (7)133
C41—H28···N3ii0.952.453.181 (7)134
C28—H17···Cg1iii0.952.633.446 (4)145
C29—H18···Cg2iii0.952.763.582 (4)145
C33—H21···Cg3iv0.952.903.729 (5)147
C35—H23···Cg4i0.952.923.733 (4)145
C45—H32···Cg2v0.982.993.798 (6)141
C45—H33···Cg1v0.982.873.469 (5)120
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x, y, z+1; (iv) x+1, y+1, z+1; (v) x+1, y, z+1.
 

References

First citationAramaki, S. & Mizuguchi, J. (2003). Acta Cryst. E59, o1556–o1558.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (2001). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMatsuda, M., Nishi, M., Koga, S., Fujishima, M., Hoshino, N., Akutagawa, T. & Hasegawa, H. (2014). Chem. Eur. J. 20, 11318–11321.  Google Scholar
First citationMatsuda, M., Ohishi, H., Tofuku, M., Muramoto, N. & Yamaura, J. (2011). Chem. Lett. 40, 1257–1259.  Google Scholar
First citationNishi, M., Matsuda, M., Hoshino, N. & Akutagawa, T. (2015). Chem. Lett. 44. In the press.  Google Scholar
First citationRigaku (1999). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWakita, K. (2001). Yadokari-XG. http://www.hat.hi-ho.ne.jp/k-wakita/yadokari  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages m48-m49
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds