organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o111-o112

Crystal structure of (E)-4-{4-[eth­yl(2-hy­droxy­eth­yl)amino]­styr­yl}-1-methyl­pyridinium nitrate hemihydrate

aDepartment of Chemistry, Anhui University, Hefei 230039, People's Republic of China, bKey Laboratory of Functional Inorganic Materials Chemistry, Hefei 230039, People's Republic of China, cDepartment of Biology, Anhui University, Hefei 230039, People's Republic of China, and dCenter for Stem Cell and Translational Medicine, School of Life Sciences, Hefei 230039, People's Republic of China
*Correspondence e-mail: chenchen_zhan@163.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 21 December 2014; accepted 3 January 2015; online 14 January 2015)

The asymmetric unit of the title compound, C18H23N2O+·NO3·0.5H2O, contains two independent 4-{4-[eth­yl(2-hy­droxy­eth­yl)amino]­styr­yl}-1-methyl­pyridin-1-ium cations, two nitrate anions and one lattice water mol­ecule. In the cations, the pyridine ring is twisted with respect by 7.98 (12) and 18.42 (10)° to the benzene ring. In the crystal, the cations, the anions and the lattice water mol­ecules are linked by O—H⋯O hydrogen bonds and weak C—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular architecture. ππ stacking occurs between pyridine and benzene rings of adjacent cations, the centroid–centroid distances being 3.8169 (15) and 3.8663 (14) Å. In the crystal, one of the independent cations is disordered, the central vinyl unit and the terminal hy­droxy­lethyl group being disordered over two sets of sites with site occupancy factors of 0.600 (6) and 0.400 (6).

1. Related literature

For applications of related pyridinium derivatives, see: Marder et al. (1994[Marder, S. R., Perry, J. W. & Yakymyshyn, C. P. (1994). Chem. Mater. 6, 1137-1147.]); Yang et al. (2013[Yang, W.-G., Chan, P. S., Chan, M. S., Li, K.-F., Lo, P. K., Mak, N. K., Cheah, K. W. & Wong, M. S. (2013). Chem. Commun. 49, 3428-3430.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C18H23N2O+·NO3·0.5H2O

  • Mr = 354.40

  • Monoclinic, P 21 /c

  • a = 15.5115 (17) Å

  • b = 14.6022 (16) Å

  • c = 16.4765 (19) Å

  • β = 101.835 (1)°

  • V = 3652.6 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.23 × 0.22 × 0.21 mm

2.2. Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • 26119 measured reflections

  • 6583 independent reflections

  • 4645 reflections with I > 2σ(I)

  • Rint = 0.027

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.177

  • S = 1.10

  • 6583 reflections

  • 511 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1E⋯O2i 0.96 1.83 2.719 (10) 153
O2—H2C⋯O6ii 0.96 2.17 2.939 (4) 137
O2—H2C⋯O7ii 0.96 2.38 3.242 (3) 150
O9—H9B⋯O3 0.92 2.15 2.988 (4) 151
O9—H9B⋯O4 0.92 2.43 3.214 (4) 142
O9—H9D⋯O7ii 0.94 2.28 3.212 (4) 170
C1—H1B⋯O4iii 0.96 2.56 3.480 (4) 159
C2—H2⋯O4iii 0.93 2.54 3.380 (3) 151
C6—H6⋯O5iv 0.93 2.47 3.204 (4) 136
C15—H15B⋯O7ii 0.97 2.55 3.504 (4) 168
C19—H19A⋯O8iv 0.96 2.48 3.166 (3) 129
C20—H20⋯O5iv 0.93 2.47 3.348 (3) 156
C24—H24⋯O9v 0.93 2.58 3.215 (4) 126
C33—H33A⋯O1vi 0.97 2.53 3.400 (10) 149
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) -x+2, -y+1, -z+2; (v) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (vi) x, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyridiniums are important kind of nonlinear optical materials (Marder et al., 1994), because their strong intramolecular charge transfer capability and high thermal stability. Thus organic salts have been employed in applications cover various fields, including frequency up-conversion, photorefraction, distinct two-photon absorption and fluorescent probe (Yang et al., 2013).

In this paper, a novel pyridinium derivative was synthesized (Fig. 1). The asymmetric unit of the title compound contains two independent 4-(4-(ethyl(2-hydroxyethyl)amino)styryl)-1-methylpyridin-1-ium cations, two nitrate anions and one lattice water molecule. In the cations, the pyridine ring is twisted with respect to the benzene ring at 7.98 (12) and 18.42 (10)°, respectively. In the crystal, the cations, the anions and the lattice water molecules are linked by O—H···O hydrogen bonds and weak C—H···O hydrogen bonds (Table 1), forming the three dimensional supramolecular architecture. π-π stacking occurs between pyridine and benzene rings of adjacent cations, centroid-to-centroid distances being 3.8169 (15) and 3.8663 (14) Å. In the crystal, one of two independent cations is disordered, the central vinyl unit and the terminal hydroxylethyl group are disordered over two positions with a site occupancy factor ratio of 0.609 (4):0.391 (4).

Related literature top

For applications of related pyridinium derivatives, see: Marder et al. (1994); Yang et al. (2013).

Experimental top

The intermediate 1,4-dimethylpyridin-1-ium was synthesized by mixing 4-methylpyridine (6.20 g, 65 mmol) with iodomethane (14.40 g, 100 mmol) which was pre-dissolved in ethanol (10 ml). The mixture was heated to reflux for 20 min and then cooled to room temperature. White crystal (14.64 g, 96%) was obtained after filtered and washed with ethanol for 3 times. The intermediate 4-(ethyl(2-hydroxyethyl)amino)benzaldehyde was synthesized based on 2-(ethyl(phenyl)amino)ethanol(12.40 g, 75 mmol), phosphorus oxychloride (35.30 g, 230 mmol) and DMF (8.40 g, 115 mmol) via vilsmeier reaction.

The title compound was synthesized by mixing 4-(ethyl(2-hydroxyethyl)amino)benzaldehyde (1.90 g, 10 mmol) with 1,4-dimethylpyridin-1-ium (2.40 g, 10 mmol) in ethanol (30 ml), and then piperidine (0.1 ml, 1 mmol) was injected. The mixture was heated to reflux for 1 d and then cooled to room temperature. AgNO3 (1.70 g, 10 mmol) pre-dissolved in 30 ml ethanol was instilled into the former mixture, and heated to reflux for 2 h. The precipitate was filtered and washed with ethanol for 3 times. Red crystal (2.18 g, 63%) was obtained after recrystallized in DCM. 1H NMR: (400 Hz, DMSO-d6), d(p.p.m.): 8.66 (d, 2H), 8.02 (d, 2H), 7.89 (d, 1H), 7.56 (d, 2H), 7.12 (d, 1H), 6.78 (d, 2H), 4.80 (s, 1H), 4.16 (s, 3H), 3.51 (m, 6H), 1.12 (t, 3H).

Refinement top

The water H atoms were located in a difference Fourier map and ridden on its parent atom with Uiso(H) = 1.5Ueq(O). Other H atoms were placed in geometrically idealized positions (C—H = 0.93–0.97 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.5Ueq(C) for the methyl H atoms and 1.2Ueq(C) for the others.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : The structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
(E)-4-{4-[Ethyl(2-hydroxyethyl)amino]styryl}-1-methylpyridinium nitrate hemihydrate top
Crystal data top
C18H23N2O+·NO3·0.5H2OF(000) = 1512
Mr = 354.40Dx = 1.289 Mg m3
Monoclinic, P21/cMelting point: 395 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 15.5115 (17) ÅCell parameters from 7118 reflections
b = 14.6022 (16) Åθ = 2.4–24.1°
c = 16.4765 (19) ŵ = 0.09 mm1
β = 101.835 (1)°T = 296 K
V = 3652.6 (7) Å3Block, red
Z = 80.23 × 0.22 × 0.21 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4645 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 25.2°, θmin = 1.9°
phi and ω scansh = 1818
26119 measured reflectionsk = 1716
6583 independent reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.177 w = 1/[σ2(Fo2) + (0.0857P)2 + 0.8929P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
6583 reflectionsΔρmax = 0.46 e Å3
511 parametersΔρmin = 0.22 e Å3
2 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0028 (7)
Crystal data top
C18H23N2O+·NO3·0.5H2OV = 3652.6 (7) Å3
Mr = 354.40Z = 8
Monoclinic, P21/cMo Kα radiation
a = 15.5115 (17) ŵ = 0.09 mm1
b = 14.6022 (16) ÅT = 296 K
c = 16.4765 (19) Å0.23 × 0.22 × 0.21 mm
β = 101.835 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4645 reflections with I > 2σ(I)
26119 measured reflectionsRint = 0.027
6583 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0572 restraints
wR(F2) = 0.177H-atom parameters constrained
S = 1.10Δρmax = 0.46 e Å3
6583 reflectionsΔρmin = 0.22 e Å3
511 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.90771 (18)0.3566 (2)1.20540 (14)0.0768 (7)
H1A0.96080.39221.21340.115*
H1B0.92030.29781.23120.115*
H1C0.86480.38771.22990.115*
C20.85027 (15)0.26123 (17)1.08554 (14)0.0615 (6)
H20.85780.21061.12050.074*
C30.81616 (17)0.2502 (2)1.00297 (17)0.0752 (7)
H30.80040.19180.98270.090*
C40.80435 (15)0.3235 (3)0.94863 (15)0.0805 (9)
C50.83069 (19)0.4071 (2)0.98344 (17)0.0849 (9)
H50.82530.45870.94970.102*
C60.86415 (17)0.41630 (18)1.06533 (16)0.0707 (7)
H60.88150.47391.08670.085*
C70.7703 (2)0.3399 (3)0.8587 (3)0.0563 (12)0.600 (6)
H70.77370.39710.83480.068*0.600 (6)
C80.7347 (3)0.2683 (3)0.8143 (3)0.0559 (12)0.600 (6)
H80.73310.21110.83870.067*0.600 (6)
C7'0.7618 (4)0.2755 (5)0.8675 (4)0.0472 (15)0.400 (6)
H7'0.74910.21320.86460.057*0.400 (6)
C8'0.7444 (4)0.3302 (5)0.8016 (3)0.0445 (15)0.400 (6)
H8'0.75980.39180.80320.053*0.400 (6)
C90.69711 (17)0.2822 (3)0.72359 (16)0.0918 (11)
C100.66142 (18)0.2018 (3)0.69138 (16)0.0870 (9)
H100.66570.15130.72640.104*
C110.61969 (17)0.1909 (2)0.61056 (15)0.0768 (7)
H110.59620.13410.59250.092*
C120.61162 (15)0.26392 (17)0.55440 (13)0.0611 (6)
C130.64847 (15)0.34740 (18)0.58505 (15)0.0668 (6)
H130.64520.39780.55010.080*
C140.68982 (15)0.3550 (2)0.66746 (18)0.0845 (9)
H140.71400.41130.68650.101*
C150.55776 (18)0.32915 (19)0.41559 (15)0.0742 (7)
H15A0.54910.30520.35960.089*
H15B0.61090.36600.42530.089*
C160.4805 (2)0.3897 (2)0.4224 (2)0.1008 (10)
H16A0.42720.35420.41080.151*
H16B0.47630.43890.38320.151*
H16C0.48890.41430.47750.151*
C170.5069 (3)0.1801 (3)0.4512 (3)0.0483 (11)0.600 (6)
H17A0.45690.20180.41040.058*0.600 (6)
H17B0.48590.16040.49990.058*0.600 (6)
C180.5512 (4)0.0980 (4)0.4149 (4)0.0711 (16)0.600 (6)
H18A0.57540.11790.36800.085*0.600 (6)
H18B0.59860.07290.45670.085*0.600 (6)
O10.4828 (8)0.0285 (7)0.3885 (6)0.112 (4)0.600 (6)
H1E0.47350.01900.32970.167*0.600 (6)
C18'0.4877 (6)0.1240 (10)0.4312 (6)0.107 (4)0.400 (6)
H18C0.44390.16310.39740.128*0.400 (6)
H18D0.47840.12160.48760.128*0.400 (6)
C17'0.5706 (7)0.1467 (9)0.4270 (6)0.089 (3)0.400 (6)
H17C0.57900.15060.37040.106*0.400 (6)
H17D0.61380.10560.45880.106*0.400 (6)
O1'0.4930 (10)0.0277 (8)0.3927 (5)0.076 (4)0.400 (6)
H1'20.43640.00190.36960.114*0.400 (6)
C190.99709 (15)0.79038 (18)1.10168 (12)0.0637 (6)
H19A1.05950.80041.11030.096*
H19B0.98580.73691.13170.096*
H19C0.96960.84261.12120.096*
C200.94022 (14)0.69243 (15)0.98244 (13)0.0542 (5)
H200.94920.64241.01820.065*
C210.90635 (14)0.67910 (15)0.90044 (13)0.0526 (5)
H210.89290.62000.88080.063*
C220.89132 (12)0.75282 (14)0.84503 (12)0.0453 (5)
C230.91638 (14)0.83908 (15)0.87844 (12)0.0526 (5)
H230.90980.89010.84400.063*
C240.95045 (14)0.84912 (15)0.96132 (13)0.0551 (5)
H240.96660.90710.98240.066*
C250.85149 (13)0.73746 (14)0.75868 (12)0.0478 (5)
H250.84870.67760.73910.057*
C260.81846 (13)0.80381 (15)0.70526 (12)0.0491 (5)
H260.82410.86320.72610.059*
C270.77504 (13)0.79460 (14)0.61922 (12)0.0471 (5)
C280.76679 (13)0.71118 (15)0.57584 (12)0.0495 (5)
H280.79030.65840.60350.059*
C290.72528 (13)0.70496 (14)0.49425 (12)0.0500 (5)
H290.72170.64840.46780.060*
C300.68793 (12)0.78265 (14)0.44965 (12)0.0476 (5)
C310.69637 (14)0.86600 (15)0.49283 (13)0.0537 (5)
H310.67330.91910.46550.064*
C320.73814 (14)0.87069 (15)0.57474 (13)0.0531 (5)
H320.74180.92710.60150.064*
C330.59927 (15)0.85546 (17)0.32473 (14)0.0644 (6)
H33A0.57370.89150.36330.077*
H33B0.55150.83410.28130.077*
C340.65901 (19)0.9161 (2)0.28658 (17)0.0828 (8)
H34A0.70800.93530.32870.124*
H34B0.62680.96900.26240.124*
H34C0.68020.88270.24440.124*
C350.64478 (14)0.69331 (16)0.32029 (13)0.0564 (5)
H35A0.70050.66210.33920.068*
H35B0.64070.70960.26250.068*
C360.57032 (16)0.62827 (18)0.32676 (15)0.0687 (7)
H36A0.57480.61060.38420.082*
H36B0.51440.65920.30830.082*
N10.87290 (11)0.34430 (13)1.11629 (10)0.0523 (4)
N20.56995 (16)0.25335 (15)0.47325 (12)0.0787 (7)
N30.96098 (11)0.77709 (12)1.01264 (10)0.0490 (4)
N40.64398 (12)0.77638 (13)0.36832 (10)0.0572 (5)
O20.57310 (12)0.54893 (12)0.27801 (11)0.0821 (6)
H2C0.62050.51040.30500.123*
N50.93868 (15)0.44156 (15)0.78940 (13)0.0682 (6)
N60.78332 (16)0.02985 (13)0.87218 (15)0.0672 (6)
O80.85952 (15)0.05457 (16)0.89505 (17)0.1168 (8)
O40.94309 (18)0.37594 (17)0.74487 (15)0.1177 (8)
O70.73564 (19)0.02154 (17)0.92070 (18)0.1231 (9)
O50.9769 (2)0.44806 (18)0.86029 (15)0.1382 (11)
O30.88408 (18)0.50073 (15)0.76188 (17)0.1210 (8)
O60.75723 (19)0.01095 (17)0.79874 (15)0.1199 (8)
O90.8905 (2)0.5013 (2)0.58187 (15)0.1366 (10)
H9B0.88210.48000.63250.205*
H9D0.84050.49210.53910.205*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0786 (16)0.106 (2)0.0413 (12)0.0050 (15)0.0022 (11)0.0084 (13)
C20.0641 (14)0.0629 (15)0.0585 (14)0.0034 (11)0.0151 (11)0.0002 (11)
C30.0646 (15)0.0921 (19)0.0691 (17)0.0109 (14)0.0140 (12)0.0327 (15)
C40.0485 (13)0.150 (3)0.0414 (13)0.0201 (16)0.0046 (10)0.0071 (16)
C50.0829 (18)0.109 (2)0.0580 (16)0.0209 (17)0.0048 (13)0.0295 (16)
C60.0754 (16)0.0599 (15)0.0729 (16)0.0041 (12)0.0062 (12)0.0064 (12)
C70.061 (2)0.054 (3)0.052 (3)0.0050 (19)0.008 (2)0.004 (2)
C80.055 (2)0.056 (3)0.056 (3)0.0024 (19)0.010 (2)0.002 (2)
C7'0.054 (3)0.045 (4)0.039 (4)0.000 (3)0.000 (3)0.004 (3)
C8'0.049 (3)0.047 (4)0.035 (4)0.001 (3)0.003 (2)0.005 (3)
C90.0524 (15)0.173 (3)0.0453 (14)0.0224 (18)0.0006 (11)0.0187 (19)
C100.0720 (17)0.135 (3)0.0489 (14)0.0127 (17)0.0000 (12)0.0131 (16)
C110.0777 (16)0.0890 (19)0.0570 (14)0.0100 (14)0.0019 (12)0.0097 (13)
C120.0575 (13)0.0739 (16)0.0470 (12)0.0100 (11)0.0012 (10)0.0030 (11)
C130.0566 (13)0.0791 (17)0.0615 (14)0.0049 (12)0.0046 (11)0.0168 (12)
C140.0482 (13)0.123 (3)0.0783 (19)0.0032 (14)0.0047 (12)0.0551 (19)
C150.0845 (18)0.0842 (18)0.0494 (13)0.0191 (15)0.0035 (12)0.0058 (12)
C160.093 (2)0.117 (3)0.087 (2)0.0015 (19)0.0076 (17)0.0161 (19)
C170.048 (2)0.047 (2)0.046 (2)0.0116 (17)0.0010 (16)0.0128 (17)
C180.072 (4)0.056 (3)0.083 (3)0.009 (3)0.011 (3)0.030 (3)
O10.132 (6)0.071 (6)0.125 (6)0.039 (5)0.010 (5)0.026 (4)
C18'0.076 (6)0.173 (13)0.074 (6)0.018 (8)0.019 (5)0.027 (7)
C17'0.084 (6)0.125 (9)0.060 (5)0.014 (6)0.024 (4)0.001 (5)
O1'0.135 (9)0.053 (7)0.027 (3)0.006 (6)0.011 (4)0.003 (3)
C190.0610 (13)0.0891 (17)0.0378 (11)0.0066 (12)0.0027 (9)0.0020 (11)
C200.0587 (12)0.0544 (13)0.0489 (12)0.0007 (10)0.0097 (10)0.0067 (10)
C210.0598 (12)0.0481 (12)0.0493 (12)0.0021 (9)0.0094 (9)0.0014 (9)
C220.0443 (10)0.0515 (12)0.0421 (10)0.0020 (8)0.0135 (8)0.0019 (9)
C230.0647 (13)0.0490 (12)0.0444 (11)0.0019 (10)0.0119 (9)0.0017 (9)
C240.0644 (13)0.0525 (13)0.0478 (12)0.0047 (10)0.0104 (10)0.0048 (10)
C250.0517 (11)0.0515 (12)0.0409 (11)0.0009 (9)0.0116 (8)0.0063 (9)
C260.0522 (11)0.0527 (12)0.0432 (11)0.0019 (9)0.0116 (9)0.0063 (9)
C270.0452 (10)0.0548 (12)0.0413 (10)0.0006 (9)0.0089 (8)0.0029 (9)
C280.0493 (11)0.0518 (12)0.0458 (11)0.0028 (9)0.0063 (9)0.0012 (9)
C290.0514 (11)0.0491 (12)0.0478 (11)0.0025 (9)0.0062 (9)0.0058 (9)
C300.0439 (10)0.0539 (12)0.0440 (11)0.0029 (9)0.0067 (8)0.0008 (9)
C310.0589 (12)0.0506 (12)0.0493 (12)0.0049 (10)0.0058 (9)0.0040 (9)
C320.0595 (12)0.0491 (12)0.0498 (12)0.0011 (10)0.0095 (9)0.0051 (9)
C330.0611 (13)0.0721 (16)0.0528 (13)0.0033 (11)0.0051 (10)0.0043 (11)
C340.0906 (19)0.0825 (19)0.0718 (17)0.0043 (15)0.0082 (14)0.0177 (14)
C350.0587 (13)0.0676 (14)0.0415 (11)0.0068 (10)0.0072 (9)0.0032 (10)
C360.0617 (14)0.0813 (17)0.0605 (14)0.0140 (12)0.0068 (11)0.0096 (12)
N10.0501 (10)0.0636 (12)0.0421 (9)0.0016 (8)0.0067 (7)0.0010 (8)
N20.1049 (16)0.0694 (13)0.0487 (11)0.0279 (12)0.0153 (10)0.0027 (10)
N30.0475 (9)0.0600 (11)0.0391 (9)0.0025 (8)0.0074 (7)0.0001 (8)
N40.0635 (11)0.0592 (11)0.0439 (10)0.0003 (9)0.0003 (8)0.0005 (8)
O20.0864 (12)0.0730 (12)0.0745 (11)0.0102 (9)0.0126 (9)0.0143 (9)
N50.0845 (14)0.0557 (13)0.0615 (13)0.0127 (11)0.0085 (11)0.0031 (10)
N60.0795 (15)0.0393 (10)0.0782 (15)0.0004 (10)0.0051 (12)0.0024 (10)
O80.0925 (16)0.0859 (15)0.162 (2)0.0189 (12)0.0020 (15)0.0141 (15)
O40.160 (2)0.0937 (17)0.1067 (17)0.0182 (15)0.0434 (16)0.0263 (14)
O70.130 (2)0.1003 (18)0.157 (2)0.0055 (15)0.0733 (19)0.0217 (16)
O50.187 (3)0.1163 (19)0.0826 (15)0.0502 (18)0.0385 (16)0.0145 (13)
O30.135 (2)0.0740 (14)0.144 (2)0.0231 (14)0.0054 (16)0.0058 (14)
O60.165 (2)0.0971 (17)0.0860 (16)0.0138 (15)0.0022 (15)0.0021 (13)
O90.161 (2)0.142 (2)0.0993 (17)0.0210 (19)0.0081 (16)0.0324 (16)
Geometric parameters (Å, º) top
C1—N11.468 (3)C17'—H17D0.9700
C1—H1A0.9600O1'—H1E1.0274
C1—H1B0.9600O1'—H1'20.9600
C1—H1C0.9600C19—N31.472 (3)
C2—N11.334 (3)C19—H19A0.9600
C2—C31.364 (3)C19—H19B0.9600
C2—H20.9300C19—H19C0.9600
C3—C41.383 (4)C20—N31.347 (3)
C3—H30.9300C20—C211.359 (3)
C4—C51.376 (4)C20—H200.9300
C4—C71.488 (6)C21—C221.400 (3)
C4—C7'1.533 (8)C21—H210.9300
C5—C61.349 (4)C22—C231.397 (3)
C5—H50.9300C22—C251.448 (3)
C6—N11.335 (3)C23—C241.367 (3)
C6—H60.9300C23—H230.9300
C7—C81.330 (2)C24—N31.338 (3)
C7—H70.9300C24—H240.9300
C8—C91.502 (6)C25—C261.338 (3)
C8—H80.9300C25—H250.9300
C7'—C8'1.331 (2)C26—C271.446 (3)
C7'—H7'0.9300C26—H260.9300
C8'—C91.514 (7)C27—C321.388 (3)
C8'—H8'0.9300C27—C281.405 (3)
C9—C101.360 (5)C28—C291.369 (3)
C9—C141.398 (5)C28—H280.9300
C10—C111.365 (4)C29—C301.410 (3)
C10—H100.9300C29—H290.9300
C11—C121.400 (3)C30—N41.376 (2)
C11—H110.9300C30—C311.402 (3)
C12—N21.369 (3)C31—C321.374 (3)
C12—C131.396 (3)C31—H310.9300
C13—C141.382 (4)C32—H320.9300
C13—H130.9300C33—N41.458 (3)
C14—H140.9300C33—C341.509 (3)
C15—N21.446 (3)C33—H33A0.9700
C15—C161.511 (4)C33—H33B0.9700
C15—H15A0.9700C34—H34A0.9600
C15—H15B0.9700C34—H34B0.9600
C16—H16A0.9600C34—H34C0.9600
C16—H16B0.9600C35—N41.450 (3)
C16—H16C0.9600C35—C361.516 (3)
C17—N21.444 (4)C35—H35A0.9700
C17—C181.562 (8)C35—H35B0.9700
C17—H17A0.9700C36—O21.415 (3)
C17—H17B0.9700C36—H36A0.9700
C18—O11.468 (11)C36—H36B0.9700
C18—H18A0.9700O2—H2C0.9600
C18—H18B0.9700N5—O51.200 (3)
O1—H1E0.9600N5—O41.217 (3)
O1—H1'20.8213N5—O31.230 (3)
C18'—C17'1.343 (15)N6—O71.201 (3)
C18'—O1'1.552 (19)N6—O81.219 (3)
C18'—H18C0.9700N6—O61.226 (3)
C18'—H18D0.9700O9—H9B0.9240
C17'—N21.735 (13)O9—H9D0.9446
C17'—H17C0.9700
N1—C1—H1A109.5C18'—O1'—H1E119.6
N1—C1—H1B109.5C18'—O1'—H1'2113.4
H1A—C1—H1B109.5H1E—O1'—H1'259.7
N1—C1—H1C109.5N3—C19—H19A109.5
H1A—C1—H1C109.5N3—C19—H19B109.5
H1B—C1—H1C109.5H19A—C19—H19B109.5
N1—C2—C3120.3 (2)N3—C19—H19C109.5
N1—C2—H2119.9H19A—C19—H19C109.5
C3—C2—H2119.9H19B—C19—H19C109.5
C2—C3—C4121.8 (3)N3—C20—C21120.86 (19)
C2—C3—H3119.1N3—C20—H20119.6
C4—C3—H3119.1C21—C20—H20119.6
C5—C4—C3115.4 (2)C20—C21—C22121.1 (2)
C5—C4—C7106.6 (3)C20—C21—H21119.4
C3—C4—C7138.0 (3)C22—C21—H21119.4
C5—C4—C7'143.8 (3)C23—C22—C21116.14 (18)
C3—C4—C7'100.8 (3)C23—C22—C25123.71 (18)
C7—C4—C7'37.2 (2)C21—C22—C25120.15 (19)
C6—C5—C4121.7 (3)C24—C23—C22120.6 (2)
C6—C5—H5119.2C24—C23—H23119.7
C4—C5—H5119.2C22—C23—H23119.7
N1—C6—C5121.3 (3)N3—C24—C23121.2 (2)
N1—C6—H6119.3N3—C24—H24119.4
C5—C6—H6119.3C23—C24—H24119.4
C8—C7—C4116.3 (6)C26—C25—C22124.25 (19)
C8—C7—H7121.8C26—C25—H25117.9
C4—C7—H7121.8C22—C25—H25117.9
C7—C8—C9118.2 (6)C25—C26—C27128.0 (2)
C7—C8—H8120.9C25—C26—H26116.0
C9—C8—H8120.9C27—C26—H26116.0
C8'—C7'—C4114.6 (7)C32—C27—C28116.16 (17)
C8'—C7'—H7'122.7C32—C27—C26120.12 (19)
C4—C7'—H7'122.7C28—C27—C26123.72 (19)
C7'—C8'—C9113.4 (7)C29—C28—C27122.16 (19)
C7'—C8'—H8'123.3C29—C28—H28118.9
C9—C8'—H8'123.3C27—C28—H28118.9
C10—C9—C14115.3 (2)C28—C29—C30121.24 (19)
C10—C9—C8108.3 (3)C28—C29—H29119.4
C14—C9—C8136.3 (4)C30—C29—H29119.4
C10—C9—C8'144.9 (4)N4—C30—C31121.85 (18)
C14—C9—C8'99.7 (4)N4—C30—C29121.51 (18)
C8—C9—C8'36.6 (2)C31—C30—C29116.63 (17)
C9—C10—C11123.7 (3)C32—C31—C30121.19 (19)
C9—C10—H10118.2C32—C31—H31119.4
C11—C10—H10118.2C30—C31—H31119.4
C10—C11—C12121.1 (3)C31—C32—C27122.6 (2)
C10—C11—H11119.5C31—C32—H32118.7
C12—C11—H11119.5C27—C32—H32118.7
N2—C12—C13121.9 (2)N4—C33—C34113.5 (2)
N2—C12—C11121.3 (2)N4—C33—H33A108.9
C13—C12—C11116.8 (2)C34—C33—H33A108.9
C14—C13—C12119.9 (3)N4—C33—H33B108.9
C14—C13—H13120.0C34—C33—H33B108.9
C12—C13—H13120.0H33A—C33—H33B107.7
C13—C14—C9123.2 (3)C33—C34—H34A109.5
C13—C14—H14118.4C33—C34—H34B109.5
C9—C14—H14118.4H34A—C34—H34B109.5
N2—C15—C16113.4 (2)C33—C34—H34C109.5
N2—C15—H15A108.9H34A—C34—H34C109.5
C16—C15—H15A108.9H34B—C34—H34C109.5
N2—C15—H15B108.9N4—C35—C36113.20 (19)
C16—C15—H15B108.9N4—C35—H35A108.9
H15A—C15—H15B107.7C36—C35—H35A108.9
C15—C16—H16A109.5N4—C35—H35B108.9
C15—C16—H16B109.5C36—C35—H35B108.9
H16A—C16—H16B109.5H35A—C35—H35B107.8
C15—C16—H16C109.5O2—C36—C35111.1 (2)
H16A—C16—H16C109.5O2—C36—H36A109.4
H16B—C16—H16C109.5C35—C36—H36A109.4
N2—C17—C18109.7 (4)O2—C36—H36B109.4
N2—C17—H17A109.7C35—C36—H36B109.4
C18—C17—H17A109.7H36A—C36—H36B108.0
N2—C17—H17B109.7C2—N1—C6119.5 (2)
C18—C17—H17B109.7C2—N1—C1120.3 (2)
H17A—C17—H17B108.2C6—N1—C1120.2 (2)
O1—C18—C17107.2 (7)C12—N2—C15121.8 (2)
O1—C18—H18A110.3C12—N2—C17119.3 (2)
C17—C18—H18A110.3C15—N2—C17114.3 (2)
O1—C18—H18B110.3C12—N2—C17'119.1 (4)
C17—C18—H18B110.3C15—N2—C17'114.2 (3)
H18A—C18—H18B108.5C17—N2—C17'44.7 (4)
C18—O1—H1E110.4C24—N3—C20119.93 (17)
C18—O1—H1'2164.5C24—N3—C19119.88 (19)
H1E—O1—H1'267.0C20—N3—C19120.17 (18)
C17'—C18'—O1'94.0 (12)C30—N4—C35121.94 (17)
C17'—C18'—H18C112.9C30—N4—C33121.17 (18)
O1'—C18'—H18C112.9C35—N4—C33116.75 (17)
C17'—C18'—H18D112.9C36—O2—H2C109.0
O1'—C18'—H18D112.9O5—N5—O4124.8 (3)
H18C—C18'—H18D110.3O5—N5—O3118.0 (3)
C18'—C17'—N296.2 (10)O4—N5—O3116.8 (2)
C18'—C17'—H17C112.5O7—N6—O8121.0 (3)
N2—C17'—H17C112.5O7—N6—O6120.7 (3)
C18'—C17'—H17D112.5O8—N6—O6118.3 (3)
N2—C17'—H17D112.5H9B—O9—H9D112.3
H17C—C17'—H17D110.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1E···O2i0.961.832.719 (10)153
O2—H2C···O6ii0.962.172.939 (4)137
O2—H2C···O7ii0.962.383.242 (3)150
O9—H9B···O30.922.152.988 (4)151
O9—H9B···O40.922.433.214 (4)142
O9—H9D···O7ii0.942.283.212 (4)170
C1—H1B···O4iii0.962.563.480 (4)159
C2—H2···O4iii0.932.543.380 (3)151
C6—H6···O5iv0.932.473.204 (4)136
C15—H15B···O7ii0.972.553.504 (4)168
C19—H19A···O8iv0.962.483.166 (3)129
C20—H20···O5iv0.932.473.348 (3)156
C24—H24···O9v0.932.583.215 (4)126
C33—H33A···O1vi0.972.533.400 (10)149
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z+1/2; (iv) x+2, y+1, z+2; (v) x, y+3/2, z+1/2; (vi) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1E···O2i0.961.832.719 (10)153
O2—H2C···O6ii0.962.172.939 (4)137
O2—H2C···O7ii0.962.383.242 (3)150
O9—H9B···O30.922.152.988 (4)151
O9—H9B···O40.922.433.214 (4)142
O9—H9D···O7ii0.942.283.212 (4)170
C1—H1B···O4iii0.962.563.480 (4)159
C2—H2···O4iii0.932.543.380 (3)151
C6—H6···O5iv0.932.473.204 (4)136
C15—H15B···O7ii0.972.553.504 (4)168
C19—H19A···O8iv0.962.483.166 (3)129
C20—H20···O5iv0.932.473.348 (3)156
C24—H24···O9v0.932.583.215 (4)126
C33—H33A···O1vi0.972.533.400 (10)149
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z+1/2; (iv) x+2, y+1, z+2; (v) x, y+3/2, z+1/2; (vi) x, y+1, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No 21271004, 51271003) and the Doctoral Program Foundation of the Ministry of Education of China (20113401110004).

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMarder, S. R., Perry, J. W. & Yakymyshyn, C. P. (1994). Chem. Mater. 6, 1137–1147.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, W.-G., Chan, P. S., Chan, M. S., Li, K.-F., Lo, P. K., Mak, N. K., Cheah, K. W. & Wong, M. S. (2013). Chem. Commun. 49, 3428–3430.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o111-o112
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds