organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 7,7-di­methyl-6-methyl­idenetri­cyclo­[6.2.1.01,5]undecane-2-carb­­oxy­lic acid

aUnité de recherche VARENBIOMOL, Constantine 1 University, Constantine 25000, Algeria, and bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
*Correspondence e-mail: kariukib@cf.ac.uk

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 16 December 2014; accepted 30 December 2014; online 10 January 2015)

In the title compound, C15H22O2, both five-membered rings display an envelope conformation whereas the six-membered ring displays a chair conformation. In the crystal, pairs of O—H⋯O hydrogen bonds between carb­oxy­lic groups link mol­ecules, related by a twofold rotation axis, into supra­molecular dimers.

1. Related literature

For background to the title compound, which was extracted from the air-dried aerial parts of inula graveolens see: Chiappini & Fardella (1980[Chiappini, I. & Fardella, G. (1980). Fitoterapia, 51, 161-162.]); Rustaiyan et al. (1987[Rustaiyan, A., Jakupovic, J., Chau-Thi, T. V., Bohlmann, F. & Sadjadi, A. (1987). Phytochemistry, 26, 2603-2606.]). For related structures, see: Turner et al. (1980[Turner, J. V., Anderson, B. F. & Mander, L. N. (1980). Aust. J. Chem. 33, 1061-1071.]); Harlow & Simonsen (1977[Harlow, R. L. & Simonsen, S. H. (1977). Cryst. Struct. Commun. 6, 689-693.]); Dastlik et al. (1992[Dastlik, K. A., Ghisalberti, E. L., Skelton, B. W. & White, A. H. (1992). Aust. J. Chem. 45, 959-964.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H22O2

  • Mr = 234.33

  • Orthorhombic, C 2221

  • a = 7.6400 (3) Å

  • b = 16.1700 (5) Å

  • c = 21.3406 (9) Å

  • V = 2636.39 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 150 K

  • 0.30 × 0.18 × 0.04 mm

2.2. Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.978, Tmax = 0.997

  • 8814 measured reflections

  • 2978 independent reflections

  • 2327 reflections with I > 2σ(I)

  • Rint = 0.052

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.103

  • S = 1.07

  • 2978 reflections

  • 157 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.84 1.81 2.646 (3) 174
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL DENZO (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1992[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1992). SIR92. University of Bari, Italy.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP99 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CHEMDRAW Ultra (Cambridge Soft, 2001[Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]).

Supporting information


Comment top

Inula graveolens have consistently been the subject of research interest (Chiappini & Fardella, 1980; Rustaiyan et al., 1987). Our interest is the extracts from aerial parts of Algerian species such as stems, flowers and leaves. The asymmetric unit of the crystal structure consists of a single molecule (Fig. 1). Both five-membered rings display an envelope conformation (with C4 and C8 as the flap atoms) whereas the six-membered ring displays a chair conformation.

The structure consists of pairs of molecules linked by the classic dimeric carbocylic acid hydrogen bonding interaction (Fig 2). Structures of some related compounds have been reported (Turner et al., 1980; Harlow & Simonsen, 1977; Dastlik et al., 1992).

Related literature top

For background to the title compound, which was extracted from the air-dried aerial parts of inula graveolens, see: Chiappini & Fardella (1980); Rustaiyan et al. (1987). For related structures, see: Turner et al. (1980); Harlow & Simonsen (1977); Dastlik et al. (1992).

Experimental top

The air-dried aerial parts of inula graveolens (500 g) were extracted with acetone/Et2O (1:1) at room temperature. The solution was filtered off and concentrated under reduced pressure to give a pale yellow gum (9 g). The gum was subjected to successive column chromatography (silica gel) and TLC (silica gel, PF254). Eleven fractions were obtained. Fraction 9 gave a material which crystallized as colourless crystals with a melting point of 450 K.

Refinement top

H atoms were positioned geometrically and refined using a riding model with Uiso(H) constrained to be 1.2 times Ueq for the atom it is bonded to (except for methyl groups where it was 1.5 times with free rotation about the C—C bond).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP99 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

Figures top
[Figure 1] Fig. 1. A molecule showing atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Crystal packing in the structure with H atoms omitted and hydrogen bonds shown as dotted lines.
7,7-Dimethyl-6-methylidenetricyclo[6.2.1.01,5]undecane-2-carboxylic acid top
Crystal data top
C15H22O2Dx = 1.181 Mg m3
Mr = 234.33Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, C2221Cell parameters from 2327 reflections
a = 7.6400 (3) Åθ = 2.7–27.4°
b = 16.1700 (5) ŵ = 0.08 mm1
c = 21.3406 (9) ÅT = 150 K
V = 2636.39 (17) Å3Plate, colourless
Z = 80.30 × 0.18 × 0.04 mm
F(000) = 1024
Data collection top
Nonius KappaCCD
diffractometer
2978 independent reflections
Radiation source: fine-focus sealed tube2327 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
CCD slices, ω and phi scansθmax = 27.4°, θmin = 2.7°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 98
Tmin = 0.978, Tmax = 0.997k = 2020
8814 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0392P)2 + 0.6557P]
where P = (Fo2 + 2Fc2)/3
2978 reflections(Δ/σ)max = 0.001
157 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C15H22O2V = 2636.39 (17) Å3
Mr = 234.33Z = 8
Orthorhombic, C2221Mo Kα radiation
a = 7.6400 (3) ŵ = 0.08 mm1
b = 16.1700 (5) ÅT = 150 K
c = 21.3406 (9) Å0.30 × 0.18 × 0.04 mm
Data collection top
Nonius KappaCCD
diffractometer
2978 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
2327 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.997Rint = 0.052
8814 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.07Δρmax = 0.15 e Å3
2978 reflectionsΔρmin = 0.15 e Å3
157 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3233 (3)0.41972 (11)0.18712 (10)0.0496 (5)
C20.1890 (3)0.39139 (12)0.14061 (9)0.0469 (5)
H20.07050.41180.15320.056*
C30.1900 (2)0.29473 (10)0.13886 (8)0.0351 (4)
C40.3048 (2)0.27610 (11)0.08041 (7)0.0331 (4)
H40.42930.28790.09180.040*
C50.2468 (3)0.34157 (11)0.03307 (8)0.0419 (4)
H5A0.33500.34850.00050.050*
H5B0.13300.32680.01390.050*
C70.2312 (3)0.41978 (13)0.07268 (9)0.0586 (6)
H7A0.13650.45560.05640.070*
H7B0.34230.45130.07180.070*
C80.2606 (3)0.24567 (10)0.19461 (7)0.0355 (4)
H8A0.20040.26090.23400.043*
H8B0.38840.25340.19970.043*
C90.2161 (2)0.15726 (11)0.17434 (7)0.0348 (4)
H90.22770.11820.21040.042*
C100.0230 (2)0.16680 (12)0.15525 (8)0.0415 (4)
H10A0.05500.15690.19150.050*
H10B0.00750.12730.12150.050*
C110.0058 (3)0.25713 (12)0.13183 (9)0.0422 (5)
H11A0.03230.25840.08750.051*
H11B0.08010.28800.15750.051*
C120.3311 (2)0.12798 (11)0.11790 (8)0.0345 (4)
C130.2924 (2)0.18576 (11)0.06300 (7)0.0330 (4)
C140.5274 (2)0.13066 (12)0.13538 (9)0.0428 (4)
H14A0.59650.10630.10140.064*
H14B0.54650.09920.17400.064*
H14C0.56340.18820.14180.064*
C150.2877 (3)0.03737 (11)0.10297 (9)0.0504 (5)
H15A0.16350.03260.09220.076*
H15B0.31290.00300.13970.076*
H15C0.35910.01870.06750.076*
C160.2421 (2)0.16103 (13)0.00671 (8)0.0462 (5)
H16A0.21230.20070.02440.055*
H16B0.23580.10370.00260.055*
O10.2608 (2)0.42962 (10)0.24438 (7)0.0639 (4)
H10.34420.43300.26990.096*
O20.4779 (2)0.42873 (9)0.17426 (7)0.0606 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0665 (16)0.0313 (9)0.0511 (12)0.0092 (10)0.0070 (11)0.0002 (9)
C20.0534 (13)0.0419 (10)0.0455 (11)0.0164 (9)0.0036 (10)0.0009 (9)
C30.0345 (10)0.0406 (10)0.0302 (8)0.0087 (8)0.0013 (8)0.0016 (7)
C40.0282 (9)0.0425 (9)0.0286 (8)0.0027 (8)0.0001 (7)0.0016 (7)
C50.0381 (11)0.0547 (11)0.0329 (8)0.0078 (9)0.0026 (8)0.0100 (8)
C70.0752 (17)0.0499 (12)0.0507 (11)0.0192 (11)0.0035 (11)0.0137 (9)
C80.0405 (10)0.0413 (10)0.0248 (8)0.0060 (8)0.0006 (7)0.0018 (7)
C90.0345 (10)0.0433 (10)0.0265 (8)0.0004 (8)0.0025 (7)0.0029 (7)
C100.0338 (10)0.0583 (12)0.0326 (9)0.0032 (9)0.0092 (8)0.0004 (8)
C110.0310 (10)0.0622 (12)0.0335 (9)0.0088 (9)0.0067 (8)0.0038 (8)
C120.0348 (10)0.0347 (9)0.0341 (9)0.0009 (8)0.0049 (8)0.0032 (7)
C130.0237 (9)0.0458 (10)0.0296 (8)0.0001 (7)0.0063 (7)0.0030 (7)
C140.0360 (11)0.0432 (10)0.0492 (11)0.0064 (8)0.0006 (8)0.0046 (9)
C150.0534 (14)0.0422 (11)0.0558 (12)0.0047 (9)0.0107 (11)0.0075 (9)
C160.0405 (12)0.0621 (12)0.0361 (9)0.0022 (10)0.0062 (9)0.0090 (9)
O10.0667 (11)0.0715 (9)0.0536 (8)0.0157 (8)0.0057 (8)0.0223 (8)
O20.0667 (11)0.0592 (9)0.0560 (9)0.0160 (8)0.0063 (8)0.0078 (7)
Geometric parameters (Å, º) top
C1—O21.221 (3)C9—C121.564 (2)
C1—O11.322 (2)C9—H91.0000
C1—C21.499 (3)C10—C111.549 (3)
C2—C71.555 (3)C10—H10A0.9900
C2—C31.564 (2)C10—H10B0.9900
C2—H21.0000C11—H11A0.9900
C3—C81.529 (2)C11—H11B0.9900
C3—C111.540 (3)C12—C131.527 (2)
C3—C41.554 (2)C12—C151.536 (2)
C4—C131.510 (2)C12—C141.546 (3)
C4—C51.529 (2)C13—C161.323 (2)
C4—H41.0000C14—H14A0.9800
C5—C71.526 (3)C14—H14B0.9800
C5—H5A0.9900C14—H14C0.9800
C5—H5B0.9900C15—H15A0.9800
C7—H7A0.9900C15—H15B0.9800
C7—H7B0.9900C15—H15C0.9800
C8—C91.532 (2)C16—H16A0.9500
C8—H8A0.9900C16—H16B0.9500
C8—H8B0.9900O1—H10.8400
C9—C101.538 (3)
O2—C1—O1122.9 (2)C10—C9—C12111.40 (14)
O2—C1—C2123.34 (19)C8—C9—H9110.6
O1—C1—C2113.7 (2)C10—C9—H9110.6
C1—C2—C7112.66 (19)C12—C9—H9110.6
C1—C2—C3108.54 (15)C9—C10—C11105.13 (15)
C7—C2—C3105.77 (15)C9—C10—H10A110.7
C1—C2—H2109.9C11—C10—H10A110.7
C7—C2—H2109.9C9—C10—H10B110.7
C3—C2—H2109.9C11—C10—H10B110.7
C8—C3—C11101.16 (14)H10A—C10—H10B108.8
C8—C3—C4108.95 (13)C3—C11—C10105.28 (14)
C11—C3—C4111.16 (14)C3—C11—H11A110.7
C8—C3—C2120.12 (14)C10—C11—H11A110.7
C11—C3—C2113.12 (15)C3—C11—H11B110.7
C4—C3—C2102.45 (14)C10—C11—H11B110.7
C13—C4—C5119.27 (15)H11A—C11—H11B108.8
C13—C4—C3110.45 (14)C13—C12—C15112.50 (15)
C5—C4—C3103.45 (13)C13—C12—C14110.84 (14)
C13—C4—H4107.7C15—C12—C14106.63 (15)
C5—C4—H4107.7C13—C12—C9107.26 (13)
C3—C4—H4107.7C15—C12—C9109.12 (15)
C7—C5—C4103.33 (14)C14—C12—C9110.51 (14)
C7—C5—H5A111.1C16—C13—C4122.27 (17)
C4—C5—H5A111.1C16—C13—C12124.60 (17)
C7—C5—H5B111.1C4—C13—C12113.00 (14)
C4—C5—H5B111.1C12—C14—H14A109.5
H5A—C5—H5B109.1C12—C14—H14B109.5
C5—C7—C2106.75 (16)H14A—C14—H14B109.5
C5—C7—H7A110.4C12—C14—H14C109.5
C2—C7—H7A110.4H14A—C14—H14C109.5
C5—C7—H7B110.4H14B—C14—H14C109.5
C2—C7—H7B110.4C12—C15—H15A109.5
H7A—C7—H7B108.6C12—C15—H15B109.5
C3—C8—C9100.72 (13)H15A—C15—H15B109.5
C3—C8—H8A111.6C12—C15—H15C109.5
C9—C8—H8A111.6H15A—C15—H15C109.5
C3—C8—H8B111.6H15B—C15—H15C109.5
C9—C8—H8B111.6C13—C16—H16A120.0
H8A—C8—H8B109.4C13—C16—H16B120.0
C8—C9—C10101.20 (14)H16A—C16—H16B120.0
C8—C9—C12112.04 (14)C1—O1—H1109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.812.646 (3)174
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.812.646 (3)174.0
Symmetry code: (i) x+1, y, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: nourbeghidja@yahoo.fr.

Acknowledgements

The authors extend their appreciation to Constantine 1 University and Cardiff University for supporting this research.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1992). SIR92. University of Bari, Italy.  Google Scholar
First citationCambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationChiappini, I. & Fardella, G. (1980). Fitoterapia, 51, 161-162.  CAS Google Scholar
First citationDastlik, K. A., Ghisalberti, E. L., Skelton, B. W. & White, A. H. (1992). Aust. J. Chem. 45, 959–964.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarlow, R. L. & Simonsen, S. H. (1977). Cryst. Struct. Commun. 6, 689-693.  Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRustaiyan, A., Jakupovic, J., Chau-Thi, T. V., Bohlmann, F. & Sadjadi, A. (1987). Phytochemistry, 26, 2603–2606.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, J. V., Anderson, B. F. & Mander, L. N. (1980). Aust. J. Chem. 33, 1061–1071.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds