organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-chloro-1-(3-ethyl-2,6-di­phenyl­piperidin-1-yl)ethanone

aDepartment of Physics, Anna Adarsh College for Women, Chennai-40, Tamilnadu, India, bPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India, and cPG and Research Department of Chemistry, Government Arts College, Coimbatore 18, Tamilnadu, India
*Correspondence e-mail: guqmc@yahoo.com

Edited by G. Smith, Queensland University of Technology, Australia (Received 15 November 2014; accepted 9 January 2015; online 21 January 2015)

In the racemic title compound, C21H24ClNO, the dihedral angle between the planes of the benzene rings is 86.52 (14)° and those between the benzene rings and the piperidine ring are 61.66 (14) and 86.39 (14)°. The piperidine ring adopts a twisted boat conformation. No directional inter­actions could be detected in the crystal.

1. Related literature

For the biological activity of piperidine derivatives, see: Nalanishi et al. (1974[Nalanishi, M., Shiraki, M., Kobayakawa, T. & Kobayashi, R. (1974). Jpn Patent 74-3987.]); Robinson (1973[Robinson, O. P. W. (1973). Postgrad. Med. J. 49, Suppl. 4, 9-13.]); Mobio et al. (1989[Mobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sargeeva, N. D., Lin, S., Stashenko, E. E., Prostakov, N. S. & Andreeva, E. I. (1989). Khim. Farm. Zh. 23, 421-427.]); Parthiban et al. (2009[Parthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 6981-6985.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C21H24ClNO

  • Mr = 341.86

  • Monoclinic, P 21 /n

  • a = 8.5971 (9) Å

  • b = 12.9080 (13) Å

  • c = 17.1114 (16) Å

  • β = 100.501 (5)°

  • V = 1867.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 293 K

  • 0.25 × 0.23 × 0.23 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.949, Tmax = 0.953

  • 17549 measured reflections

  • 4639 independent reflections

  • 2930 reflections with I > 2σ(I)

  • Rint = 0.027

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.226

  • S = 1.01

  • 4639 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.], 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Piperidine derivatives have immense biological significance and show blood cholesterol lowering activity (Nalanishi et al., 1974; Parthiban et al., 2009). The piperidine moiety is the basic unit commonly found in natural alkaloids. These compounds are observed to exhibit antihistamine, anaesthetic and tranquilizer activities (Robinson, 1973). They also exhibit antifungal and antibacterial activities (Mobio et al., 1989).

In the stucture of the racemic title compound, C21H24ClNO (Fig. 1) the C—C bond lengths and bond angles are in the normal range and comparable with the literature values. The sum of the bond angles around the nitrogen atom N1 is 359.54 (1)° which indicates sp2 hybridization. The benzene ring C4/C5/C6/C7/C8/C9 is bisectionally [59.92 (2)°] attached to the piperidine ring and the benzene ring C14/C15/C16/C17/C18/C19 is axiallly [9.27 (2)°] attached to the piperidine ring. The dihedral angle between the benzene rings is 86.52 (14)° and those between the benzene rings and the piperidine ring are 61.66 (14) and 86.39 (14)°, respectively. The symmetric bond angles [C11—C12—C20 = 107.4 (3) Å and C20—C12—C13 = 110.3 (2) Å] indicate that the ethyl group is coplanar with the piperidine ring. The piperidine ring adopts a twisted boat conformation with puckering parameters of q2 = 0.691 (3) Å, θ2 = 94.4 (2)°, q3 = -0.053 (3) Å, QT = 0.693 (3) Å and smallest asymmetry parameter D2(C3) (Nardelli, 1983) is 0.1078 (1) Å. In the crystal there are no formal hydrogen bonds or inter-ring ππ interactions present (Fig. 2).

Related literature top

For the biological activity of piperidine derivatives, see: Nalanishi et al. (1974); Robinson (1973); Mobio et al. (1989); Parthiban et al. (2009).

Experimental top

A mixture of t-3-methyl-r-2,c-6-diphenylpiperidine (5 mmol), chloroacetyl chloride (20 mmol) and triethylamine (20 mmol) in anhydrous benzene (20 ml) was stirred at room temperature. The precipitated ammonium salt was filtered and the resulting solution was washed with water and bicarbonate solution (4x10 ml). Finally, the benzene solution was dried over anhydrous sodium sulphate and concentrated. The pasty mass was purified by crystallization from a mixture of petroleum ether (60–80 °C) and ethyl acetate in the ratio of 95:5.

Refinement top

Hydrogen atoms were positioned geometrically and treated as riding on their parent atoms, with C—H distances of 0.93–0.98 Å, with Uiso(H)= 1.5Ueq(C-methyl) and Uiso(H) = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing atom numbering, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing of the molecules in the unit cell.
2-Chloro-1-(3-ethyl-2,6-diphenylpiperidin-1-yl)ethanone top
Crystal data top
C21H24ClNOF(000) = 728
Mr = 341.86Dx = 1.216 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4639 reflections
a = 8.5971 (9) Åθ = 2.0–28.3°
b = 12.9080 (13) ŵ = 0.21 mm1
c = 17.1114 (16) ÅT = 293 K
β = 100.501 (5)°Block, colourless
V = 1867.1 (3) Å30.25 × 0.23 × 0.23 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4639 independent reflections
Radiation source: fine-focus sealed tube2930 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and ϕ scanθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1011
Tmin = 0.949, Tmax = 0.953k = 1716
17549 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.226H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.1098P)2 + 0.7138P]
where P = (Fo2 + 2Fc2)/3
4639 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C21H24ClNOV = 1867.1 (3) Å3
Mr = 341.86Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.5971 (9) ŵ = 0.21 mm1
b = 12.9080 (13) ÅT = 293 K
c = 17.1114 (16) Å0.25 × 0.23 × 0.23 mm
β = 100.501 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4639 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2930 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.953Rint = 0.027
17549 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.226H-atom parameters constrained
S = 1.01Δρmax = 0.61 e Å3
4639 reflectionsΔρmin = 0.43 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3154 (3)0.4581 (2)0.29469 (14)0.0637 (6)
C20.2091 (3)0.3683 (2)0.30518 (16)0.0740 (7)
H2A0.13590.38860.33940.089*
H2B0.27210.31090.33010.089*
C30.5246 (3)0.33072 (17)0.27780 (13)0.0581 (5)
H30.44580.29170.24060.070*
C40.5527 (2)0.27291 (17)0.35598 (14)0.0564 (5)
C50.5133 (3)0.1687 (2)0.35639 (18)0.0752 (7)
H50.46310.13720.30970.090*
C60.5478 (4)0.1116 (2)0.4253 (2)0.0952 (10)
H60.52240.04150.42460.114*
C70.6198 (4)0.1576 (3)0.4952 (2)0.0900 (9)
H70.64270.11880.54170.108*
C80.6573 (3)0.2605 (2)0.49595 (17)0.0792 (7)
H80.70480.29190.54320.095*
C90.6250 (3)0.3181 (2)0.42674 (15)0.0674 (6)
H90.65210.38790.42770.081*
C100.6770 (3)0.3332 (2)0.24373 (17)0.0767 (8)
H10A0.76140.36300.28260.092*
H10B0.70720.26300.23270.092*
C110.6550 (5)0.3962 (3)0.16836 (19)0.1020 (11)
H11A0.75260.39490.14750.122*
H11B0.57330.36430.12920.122*
C120.6101 (3)0.5072 (2)0.18016 (13)0.0691 (6)
H120.70150.55140.17720.083*
C130.5575 (2)0.52688 (17)0.26113 (12)0.0546 (5)
H130.48330.58510.25180.066*
C140.8453 (3)0.55368 (18)0.33173 (15)0.0629 (6)
H140.88180.52580.28830.075*
C150.9531 (3)0.5882 (2)0.39677 (19)0.0804 (8)
H151.06090.58310.39670.097*
C160.9023 (4)0.6296 (3)0.46064 (19)0.0902 (9)
H160.97510.65200.50440.108*
C170.7427 (4)0.6381 (3)0.46023 (18)0.0871 (8)
H170.70720.66720.50350.105*
C180.6351 (3)0.6036 (2)0.39563 (15)0.0709 (7)
H180.52740.60970.39600.085*
C190.6841 (2)0.55994 (15)0.33034 (13)0.0525 (5)
C200.4780 (6)0.5352 (5)0.1122 (2)0.148 (2)
H20A0.50800.50910.06390.178*
H20B0.38530.49640.11980.178*
C210.4326 (9)0.6332 (5)0.0984 (3)0.208 (4)
H21A0.34760.63600.05340.312*
H21B0.52020.67340.08740.312*
H21C0.39740.66080.14420.312*
N10.4638 (2)0.43814 (14)0.28174 (10)0.0537 (4)
O10.2633 (2)0.54571 (16)0.29856 (14)0.0899 (6)
Cl10.10294 (11)0.32963 (9)0.21188 (5)0.1187 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0550 (12)0.0729 (15)0.0633 (13)0.0061 (11)0.0111 (10)0.0058 (11)
C20.0547 (13)0.0925 (19)0.0743 (15)0.0028 (12)0.0100 (11)0.0089 (14)
C30.0616 (12)0.0538 (12)0.0591 (12)0.0044 (10)0.0109 (10)0.0111 (10)
C40.0512 (11)0.0512 (12)0.0680 (13)0.0020 (9)0.0137 (9)0.0013 (10)
C50.0824 (17)0.0577 (14)0.0891 (19)0.0074 (12)0.0251 (14)0.0069 (13)
C60.118 (3)0.0581 (16)0.117 (3)0.0017 (16)0.043 (2)0.0175 (17)
C70.094 (2)0.084 (2)0.094 (2)0.0109 (16)0.0215 (17)0.0320 (17)
C80.0758 (16)0.089 (2)0.0697 (16)0.0028 (14)0.0056 (12)0.0117 (14)
C90.0703 (14)0.0587 (13)0.0704 (15)0.0040 (11)0.0055 (11)0.0014 (11)
C100.0902 (18)0.0597 (14)0.0897 (18)0.0065 (12)0.0419 (15)0.0110 (13)
C110.147 (3)0.095 (2)0.0786 (19)0.004 (2)0.060 (2)0.0140 (17)
C120.0755 (15)0.0844 (17)0.0496 (12)0.0084 (13)0.0170 (10)0.0094 (11)
C130.0560 (11)0.0566 (12)0.0519 (11)0.0050 (9)0.0116 (9)0.0064 (9)
C140.0605 (13)0.0547 (13)0.0742 (15)0.0025 (10)0.0145 (11)0.0003 (11)
C150.0621 (14)0.0729 (17)0.101 (2)0.0006 (12)0.0007 (13)0.0113 (15)
C160.0839 (19)0.088 (2)0.089 (2)0.0052 (16)0.0108 (15)0.0205 (16)
C170.094 (2)0.093 (2)0.0735 (17)0.0028 (16)0.0130 (14)0.0247 (15)
C180.0667 (14)0.0771 (16)0.0700 (15)0.0016 (12)0.0158 (11)0.0124 (13)
C190.0591 (12)0.0421 (10)0.0565 (11)0.0014 (8)0.0112 (9)0.0053 (9)
C200.167 (4)0.218 (6)0.0575 (18)0.076 (4)0.015 (2)0.019 (2)
C210.292 (8)0.236 (7)0.103 (3)0.176 (7)0.053 (4)0.062 (4)
N10.0512 (9)0.0571 (10)0.0523 (9)0.0013 (8)0.0082 (7)0.0004 (8)
O10.0676 (11)0.0842 (14)0.1236 (17)0.0206 (10)0.0325 (11)0.0125 (12)
Cl10.1024 (6)0.1474 (9)0.0951 (6)0.0399 (6)0.0115 (5)0.0055 (5)
Geometric parameters (Å, º) top
C1—O11.223 (3)C11—H11A0.9700
C1—N11.358 (3)C11—H11B0.9700
C1—C21.507 (4)C12—C201.514 (4)
C2—Cl11.760 (3)C12—C131.554 (3)
C2—H2A0.9700C12—H120.9800
C2—H2B0.9700C13—N11.480 (3)
C3—N11.488 (3)C13—C191.516 (3)
C3—C41.512 (3)C13—H130.9800
C3—C101.528 (3)C14—C191.384 (3)
C3—H30.9800C14—C151.386 (4)
C4—C91.385 (3)C14—H140.9300
C4—C51.387 (3)C15—C161.358 (4)
C5—C61.376 (4)C15—H150.9300
C5—H50.9300C16—C171.376 (4)
C6—C71.378 (5)C16—H160.9300
C6—H60.9300C17—C181.380 (4)
C7—C81.366 (4)C17—H170.9300
C7—H70.9300C18—C191.384 (3)
C8—C91.383 (4)C18—H180.9300
C8—H80.9300C20—C211.332 (7)
C9—H90.9300C20—H20A0.9700
C10—C111.507 (4)C20—H20B0.9700
C10—H10A0.9700C21—H21A0.9600
C10—H10B0.9700C21—H21B0.9600
C11—C121.508 (4)C21—H21C0.9600
O1—C1—N1123.3 (2)C11—C12—C20107.4 (3)
O1—C1—C2117.9 (2)C11—C12—C13113.4 (2)
N1—C1—C2118.8 (2)C20—C12—C13110.3 (2)
C1—C2—Cl1109.59 (18)C11—C12—H12108.6
C1—C2—H2A109.8C20—C12—H12108.6
Cl1—C2—H2A109.8C13—C12—H12108.6
C1—C2—H2B109.8N1—C13—C19112.11 (16)
Cl1—C2—H2B109.8N1—C13—C12110.22 (19)
H2A—C2—H2B108.2C19—C13—C12117.27 (19)
N1—C3—C4114.88 (17)N1—C13—H13105.4
N1—C3—C10109.32 (18)C19—C13—H13105.4
C4—C3—C10109.7 (2)C12—C13—H13105.4
N1—C3—H3107.5C19—C14—C15121.1 (2)
C4—C3—H3107.5C19—C14—H14119.5
C10—C3—H3107.5C15—C14—H14119.5
C9—C4—C5118.4 (2)C16—C15—C14120.5 (3)
C9—C4—C3122.6 (2)C16—C15—H15119.8
C5—C4—C3118.9 (2)C14—C15—H15119.8
C6—C5—C4120.6 (3)C15—C16—C17119.6 (3)
C6—C5—H5119.7C15—C16—H16120.2
C4—C5—H5119.7C17—C16—H16120.2
C5—C6—C7120.4 (3)C16—C17—C18120.0 (3)
C5—C6—H6119.8C16—C17—H17120.0
C7—C6—H6119.8C18—C17—H17120.0
C6—C7—C8119.7 (3)C17—C18—C19121.3 (2)
C6—C7—H7120.2C17—C18—H18119.3
C8—C7—H7120.2C19—C18—H18119.3
C9—C8—C7120.3 (3)C14—C19—C18117.5 (2)
C9—C8—H8119.8C14—C19—C13124.8 (2)
C7—C8—H8119.8C18—C19—C13117.66 (19)
C8—C9—C4120.7 (2)C21—C20—C12121.1 (5)
C8—C9—H9119.7C21—C20—H20A107.0
C4—C9—H9119.7C12—C20—H20A107.0
C11—C10—C3110.8 (3)C21—C20—H20B107.0
C11—C10—H10A109.5C12—C20—H20B107.0
C3—C10—H10A109.5H20A—C20—H20B106.8
C11—C10—H10B109.5C20—C21—H21A109.5
C3—C10—H10B109.5C20—C21—H21B109.5
H10A—C10—H10B108.1H21A—C21—H21B109.5
C12—C11—C10113.2 (2)C20—C21—H21C109.5
C12—C11—H11A108.9H21A—C21—H21C109.5
C10—C11—H11A108.9H21B—C21—H21C109.5
C12—C11—H11B108.9C1—N1—C13117.42 (18)
C10—C11—H11B108.9C1—N1—C3122.16 (18)
H11A—C11—H11B107.8C13—N1—C3119.97 (16)
O1—C1—C2—Cl191.4 (3)C15—C16—C17—C180.8 (5)
N1—C1—C2—Cl188.9 (2)C16—C17—C18—C190.0 (5)
N1—C3—C4—C943.6 (3)C15—C14—C19—C181.1 (3)
C10—C3—C4—C980.1 (3)C15—C14—C19—C13178.3 (2)
N1—C3—C4—C5140.4 (2)C17—C18—C19—C141.0 (4)
C10—C3—C4—C596.0 (2)C17—C18—C19—C13178.3 (3)
C9—C4—C5—C61.0 (4)N1—C13—C19—C14115.1 (2)
C3—C4—C5—C6175.2 (2)C12—C13—C19—C1413.9 (3)
C4—C5—C6—C71.1 (5)N1—C13—C19—C1867.7 (3)
C5—C6—C7—C80.2 (5)C12—C13—C19—C18163.3 (2)
C6—C7—C8—C90.7 (5)C11—C12—C20—C21167.8 (5)
C7—C8—C9—C40.7 (4)C13—C12—C20—C2168.1 (6)
C5—C4—C9—C80.1 (4)O1—C1—N1—C138.1 (3)
C3—C4—C9—C8175.9 (2)C2—C1—N1—C13172.09 (19)
N1—C3—C10—C1149.6 (3)O1—C1—N1—C3179.6 (2)
C4—C3—C10—C11176.4 (2)C2—C1—N1—C30.2 (3)
C3—C10—C11—C1260.0 (4)C19—C13—N1—C1104.6 (2)
C10—C11—C12—C20135.7 (3)C12—C13—N1—C1122.8 (2)
C10—C11—C12—C1313.6 (4)C19—C13—N1—C383.0 (2)
C11—C12—C13—N138.1 (3)C12—C13—N1—C349.6 (2)
C20—C12—C13—N182.3 (3)C4—C3—N1—C169.3 (3)
C11—C12—C13—C1991.8 (3)C10—C3—N1—C1166.8 (2)
C20—C12—C13—C19147.8 (3)C4—C3—N1—C13118.6 (2)
C19—C14—C15—C160.3 (4)C10—C3—N1—C135.2 (3)
C14—C15—C16—C170.7 (5)

Experimental details

Crystal data
Chemical formulaC21H24ClNO
Mr341.86
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.5971 (9), 12.9080 (13), 17.1114 (16)
β (°) 100.501 (5)
V3)1867.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.25 × 0.23 × 0.23
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.949, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
17549, 4639, 2930
Rint0.027
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.226, 1.01
No. of reflections4639
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.43

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008, 2015) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank Professor D. Velmurugan, Centre for Advanced Study in Crystallography and Biophysics, University of Madras, for providing data-collection facilities.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sargeeva, N. D., Lin, S., Stashenko, E. E., Prostakov, N. S. & Andreeva, E. I. (1989). Khim. Farm. Zh. 23, 421–427.  CAS Google Scholar
First citationNalanishi, M., Shiraki, M., Kobayakawa, T. & Kobayashi, R. (1974). Jpn Patent 74–3987.  Google Scholar
First citationParthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 6981–6985.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRobinson, O. P. W. (1973). Postgrad. Med. J. 49, Suppl. 4, 9–13.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds