research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 128-132

Crystal structures of 2,6-bis­­[(1H-1,2,4-triazol-1-yl)meth­yl]pyridine and 1,1-[pyridine-2,6-diylbis(methyl­ene)]bis­­(4-methyl-1H-1,2,4-triazol-4-ium) iodide triiodide

aChemistry Department, University of St Thomas, Mail OSS 402, Summit Avenue, St Paul, MN 55105-1079, USA, and bDepartment of Chemistry and Biochemistry, St Catherine University, 2004 Randolph Avenue, St Paul, MN 55105, USA
*Correspondence e-mail: maguinoo@stthomas.edu

Edited by G. Smith, Queensland University of Technology, Australia (Received 14 November 2014; accepted 22 December 2014; online 3 January 2015)

In the structures of the 2,6-bis­(1,2,4-triazoly-3-yl)methyl-substituted pyridine compound, C11H11N7, (I) and the iodide triiodide salt, C13H17N72+·I·I3, (II), the dihedral angles between the two triazole rings and the pyridine ring are 66.4 (1) and 74.6 (1)° in (I), and 68.4 (2)° in (II), in which the dication lies across a crystallographic mirror plane. The overall packing structure for (I) is two-dimensional with the layers lying parallel to the (001) plane. In (II), the triiodide anion lies within the mirror plane, occupying the space between the two triazole substituent groups and was found to have minor disorder [occupancy ratio 0.9761 (9):0.0239 (9)]. The overall packing of structure (II) can be described as two-dimensional with the layers stacking parallel to the (001) plane. In the crystal, the predominant inter­molecular inter­actions in (I) and (II) involve the acidic hydrogen atom in the third position of the triazole ring, with either the triazole N-atom acceptor in weak C—H⋯N hydrogen bonds in (I), or with halide counter-ions through C—H⋯I inter­actions, in (II).

1. Chemical context

1,2,4-Triazole analogs first found applications in the pharmaceutical field as anti­fungal and anti­bacterial agents over 30 years ago. Recent developments are reviewed by Peng et al. (2013[Peng, X. M., Cai, G. X. & Zhou, C. H. (2013). Curr. Top. Med. Chem. 13, 1963-2010.]). Recently, 1,2,4-triazole rings have been incorporated into ligands used in coordination compounds and polymers (Haasnoot, 2000[Haasnoot, J. G. (2000). Coord. Chem. Rev. 200-202, 131-185.]; Aromí et al., 2011[Aromí, G., Barrios, L. A., Roubeau, O. & Gamez, P. (2011). Coord. Chem. Rev. 255, 485-546.]; Ouellette et al., 2011[Ouellette, W., Jones, S. & Zubieta, J. (2011). CrystEngComm, 13, 4457-4485.]). Related triazolium salts are being used as cations in ionic liquids (Porcar et al., 2013[Porcar, R., Ríos-Lombardía, N., Busto, E., Gotor-Fernández, V., Montejo-Bernardo, J., García-Granda, S., Luis, S. V., Gotor, V., Alfonso, I. & García-Verdugo, E. (2013). Chem. Eur. J. 19, 892-904.]; Meyer & Strassner, 2011[Meyer, D. & Strassner, T. (2011). J. Org. Chem. 76, 305-308.]; Singh et al., 2006[Singh, R. P., Verma, R. D., Meshri, D. T. & Shreeve, J. M. (2006). Angew. Chem. Int. Ed. 45, 3584-3601.]), or as precursors to N-heterocyclic carbenes (Lin et al., 2014[Lin, K., Chile, L., Zhen, S. C., Boyd, P. D. W., Ware, D. C. & Brothers, P. J. (2014). Inorg. Chim. Acta, 422, 95-101.]; Strassner et al., 2013[Strassner, T., Unger, Y., Meyer, D., Molt, O., Münster, I. & Wagenblast, G. (2013). Inorg. Chem. Commun. 30, 39-41.]; Huynh & Lee, 2013[Huynh, H. V. & Lee, C. (2013). Dalton Trans. 42, 6803-6809.]; Riederer et al., 2011[Riederer, S. K., Bechlars, B., Herrmann, W. A. & Kühn, F. E. (2011). Dalton Trans. 40, 41-43.]).

[Scheme 1]

To better understand the suitability of the title compounds for use as ligands for the formation of lanthanide complexes, we became inter­ested in the predominant inter­actions of 1,2,4-triazole rings in the solid state. Herein, we report the structures of 2,6-bis­[(1H-1,2,4-triazol-1-yl)meth­yl]pyridine, (I)[link], and 1,1-[pyridine-2,6-diylbis(methyl­ene)]bis­(4-methyl-1H-1,2,4-triazol-4-ium) iodide triiodide, (II)[link]. The solid-state structures of these compounds by themselves have not been reported, but their structures as ligands in cobalt(II) (Kim et al., 2010[Kim, E. Y., Song, Y. J., Koo, H. G., Lee, J. H., Park, H. M., Kim, C., Kwon, T., Huh, S., Kim, Y. & Kim, Y. (2010). Polyhedron, 29, 3335-3341.]) and palladium(II) complexes (Huynh & Lee, 2013[Huynh, H. V. & Lee, C. (2013). Dalton Trans. 42, 6803-6809.]) are known.

2. Structural commentary

Compound (I)[link] crystallizes in the ortho­rhom­bic space group, Pna21, with the entire mol­ecule in the asymmetric unit (Fig. 1[link]). The triazole rings are aromatic with C—C, C—N and N—N bond distances within a range of 1.314 (4) to 1.356 (3) Å. These are twisted above and below the plane of the pyridine ring with dihedral angles between the two triazole rings and the pyridine ring of 66.4 (1) and 74.6 (1)°. The packing structure consists of a stack of triazole mol­ecules with the same handedness translating along the c-axis direction. There are no intra­molecular inter­actions due to the inherent steric hindrances within the mol­ecule.

[Figure 1]
Figure 1
A perspective view of compound (I)[link], showing the atom-numbering scheme. Anisotropic displacement parameters are drawn at the 50% probability level.

In contrast, compound (II)[link] consists of a dication of 2,6-bis­[(1H-1,2,4-triazol-1-yl)meth­yl]pyridine with methyl groups at the fourth nitro­gen positions of the triazole rings, with mixed triiodide/iodide anions. This compound crystallizes in the space group C2/m with half of the dication, half of a triiodide (I1—I2—I3) and half of one iodide (I4) in the asymmetric unit (Fig. 2[link]). The triiodide counter-ion exhibits positional disorder, which was satisfactorily refined with split positions of 0.9761 (9):0.0239 (9), the minor component being I1′—I2′—I3′. Both disorder positions are on the mirror plane and discussions and illustrations relating to this counter-ion are focused on the major occupancy triiodide atom positions. The bond lengths in the triazolium rings indicate significant aromaticity with C—C, C—N, and N—N bond distances in the narrow range of 1.295 (7) to 1.362 (6)Å. The triazole rings are twisted from the plane of the pyridine ring, forming a dihedral angle of 68.4 (2)°. There are no intra­molecular inter­actions.

[Figure 2]
Figure 2
A perspective view of compound (II)[link], showing the atom-numbering scheme, with anisotropic displacement parameters drawn at the 50% probability level. The iodide and triiodide anions lie on crystallographic mirror planes. The minor occupancy component of the disordered triiodide ion is not shown. [Symmetry code: (vi) x, −y + 1, z.]

3. Supra­molecular features

In compound (I)[link], the predominant inter­molecular inter­actions are the C—H⋯N hydrogen bonds between the acidic hydrogen atoms of the triazole ring and the nitro­gen lone pairs of the neighboring triazole mol­ecule (Table 1[link]). For one asymmetric unit, there are a total of six hydrogen bonds with three neighboring mol­ecules (Fig. 3[link]). These hydrogen bonds can be simplified into two categories: a) the nitro­gen atoms involved are in the fourth position of the triazole ring (C1—H1⋯N7 and C11—H11⋯N7), and b) the nitro­gen atom is in the second position of the ring (C2—H2⋯N6). Pyridine nitro­gen atoms, on the other hand, are involved as acceptors in hydrogen bonds arising from the methyl­ene hydrogen atoms, forming a stack of one mol­ecule on top of the other (Fig. 4[link]), although no ππ ring inter­actions are present [minimum ring centroid separation, 4.4323 (3) Å]. Additionally, a non-acidic C—H⋯N inter­action is observed between the triazole nitro­gen atom and the meta-hydrogen atom of the pyridine ring (C5—H5⋯N2) (Table 1[link]). The overall packing of structure (I)[link] can be described as layers that lie parallel to (001).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N6i 0.95 2.62 3.547 (4) 166
C11—H11⋯N7ii 0.95 2.47 3.381 (4) 161
C1—H1⋯N7iii 0.95 2.63 3.551 (4) 164
C9—H9B⋯N4iv 0.99 2.57 3.419 (5) 144
C5—H5⋯N2v 0.95 2.63 3.449 (4) 145
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, -y, z-{\script{1\over 2}}]; (iii) [-x+1, -y, z+{\script{1\over 2}}]; (iv) x, y, z-1; (v) [-x+2, -y, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
The predominant C—H⋯N hydrogen bonds between triazole rings in one asymmetric unit of compound (I)[link]. H atoms not involved in the hydrogen bonding are not shown. For symmetry codes, see Table 1[link].
[Figure 4]
Figure 4
Hydrogen-bond stacking of the pyridine N atoms and the methyl­ene H atoms in compound (I)[link]. H atoms not involved in hydrogen bonding are not shown. [Symmetry code: (vii) x, y, z + 1; for other symmetry codes, see Table 1[link].]

In compound (II)[link], when viewed along the c-axis, the tri­iodide anion lies on the mirror plane in the middle of the dication-iodide units, filling up a pore-like groove within the structure (Fig. 5[link]). There are no C—H⋯N inter­actions in compound (II)[link] because the triazole nitro­gen atoms are bonded to the methyl groups. The acidic hydrogen atoms in the triazole ring now prefer to inter­act with the iodide ion. There are four C—H⋯I(iodide) inter­actions per iodide: two from C—H donors from the same dication, and two additional inter­actions from neighboring dication C—H donors (Fig. 6[link]), (C2—H2⋯I4, C3—H3⋯I4; Table 2[link]). Meanwhile, the triiodide anion is involved in two C—H⋯I(triiodide) inter­actions with, a) the meta-hydrogen atoms of the pyridine ring (C6—H6⋯I1), and b) the methyl­ene hydrogen atoms (C4—H4B⋯I2) (Fig. 7[link]). The minor occupancy triiodide mol­ecule is not shown, but gives similar inter­actions to those described above for the major component (C6—H6⋯I1′ and C4—H4⋯I2′ as well as C4—H4A⋯I1′; Table 2[link]). The overall packing of structure (II)[link] can be described as two-dimensional with the layers stacking parallel to the (001) plane.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯I4 0.95 3.00 3.844 (5) 149
C2—H2⋯I4i 0.95 2.82 3.744 (5) 164
C4—H4B⋯I2ii 0.99 3.18 3.775 (6) 120
C4—H4B⋯I2′ii 0.99 3.10 3.766 (15) 126
C6—H6⋯I1iii 0.95 3.17 4.097 (5) 166
C6—H6⋯I1′iii 0.95 3.00 3.900 (8) 158
C4—H4A⋯I1′iii 0.99 2.98 3.94 (2) 166
Symmetry codes: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z].
[Figure 5]
Figure 5
Compound (II)[link] showing the triiodide anion filling up a pore-like groove arrangement built by the triazole dications along (a) the b axis and (b) the c axis.
[Figure 6]
Figure 6
Compound (II)[link] showing the C—H⋯I(iodide) inter­actions. H atoms not involved in hydrogen bonding are not shown. [Symmetry codes: (iv) x, −y + 1, z; (v) x, y + 1, z; (vi) x + [{1\over 2}], −y + [{1\over 2}], z; (vii) x + [{1\over 2}], y + [{1\over 2}], z; for other symmetry codes, see Table 2[link].]
[Figure 7]
Figure 7
Compound (II)[link] showing the C—H⋯I(triiodide) inter­actions. H atoms not involved in the hydrogen-bonding inter­actions are not shown. [Symmetry codes: (viii) x − [{1\over 2}], y + [{1\over 2}], z; (ix) −x + [{3\over 2}], y + [{1\over 2}], −z; for other symmetry codes, see Table 2[link] and Fig. 6[link].]

4. Database survey

(1H-Imidazol-1-yl){6-[(1H-imidazol-1-yl)meth­yl]-2-pyrid­yl}methane (Meng et al., 2005[Meng, X.-T., Li, Q.-S., Xu, F.-B., Song, H.-B. & Zhang, Z.-Z. (2005). Acta Cryst. E61, o4338-o4339.]) is a structure closely related to compound (I)[link]. In the solid-state structure, the imidazole nitro­gen atoms prefer to form hydrogen bonds with water mol­ecules in the asymmetric unit, not with the hydrogen atoms of the imidazole ring. In another closely related structure, 2,5-bis­[(1H-1,2,4-triazol-1-yl)meth­yl]-1H-pyrrole (Lin et al., 2014[Lin, K., Chile, L., Zhen, S. C., Boyd, P. D. W., Ware, D. C. & Brothers, P. J. (2014). Inorg. Chim. Acta, 422, 95-101.]), the acidic triazole hydrogen atom also forms C—H⋯N hydrogen-bonding inter­actions similar to those in compound (I)[link].

3-Methyl-1-({6-[(3-methyl-1H-imidazol-1-yl)meth­yl]-2-pyrid­yl}meth­yl)-1H-imidazole bromide (Nielsen et al., 2002[Nielsen, D. J., Cavell, K. J., Skelton, B. W. & White, A. H. (2002). Inorg. Chim. Acta, 327, 116-125.]), a structure closely related to compound (II)[link], crystallizes as a monohydrate. An imidazole hydrogen atom also shows C—H⋯halide(Br) inter­actions, and at the the same time these bromide anions also form hydrogen bonds with the water mol­ecule in the asymmetric unit. Triazolium salt C—H⋯halide inter­actions similar to those shown by compound (II)[link] are also observed in ionic liquids utilizing triazolium cations (Porcar et al., 2013[Porcar, R., Ríos-Lombardía, N., Busto, E., Gotor-Fernández, V., Montejo-Bernardo, J., García-Granda, S., Luis, S. V., Gotor, V., Alfonso, I. & García-Verdugo, E. (2013). Chem. Eur. J. 19, 892-904.]).

5. Synthesis and crystallization

For the synthesis of compounds (I)[link] and (II)[link], a procedure similar to that reported by Huynh's group (Huynh & Lee, 2013[Huynh, H. V. & Lee, C. (2013). Dalton Trans. 42, 6803-6809.]) was used. In our attempts, we used the microwave technique for the synthesis of both title compounds but shortened the reaction time for each from 24 hr to roughly 15 min. For (I)[link], 2,6-bis­[(1H-1,2,4-triazol-1-yl)meth­yl]pyridine and 1,2,4-triazole (0.0241 mol, 1.665 g) were dissolved in 10–12 mL of aceto­nitrile by stirring. Once these had completely dissolved, K2CO3 (0.0241 mol, 3.331 g) was added and briefly stirred to deprotonate the triazole. 2,6-Bis(bromo­meth­yl)pyridine (0.011 mol, 2.902 g) was then dissolved separately in 5 mL of aceto­nitrile. The two solutions were then combined in a 10–20 mL microwave vessel and placed in the microwave reactor for 15 min at 403 K, after which the aceto­nitrile was removed in vacuo. Compound (I)[link] was isolated through recrystallization utilizing hot di­chloro­methane, producing colorless prismatic crystals suitable for single-crystal X-ray diffraction. Yield 83%. 1H NMR (400MHz, CDCl3) δ 8.23 (s, 2H), 7.98 (s, 2H), 7.69 (t, 1H), 7.12 (d, 2H), 5.44 (s, 4H). 13C NMR (400 MHz, CDCl3) δ 152.5, 144.0, 138.6, 121.8, 54.8.

For (II)[link], 1,1′-[pyridine-2,6-diylbis(methyl­ene)]-bis­(4-methyl-1H-1,2,4-triazol-4-ium) iodide and iodo­methane (0.996 mL, 0.016 mol) was added to a 10 mL aceto­nitrile solution of 2,6-bis­[(1H-1,2,4-triazol-1-yl)meth­yl]pyridine (0.947 g, 0.004 mol) in a microwave vial. The mixture was placed in the microwave reactor for 10 min at 413 K, after which the aceto­nitrile was removed in vacuo. Compound (II)[link] was isolated through recrystallization utilizing isopropyl alcohol layered with hexa­nes, producing brown prismatic crystals suitable for single-crystal X-ray diffraction. Yield 52%. 1H NMR (400MHz, DMSO-d6) δ 10.15 (s, 2H), 9.17 (s, 2H), 7.99 (t, 1H), 7.51 (d, 2H), 5.76 (s, 4H), 3.95 (s, 6H). 13C NMR (400 MHz, DMSO-d6) δ 152.88 (2C), 146.02 (2C), 144.24 (1C), 139.19 (2C), 122.97 (2C), 55.75 (2C), 34.55 (2C), 25.75 (iPrOH).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All hydrogen atoms were placed in calculated positions and allowed to ride on their parent atoms at C—H distances of 0.95 Å for the triazole and the pyridine rings, 0.97 Å for the methyl group and 0.99 Å for the methyl­ene group, with Uiso(H) = 1.2Ueq(C). In compound (II)[link], the triiodide counter-ion showed positional disorder, and the positions were allowed to refine using constraints, introducing split positions of 0.9761 (9):0.0239 (9) (the minor component being I1′—I2′—I3′), with satisfactory refinement.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C11H11N7 C13H17N72+·I3·I
Mr 241.27 778.94
Crystal system, space group Orthorhombic, Pna21 Monoclinic, C2/m
Temperature (K) 173 173
a, b, c (Å) 14.465 (3), 18.742 (4), 4.3230 (9) 13.784 (3), 10.010 (3), 16.709 (4)
α, β, γ (°) 90, 90, 90 90, 102.648 (7), 90
V3) 1172.0 (4) 2249.5 (10)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.09 5.55
Crystal size (mm) 0.62 × 0.15 × 0.13 0.34 × 0.14 × 0.09
 
Data collection
Diffractometer Rigaku XtaLAB mini Rigaku XtaLAB mini
Absorption correction Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.779, 0.988 0.322, 0.607
No. of measured, independent and observed [I > 2σ(I)] reflections 9633, 2381, 1895 11638, 2712, 2303
Rint 0.062 0.037
(sin θ/λ)max−1) 0.625 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.101, 1.05 0.036, 0.080, 1.11
No. of reflections 2381 2712
No. of parameters 163 126
No. of restraints 1 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained
  w = 1/[σ2(Fo2) + (0.042P)2 + 0.0415P] where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0241P)2 + 14.4966P] where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å−3) 0.13, −0.14 1.09, −1.11
Computer programs: CrystalClear-SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]), SIR2004 (Burla, et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), SHELXS97 and SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Chemical context top

1,2,4-Triazole analogs first found applications in the pharmaceutical field as anti­fungal and anti­bacterial agents over 30 years ago (Peng et al., 2013). Recently, 1,2,4-triazole rings have been incorporated into ligands used in coordination compounds and polymers (Haasnoot, 2000; Aromí et al., 2011; Ouellette et al., 2011). Related triazolium salts are being used as cations in novel ionic liquids (Porcar et al., 2013; Meyer & Strassner, 2011; Singh et al., 2006), or as precursors to N-heterocyclic carbenes (Lin et al., 2014; Strassner et al., 2013; Huynh & Lee, 2013; Riederer et al., 2011).

To better understand the suitability of the title compounds for use as ligands for the formation of lanthanide complexes, we became inter­ested in the predominant inter­actions of 1,2,4-triazole rings in the solid state. Herein, we report the structures of 2,6-bis­[(1H-1,2,4-triazol-1-yl)methyl]­pyridine, (I), and 1,1-[pyridine-2,6-diylbis(methyl­ene)]bis­(4-methyl-1H-1,2,4-triazol-4-ium) iodide triiodide, (II). The solid-state structures of these compounds by themselves have not been reported, but their structures as ligands in cobalt(II) (Kim et al., 2010) and palladium(II) complexes (Huynh & Lee, 2013) are known.

Structural commentary top

Compound (I) crystallizes in the orthorhombic space group, Pna21, with the entire molecule in the asymmetric unit (Fig. 1). The triazole rings are aromatic with C—C, C—N and N—N bond distances within a range of 1.314 (4) to 1.356 (3) Å. These are twisted above and below the plane of the pyridine ring with dihedral angles between the two triazole rings and the pyridine ring of 66.4 (1) and 74.6 (1)°. The packing structure consists of a stack of triazole molecules with the same handedness translating along the c-axis direction. There are no intra­molecular inter­actions due to the inherent steric hindrances within the molecule.

In contrast, compound (II) consists of a dication of 2,6-bis­[(1H-1,2,4-triazol-1-yl)methyl]­pyridine with methyl groups at the fourth nitro­gen positions of the triazole rings, with mixed triiodide/iodide anions. This compound crystallizes in the space group C2/m with half of the dication, half of a triiodide (I1—I2—I3) and half of one iodide (I4) in the asymmetric unit (Fig. 2). The triiodide counter-ion exhibits positional disorder, which was satisfactorily refined with split positions of 0.9761 (9):0.0239 (9), the minor component being I1'—I2'—I3i. Both disorder positions are on the mirror plane and discussions and illustrations relating to this counter-ion are focused on the major occupancy triiodide atom positions. The bond lengths in the triazolium rings indicate significant aromaticity with C—C, C—N, and N—N bond distances in the narrow range of 1.295 (7) to 1.362 (6)Å. The triazole rings are twisted from the plane of the pyridine ring, forming a dihedral angle of 68.4 (2)°. There are no intra­molecular inter­actions.

Supra­molecular features top

In compound (I), the predominant inter­molecular inter­actions are the C—H···N hydrogen bonds between the acidic hydrogens of the triazole ring and the nitro­gen lone pairs of the neighboring triazole molecule (Table 1). For one asymmetric unit, there are a total of six hydrogen bonds with three neighboring molecules (Fig. 3). These hydrogen bonds can be simplified into two categories: a) the nitro­gen atoms involved are in the fourth position of the triazole ring (C1—H1···N7, C11—H11···N7, and C10—H···N1 [not given in Table 1, but C9—H9B···N4 is included?]), and b) the nitro­gen atom is in the second position of the ring (C2—H2···N6). Pyridine nitro­gens, on the other hand, are involved in hydrogen bonding with the methyl­ene hydrogens, forming a stack of one molecule on top of the other (Fig. 4), although no ππ ring inter­actions are present [minimum ring centroid separation, 4.4323 (3) Å]. Additionally, a non-acidic C—H···N inter­action is observed between the triazole nitro­gen and the meta-hydrogen of the pyridine ring (C5—H5···N2) (Fig. 4). The overall packing of structure (I) can be described as layers that lie parallel to (001).

In compound (II), when viewed along the c-axis, the triiodide anion lies on the mirror plane in the middle of the dication-iodide units, filling up a pore-like groove within the structure (Fig. 5). There are no C—H···N inter­actions in compound (II) because the triazole nitro­gens are bonded to the methyl groups. The acidic hydrogens in the triazole ring now prefer to inter­act with the iodide ion. There are four C—H···I(iodide) inter­actions per iodide: two from C—H donors from the same dication, and two additional inter­actions from neighboring dication C—H donors (Fig. 6), (C2—H2···I4, C3—H3···I4; Table 2). Meanwhile, the triiodide anion is involved in two C—H···I(triiodide) inter­actions with, a) the meta-hydrogen atoms of the pyridine ring (C6—H6···I1), and b) the methyl­ene hydrogens (C4—H4B···I2) (Fig. 7). The minor occupancy triiodide molecule is not shown, but gives similar inter­actions to those described above for the major component (C6—H6···I1' and C4—H4···I2' as well as C4—H4A···I1'; Table 2). The overall packing of structure (II) can be described as two-dimensional with the layers stacking parallel to (001).

Database survey top

(1H-Imidazol-1-yl){6-[(1H-imidazol-1-yl)methyl]-2-pyridyl}­methane (Meng et al., 2005) is a structure closely related to compound (I). In the solid-state structure, the imidazole nitro­gens prefer to form hydrogen bonds with water molecules in the asymmetric unit, not with the hydrogen atoms of the imidazole ring. In another closely related structure, 2,5-bis­[(1H-1,2,4-triazol-1-yl)methyl]-1H-pyrrole (Lin et al., 2014), the acidic triazole hydrogen also forms C—H···N hydrogen-bonding inter­actions similar to those in compound (I).

3-Methyl-1-({6-[(3-methyl-1H-imidazol-1-yl)methyl]-2-pyridyl}­methyl)-1H-imidazole bromide (Nielsen et al., 2002), a structure closely related to compound (II), crystallizes as a monohydrate. An imidazole hydrogen also shows C—H···halide(Br) inter­actions, and at the the same time these bromide anions also form hydrogen bonds with the water molecule in the asymmetric unit. Triazolium salt C—H···halide inter­actions similar to those shown by compound (II) are also observed in ionic liquids utilizing triazolium cations (Porcar et al., 2013).

Synthesis and crystallization top

For the synthesis of compounds (I) and (II), a procedure similar to that reported by Huynh's group (Huynh & Lee, 2013) was used. In our attempts, we used the microwave technique for the synthesis of both title compounds but shortened the reaction time for each from 24 hr to roughly 15 min. For (I), 2,6-bis­[(1H-1,2,4-triazol-1-yl)methyl]­pyridine and 1,2,4-triazole (0.0241 mol, 1.665 g) were dissolved in 10–12 mL of aceto­nitrile by stirring. Once these had completely dissolved, K2CO3 (0.0241 mol, 3.331 g) was added and briefly stirred to deprotonate the triazole. 2,6-Bis(bromo­methyl)­pyridine (0.011 mol, 2.902 g) was then dissolved separately in 5 mL of aceto­nitrile. The two solutions were then combined in a 10–20 mL microwave vessel and placed in the microwave reactor for 15 min at 403 K, after which the aceto­nitrile was removed in vacuo. Compound (I) was isolated through recrystallization utilizing hot di­chloro­methane, producing colorless prismatic crystals suitable for single-crystal X-ray diffraction. Yield 83%. 1H NMR (400MHz, CDCl3) δ 8.23 (s, 2H), 7.98 (s, 2H), 7.69 (t, 1H), 7.12 (d, 2H), 5.44 (s, 4H). 13C NMR (400 MHz, CDCl3) δ 152.5, 144.0, 138.6, 121.8, 54.8.

For (II), 1,1'-[pyridine-2,6-diylbis(methyl­ene)]-bis­(4-methyl-1H-1,2,4- triazol-4-ium) iodide and iodo­methane (0.996 mL, 0.016 mol) was added to a 10 mL aceto­nitrile solution of 2,6-bis­[(1H-1,2,4-triazol-1 yl)methyl]­pyridine (0.947 g, 0.004 mol) in a microwave vial. The mixture was placed in the microwave reactor for 10 min at 413 K, after which the aceto­nitrile was removed in vacuo. Compound (II) was isolated through recrystallization utilizing iso­propyl alcohol layered with hexanes, producing brown prismatic crystals suitable for single-crystal X-ray diffraction. Yield 52%. 1H NMR (400MHz, DMSO-d6) δ 10.15 (s, 2H), 9.17 (s, 2H), 7.99 (t, 1H), 7.51 (d, 2H), 5.76 (s, 4H), 3.95 (s, 6H). 13C NMR (400 MHz, DMSO-d6) δ 152.88 (2C), 146.02 (2C), 144.24 (1C), 139.19 (2C), 122.97 (2C), 55.75 (2C), 34.55 (2C), 25.75 (iPrOH).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 3. All hydrogen atoms were placed in calculated positions and allowed to ride on their parent atoms at C—H distances of 0.95 Å for the triazole and the pyridine rings, 0.97 Å for the methyl group and 0.99 Å for the methyl­ene group, with Uiso(H) = 1.2Ueq(C). In compound (II), the triiodide counter-ion showed positional disorder, and the positions were allowed to refine using constraints, introducing split positions of 0.9761 (9):0.0239 (9) (the minor component being I1'—I2'—I3i), with satisfactory refinement.

Related literature top

For related literature, see: Haasnoot (2000); Huynh & Lee (2013); Kim et al. (2010); Lin et al. (2014); Meng et al. (2005); Meyer & Strassner (2011); Nielsen et al. (2002); Ouellette et al. (2011); Peng et al. (2013); Porcar et al. (2013); Riederer et al. (2011); Singh et al. (2006); Strassner et al. (2013).

Computing details top

For both compounds, data collection: CrystalClear-SM Expert (Rigaku, 2011). Cell refinement: CrystalClear-SM Expert (Rigaku, 2011 for (I); CrystalClear-SM Expert (Rigaku, 2011) for (II). Data reduction: CrystalClear-SM Expert (Rigaku, 2011 for (I); CrystalClear-SM Expert (Rigaku, 2011) for (II). Program(s) used to solve structure: SIR2004 (Burla, et al., 2005) for (I); SHELXS97 (Sheldrick, 2008) for (II). For both compounds, program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. A perspective view of compound (I), showing the atom-numbering scheme. Anisotropic displacement parameters are drawn at the 50% probability level.
[Figure 2] Fig. 2. A perspective view of compound (II), showing the atom-numbering scheme, with anisotropic displacement parameters drawn at the 50% probability level. The iodide and triiodide anions lie on crystallographic mirror planes. The minor occupancy component of the disordered triiodide ion is not shown. [Symmetry code: (vi) x, -y + 1, z.]
[Figure 3] Fig. 3. The predominant C—H···N hydrogen bonds between triazole rings in one asymmetric unit of compound (I). H atoms not involved in the hydrogen bonding are not shown. For symmetry codes, see Table 1.
[Figure 4] Fig. 4. Hydrogen-bond stacking of the pyridine N atoms and the methylene H atoms in compound (I). H atoms not involved in hydrogen bonding are not shown. [Symmetry code: (vii) x, y, z + 1; for other symmetry codes, see Table 1.]
[Figure 5] Fig. 5. Compound (II) showing the triiodide anion filling up a pore-like groove arrangement built by the triazole dications along (a) the b axis and (b) the c axis.
[Figure 6] Fig. 6. Compound (II) showing the C—H···I(iodide) interactions. H atoms not involved in hydrogen bonding are not shown. [Symmetry codes: (iv) x, -y + 1, z; (v) x, y + 1, z; (vi) x + 1/2, -y + 1/2, z; (vii) x + 1/2, y + 1/2, z; for other symmetry codes, see Table 2.]
[Figure 7] Fig. 7. Compound (II) showing the C—H···I(triiodide) interactions. H atoms not involved in the hydrogen-bonding interactions are not shown. [Symmetry codes: (viii) x - 1/2, y + 1/2, z; (ix) -x + 3/2, y + 1/2, -z; for other symmetry codes, see Table 2 and Fig. 6.]
(I) 2,6-Bis[(1H-1,2,4-triazol-1-yl)methyl]pyridine top
Crystal data top
C11H11N7Dx = 1.367 Mg m3
Mr = 241.27Mo Kα radiation, λ = 0.71075 Å
Orthorhombic, Pna21Cell parameters from 8485 reflections
a = 14.465 (3) Åθ = 3.0–26.5°
b = 18.742 (4) ŵ = 0.09 mm1
c = 4.3230 (9) ÅT = 173 K
V = 1172.0 (4) Å3Prism, colorless
Z = 40.62 × 0.15 × 0.13 mm
F(000) = 504
Data collection top
Rigaku XtaLAB mini
diffractometer
2381 independent reflections
Radiation source: normal-focus sealed tube1895 reflections with I > 2σ(I)
Detector resolution: 6.849 pixels mm-1Rint = 0.062
ω scansθmax = 26.4°, θmin = 3.0°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 1818
Tmin = 0.779, Tmax = 0.988k = 2323
9633 measured reflectionsl = 55
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.042P)2 + 0.0415P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2381 reflectionsΔρmax = 0.13 e Å3
163 parametersΔρmin = 0.14 e Å3
Crystal data top
C11H11N7V = 1172.0 (4) Å3
Mr = 241.27Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 14.465 (3) ŵ = 0.09 mm1
b = 18.742 (4) ÅT = 173 K
c = 4.3230 (9) Å0.62 × 0.15 × 0.13 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
2381 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
1895 reflections with I > 2σ(I)
Tmin = 0.779, Tmax = 0.988Rint = 0.062
9633 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.101H-atom parameters constrained
S = 1.05Δρmax = 0.13 e Å3
2381 reflectionsΔρmin = 0.14 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.74693 (19)0.17388 (14)0.3737 (8)0.0581 (9)
N20.87942 (16)0.11410 (13)0.4504 (8)0.0471 (7)
N30.80940 (15)0.08386 (12)0.6125 (7)0.0344 (6)
N40.75319 (15)0.06501 (11)0.4587 (6)0.0324 (6)
N50.58336 (15)0.13416 (11)0.2984 (7)0.0331 (6)
N60.54335 (16)0.19034 (12)0.4433 (7)0.0410 (7)
N70.46408 (16)0.08922 (13)0.5355 (8)0.0486 (8)
C10.7326 (2)0.12001 (18)0.5624 (11)0.0527 (10)
H10.67440.10860.65130.063*
C20.8376 (2)0.16807 (16)0.3142 (9)0.0466 (8)
H20.86930.20050.18320.056*
C30.8238 (2)0.02053 (16)0.7995 (9)0.0479 (8)
H3A0.88150.02630.92020.057*
H3B0.77200.01580.94780.057*
C40.83028 (19)0.04624 (15)0.6106 (8)0.0370 (7)
C50.9105 (2)0.08642 (18)0.5924 (10)0.0503 (9)
H50.96490.07130.69680.060*
C60.9106 (2)0.14789 (19)0.4231 (11)0.0583 (11)
H60.96500.17610.41030.070*
C70.8316 (2)0.16875 (16)0.2710 (9)0.0479 (9)
H70.82990.21160.15410.057*
C80.75449 (19)0.12512 (14)0.2939 (8)0.0344 (7)
C90.6670 (2)0.14229 (16)0.1146 (9)0.0439 (8)
H9A0.67060.19200.03830.053*
H9B0.66320.11050.06770.053*
C100.47173 (19)0.16046 (16)0.5807 (9)0.0431 (8)
H100.42890.18680.70180.052*
C110.5357 (2)0.07513 (15)0.3578 (9)0.0429 (9)
H110.55120.02900.28240.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0518 (18)0.0445 (15)0.078 (3)0.0075 (13)0.0027 (18)0.0032 (18)
N20.0368 (14)0.0460 (16)0.0585 (19)0.0077 (12)0.0104 (15)0.0035 (16)
N30.0302 (12)0.0366 (13)0.0363 (14)0.0103 (10)0.0026 (13)0.0052 (13)
N40.0329 (12)0.0329 (12)0.0313 (13)0.0012 (10)0.0026 (12)0.0014 (12)
N50.0354 (13)0.0277 (12)0.0360 (14)0.0054 (10)0.0040 (13)0.0027 (13)
N60.0381 (14)0.0332 (13)0.0517 (17)0.0066 (11)0.0028 (14)0.0044 (14)
N70.0324 (13)0.0380 (14)0.075 (2)0.0003 (11)0.0032 (16)0.0069 (15)
C10.0325 (16)0.0492 (19)0.076 (3)0.0049 (15)0.009 (2)0.006 (2)
C20.060 (2)0.0330 (16)0.047 (2)0.0072 (15)0.012 (2)0.0037 (18)
C30.059 (2)0.0491 (19)0.0351 (18)0.0175 (16)0.0100 (18)0.003 (2)
C40.0407 (16)0.0368 (16)0.0336 (17)0.0084 (13)0.0027 (17)0.0110 (16)
C50.0336 (16)0.054 (2)0.063 (2)0.0063 (15)0.0096 (19)0.022 (2)
C60.0388 (18)0.053 (2)0.084 (3)0.0119 (16)0.010 (2)0.017 (2)
C70.0506 (19)0.0322 (16)0.061 (2)0.0024 (14)0.015 (2)0.0041 (19)
C80.0358 (15)0.0317 (15)0.0358 (16)0.0037 (12)0.0070 (16)0.0025 (15)
C90.0487 (18)0.0433 (18)0.0397 (18)0.0095 (14)0.0042 (18)0.0100 (17)
C100.0341 (15)0.0393 (17)0.056 (2)0.0056 (13)0.0041 (18)0.0016 (18)
C110.0430 (18)0.0278 (15)0.058 (3)0.0016 (13)0.0109 (18)0.0060 (16)
Geometric parameters (Å, º) top
N1—C11.314 (4)C3—C41.497 (4)
N1—C21.340 (4)C3—H3A0.9900
N2—C21.318 (4)C3—H3B0.9900
N2—N31.356 (3)C4—C51.386 (4)
N3—C11.319 (4)C5—C61.365 (5)
N3—C31.451 (4)C5—H50.9500
N4—C81.333 (4)C6—C71.375 (5)
N4—C41.341 (4)C6—H60.9500
N5—C111.329 (3)C7—C81.386 (4)
N5—N61.355 (3)C7—H70.9500
N5—C91.455 (4)C8—C91.519 (4)
N6—C101.319 (4)C9—H9A0.9900
N7—C111.317 (4)C9—H9B0.9900
N7—C101.354 (4)C10—H100.9500
C1—H10.9500C11—H110.9500
C2—H20.9500
C1—N1—C2102.2 (3)C5—C4—C3122.5 (3)
C2—N2—N3102.0 (2)C6—C5—C4119.3 (3)
C1—N3—N2109.3 (3)C6—C5—H5120.3
C1—N3—C3129.2 (3)C4—C5—H5120.3
N2—N3—C3121.5 (2)C5—C6—C7119.7 (3)
C8—N4—C4118.1 (2)C5—C6—H6120.1
C11—N5—N6109.6 (3)C7—C6—H6120.1
C11—N5—C9128.6 (3)C6—C7—C8117.8 (3)
N6—N5—C9121.7 (2)C6—C7—H7121.1
C10—N6—N5102.3 (2)C8—C7—H7121.1
C11—N7—C10102.6 (2)N4—C8—C7123.2 (3)
N1—C1—N3111.3 (3)N4—C8—C9116.1 (2)
N1—C1—H1124.4C7—C8—C9120.6 (3)
N3—C1—H1124.4N5—C9—C8113.1 (3)
N2—C2—N1115.2 (3)N5—C9—H9A109.0
N2—C2—H2122.4C8—C9—H9A109.0
N1—C2—H2122.4N5—C9—H9B109.0
N3—C3—C4112.9 (3)C8—C9—H9B109.0
N3—C3—H3A109.0H9A—C9—H9B107.8
C4—C3—H3A109.0N6—C10—N7114.7 (3)
N3—C3—H3B109.0N6—C10—H10122.6
C4—C3—H3B109.0N7—C10—H10122.6
H3A—C3—H3B107.8N7—C11—N5110.7 (3)
N4—C4—C5121.8 (3)N7—C11—H11124.6
N4—C4—C3115.7 (3)N5—C11—H11124.6
C2—N2—N3—C10.6 (4)C3—C4—C5—C6178.0 (3)
C2—N2—N3—C3179.3 (3)C4—C5—C6—C70.6 (6)
C11—N5—N6—C100.7 (3)C5—C6—C7—C80.8 (5)
C9—N5—N6—C10179.7 (3)C4—N4—C8—C70.3 (5)
C2—N1—C1—N30.3 (4)C4—N4—C8—C9177.3 (3)
N2—N3—C1—N10.2 (4)C6—C7—C8—N41.0 (5)
C3—N3—C1—N1178.8 (3)C6—C7—C8—C9175.9 (3)
N3—N2—C2—N10.8 (4)C11—N5—C9—C883.0 (4)
C1—N1—C2—N20.7 (4)N6—N5—C9—C895.8 (3)
C1—N3—C3—C4101.9 (4)N4—C8—C9—N546.9 (4)
N2—N3—C3—C476.6 (3)C7—C8—C9—N5136.0 (3)
C8—N4—C4—C51.8 (4)N5—N6—C10—N70.6 (4)
C8—N4—C4—C3178.2 (3)C11—N7—C10—N60.3 (4)
N3—C3—C4—N465.3 (3)C10—N7—C11—N50.2 (4)
N3—C3—C4—C5114.7 (3)N6—N5—C11—N70.6 (4)
N4—C4—C5—C62.0 (5)C9—N5—C11—N7179.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N6i0.952.623.547 (4)166
C11—H11···N7ii0.952.473.381 (4)161
C1—H1···N7iii0.952.633.551 (4)164
C9—H9B···N4iv0.992.573.419 (5)144
C5—H5···N2v0.952.633.449 (4)145
Symmetry codes: (i) x+3/2, y1/2, z1/2; (ii) x+1, y, z1/2; (iii) x+1, y, z+1/2; (iv) x, y, z1; (v) x+2, y, z+1/2.
(II) 1,1-[Pyridine-2,6-diylbis(methylene)]bis(4-methyl-1H-1,2,4-triazol-4-ium) iodide triiodide top
Crystal data top
C13H17N72+·I3·IF(000) = 1424
Mr = 778.94Dx = 2.300 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71075 Å
a = 13.784 (3) ÅCell parameters from 10090 reflections
b = 10.010 (3) Åθ = 3.0–27.5°
c = 16.709 (4) ŵ = 5.55 mm1
β = 102.648 (7)°T = 173 K
V = 2249.5 (10) Å3Prism, brown
Z = 40.34 × 0.14 × 0.09 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
2712 independent reflections
Radiation source: normal-focus sealed tube2303 reflections with I > 2σ(I)
Detector resolution: 6.849 pixels mm-1Rint = 0.037
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 1717
Tmin = 0.322, Tmax = 0.607k = 1212
11638 measured reflectionsl = 2121
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0241P)2 + 14.4966P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
2712 reflectionsΔρmax = 1.09 e Å3
126 parametersΔρmin = 1.11 e Å3
Crystal data top
C13H17N72+·I3·IV = 2249.5 (10) Å3
Mr = 778.94Z = 4
Monoclinic, C2/mMo Kα radiation
a = 13.784 (3) ŵ = 5.55 mm1
b = 10.010 (3) ÅT = 173 K
c = 16.709 (4) Å0.34 × 0.14 × 0.09 mm
β = 102.648 (7)°
Data collection top
Rigaku XtaLAB mini
diffractometer
2712 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
2303 reflections with I > 2σ(I)
Tmin = 0.322, Tmax = 0.607Rint = 0.037
11638 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0241P)2 + 14.4966P]
where P = (Fo2 + 2Fc2)/3
2712 reflectionsΔρmax = 1.09 e Å3
126 parametersΔρmin = 1.11 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.64670 (4)0.50000.08917 (4)0.04623 (16)0.9761 (9)
I20.60699 (4)0.50000.25579 (3)0.03549 (14)0.9761 (9)
I30.55437 (5)0.50000.41333 (4)0.05505 (18)0.9761 (9)
I1'0.6681 (18)0.50000.0437 (17)0.04623 (16)0.0239 (9)
I2'0.6331 (15)0.50000.2138 (16)0.03549 (14)0.0239 (9)
I3'0.577 (2)0.50000.3681 (17)0.05505 (18)0.0239 (9)
I40.62747 (3)0.00000.39551 (3)0.03401 (13)
N10.8485 (3)0.2640 (4)0.3182 (2)0.0330 (9)
N20.7994 (4)0.1816 (5)0.1944 (3)0.0497 (12)
N30.8876 (3)0.2471 (4)0.2021 (2)0.0338 (9)
N40.9323 (4)0.50000.1270 (3)0.0324 (12)
C10.8505 (4)0.2959 (7)0.4053 (3)0.0487 (14)
H1A0.84960.21280.43620.058*
H1B0.79210.34980.40860.058*
H1C0.91100.34610.42880.058*
C20.9165 (4)0.2969 (5)0.2765 (3)0.0360 (11)
H20.97520.34720.29650.043*
C30.7785 (4)0.1942 (6)0.2659 (3)0.0443 (13)
H30.72050.15830.27980.053*
C40.9370 (5)0.2575 (6)0.1327 (3)0.0510 (15)
H4A0.91710.18070.09530.061*
H4B1.00990.25340.15350.061*
C50.9101 (4)0.3866 (5)0.0855 (3)0.0366 (11)
C60.8671 (4)0.3811 (5)0.0021 (3)0.0391 (12)
H60.85220.29780.02510.047*
C70.8468 (6)0.50000.0403 (4)0.0421 (18)
H70.81920.50000.09760.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0523 (3)0.0345 (3)0.0584 (4)0.0000.0263 (3)0.000
I20.0342 (3)0.0255 (2)0.0439 (3)0.0000.0023 (2)0.000
I30.0775 (4)0.0464 (3)0.0400 (3)0.0000.0100 (3)0.000
I1'0.0523 (3)0.0345 (3)0.0584 (4)0.0000.0263 (3)0.000
I2'0.0342 (3)0.0255 (2)0.0439 (3)0.0000.0023 (2)0.000
I3'0.0775 (4)0.0464 (3)0.0400 (3)0.0000.0100 (3)0.000
I40.0302 (2)0.0402 (3)0.0309 (2)0.0000.00506 (17)0.000
N10.040 (2)0.029 (2)0.030 (2)0.0001 (17)0.0069 (17)0.0043 (17)
N20.067 (3)0.038 (3)0.038 (2)0.017 (2)0.001 (2)0.006 (2)
N30.048 (2)0.027 (2)0.0266 (19)0.0058 (19)0.0082 (17)0.0040 (17)
N40.038 (3)0.039 (3)0.022 (3)0.0000.010 (2)0.000
C10.063 (4)0.055 (4)0.028 (3)0.007 (3)0.012 (3)0.003 (2)
C20.035 (2)0.034 (3)0.038 (3)0.001 (2)0.006 (2)0.000 (2)
C30.047 (3)0.040 (3)0.043 (3)0.019 (3)0.004 (2)0.002 (2)
C40.079 (4)0.049 (3)0.032 (3)0.023 (3)0.028 (3)0.011 (3)
C50.041 (3)0.037 (3)0.036 (3)0.011 (2)0.018 (2)0.005 (2)
C60.053 (3)0.032 (3)0.035 (3)0.004 (2)0.016 (2)0.005 (2)
C70.059 (5)0.043 (4)0.025 (3)0.0000.012 (3)0.000
Geometric parameters (Å, º) top
I1—I22.9524 (10)C1—H1A0.9800
I2—I32.8796 (10)C1—H1B0.9800
I1'—I2'2.98 (3)C1—H1C0.9800
I2'—I3'2.85 (4)C2—H20.9500
N1—C21.326 (6)C3—H30.9500
N1—C31.347 (6)C4—C51.517 (7)
N1—C11.485 (6)C4—H4A0.9900
N2—C31.295 (7)C4—H4B0.9900
N2—N31.362 (6)C5—C61.391 (7)
N3—C21.317 (6)C6—C71.381 (6)
N3—C41.471 (6)C6—H60.9500
N4—C5i1.331 (6)C7—C6i1.381 (6)
N4—C51.331 (6)C7—H70.9500
I3—I2—I1176.19 (2)N2—C3—N1112.1 (5)
I3'—I2'—I1'173.8 (10)N2—C3—H3123.9
C2—N1—C3106.0 (4)N1—C3—H3123.9
C2—N1—C1126.8 (4)N3—C4—C5111.6 (4)
C3—N1—C1127.2 (4)N3—C4—H4A109.3
C3—N2—N3103.9 (4)C5—C4—H4A109.3
C2—N3—N2110.5 (4)N3—C4—H4B109.3
C2—N3—C4128.4 (5)C5—C4—H4B109.3
N2—N3—C4121.1 (4)H4A—C4—H4B108.0
C5i—N4—C5117.2 (6)N4—C5—C6123.7 (5)
N1—C1—H1A109.5N4—C5—C4117.0 (5)
N1—C1—H1B109.5C6—C5—C4119.3 (5)
H1A—C1—H1B109.5C7—C6—C5118.3 (5)
N1—C1—H1C109.5C7—C6—H6120.9
H1A—C1—H1C109.5C5—C6—H6120.9
H1B—C1—H1C109.5C6i—C7—C6118.9 (7)
N3—C2—N1107.5 (4)C6i—C7—H7120.5
N3—C2—H2126.3C6—C7—H7120.5
N1—C2—H2126.3
C3—N2—N3—C20.3 (6)C2—N3—C4—C584.4 (7)
C3—N2—N3—C4179.2 (5)N2—N3—C4—C594.3 (6)
N2—N3—C2—N10.5 (6)C5i—N4—C5—C61.0 (10)
C4—N3—C2—N1179.3 (5)C5i—N4—C5—C4179.1 (4)
C3—N1—C2—N30.4 (6)N3—C4—C5—N459.2 (7)
C1—N1—C2—N3178.6 (5)N3—C4—C5—C6122.7 (5)
N3—N2—C3—N10.0 (6)N4—C5—C6—C70.4 (9)
C2—N1—C3—N20.3 (6)C4—C5—C6—C7177.6 (6)
C1—N1—C3—N2178.8 (5)C5—C6—C7—C6i1.8 (11)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···I40.953.003.844 (5)149
C2—H2···I4ii0.952.823.744 (5)164
C4—H4B···I2iii0.993.183.775 (6)120
C4—H4B···I2iii0.993.103.766 (15)126
C6—H6···I1iv0.953.174.097 (5)166
C6—H6···I1iv0.953.003.900 (8)158
C4—H4A···I1iv0.992.983.94 (2)166
Symmetry codes: (ii) x+1/2, y+1/2, z; (iii) x+1/2, y1/2, z; (iv) x+3/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N6i0.952.623.547 (4)166
C11—H11···N7ii0.952.473.381 (4)161
C1—H1···N7iii0.952.633.551 (4)164
C9—H9B···N4iv0.992.573.419 (5)144
C5—H5···N2v0.952.633.449 (4)145
Symmetry codes: (i) x+3/2, y1/2, z1/2; (ii) x+1, y, z1/2; (iii) x+1, y, z+1/2; (iv) x, y, z1; (v) x+2, y, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C3—H3···I40.953.003.844 (5)149
C2—H2···I4i0.952.823.744 (5)164
C4—H4B···I2ii0.993.183.775 (6)120
C4—H4B···I2'ii0.993.103.766 (15)126
C6—H6···I1iii0.953.174.097 (5)166
C6—H6···I1'iii0.953.003.900 (8)158
C4—H4A···I1'iii0.992.983.94 (2)166
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y1/2, z; (iii) x+3/2, y+1/2, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC11H11N7C13H17N72+·I3·I
Mr241.27778.94
Crystal system, space groupOrthorhombic, Pna21Monoclinic, C2/m
Temperature (K)173173
a, b, c (Å)14.465 (3), 18.742 (4), 4.3230 (9)13.784 (3), 10.010 (3), 16.709 (4)
α, β, γ (°)90, 90, 9090, 102.648 (7), 90
V3)1172.0 (4)2249.5 (10)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.095.55
Crystal size (mm)0.62 × 0.15 × 0.130.34 × 0.14 × 0.09
Data collection
DiffractometerRigaku XtaLAB mini
diffractometer
Rigaku XtaLAB mini
diffractometer
Absorption correctionMulti-scan
(REQAB; Rigaku, 1998)
Multi-scan
(REQAB; Rigaku, 1998)
Tmin, Tmax0.779, 0.9880.322, 0.607
No. of measured, independent and
observed [I > 2σ(I)] reflections
9633, 2381, 1895 11638, 2712, 2303
Rint0.0620.037
(sin θ/λ)max1)0.6250.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.101, 1.05 0.036, 0.080, 1.11
No. of reflections23812712
No. of parameters163126
No. of restraints10
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.042P)2 + 0.0415P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0241P)2 + 14.4966P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.13, 0.141.09, 1.11

Computer programs: CrystalClear-SM Expert (Rigaku, 2011), CrystalClear-SM Expert (Rigaku, 2011, SIR2004 (Burla, et al., 2005), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).

 

Acknowledgements

For financial support, we are indebted to the University of St Thomas' start-up funds and Partnership in Learning funds for MAG; work-study, Young Scholars and Collaborative Inquiry grants for MF; the NSF–MRI grant No. 095322 `MRI:R2: Acquisition of a 400 MHz Nuclear Magnetic Resonance (NMR) Spectrometer'; St Catherine University and the NSF-MRI grant No. 1125975 `MRI Consortium: Acquisition of a Single Crystal X-ray Diffractometer for a Regional PUI Mol­ecular Structure Facility'.

References

First citationAromí, G., Barrios, L. A., Roubeau, O. & Gamez, P. (2011). Coord. Chem. Rev. 255, 485–546.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHaasnoot, J. G. (2000). Coord. Chem. Rev. 200–202, 131–185.  Web of Science CrossRef CAS Google Scholar
First citationHuynh, H. V. & Lee, C. (2013). Dalton Trans. 42, 6803–6809.  CSD CrossRef CAS PubMed Google Scholar
First citationKim, E. Y., Song, Y. J., Koo, H. G., Lee, J. H., Park, H. M., Kim, C., Kwon, T., Huh, S., Kim, Y. & Kim, Y. (2010). Polyhedron, 29, 3335–3341.  CSD CrossRef CAS Google Scholar
First citationLin, K., Chile, L., Zhen, S. C., Boyd, P. D. W., Ware, D. C. & Brothers, P. J. (2014). Inorg. Chim. Acta, 422, 95–101.  CrossRef CAS Google Scholar
First citationMeng, X.-T., Li, Q.-S., Xu, F.-B., Song, H.-B. & Zhang, Z.-Z. (2005). Acta Cryst. E61, o4338–o4339.  CSD CrossRef IUCr Journals Google Scholar
First citationMeyer, D. & Strassner, T. (2011). J. Org. Chem. 76, 305–308.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNielsen, D. J., Cavell, K. J., Skelton, B. W. & White, A. H. (2002). Inorg. Chim. Acta, 327, 116–125.  CSD CrossRef CAS Google Scholar
First citationOuellette, W., Jones, S. & Zubieta, J. (2011). CrystEngComm, 13, 4457–4485.  CrossRef CAS Google Scholar
First citationPeng, X. M., Cai, G. X. & Zhou, C. H. (2013). Curr. Top. Med. Chem. 13, 1963–2010.  CrossRef CAS PubMed Google Scholar
First citationPorcar, R., Ríos-Lombardía, N., Busto, E., Gotor-Fernández, V., Montejo-Bernardo, J., García-Granda, S., Luis, S. V., Gotor, V., Alfonso, I. & García-Verdugo, E. (2013). Chem. Eur. J. 19, 892–904.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRiederer, S. K., Bechlars, B., Herrmann, W. A. & Kühn, F. E. (2011). Dalton Trans. 40, 41–43.  CSD CrossRef CAS PubMed Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, R. P., Verma, R. D., Meshri, D. T. & Shreeve, J. M. (2006). Angew. Chem. Int. Ed. 45, 3584–3601.  Web of Science CrossRef CAS Google Scholar
First citationStrassner, T., Unger, Y., Meyer, D., Molt, O., Münster, I. & Wagenblast, G. (2013). Inorg. Chem. Commun. 30, 39–41.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 128-132
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds