metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages m40-m41

Crystal structure of (μ-N,N′-di­benzyl­di­thio­oxamidato-κN,S:N′,S′)bis­­[(η3-crotyl)palladium(II)]

aDepartment of Chemical Sciences, University of Messina, Via F. Stagno d'Alcontres 31, 98166 Messina, Italy, and bFaculty of Chemistry, University of Isfahan, Isfahan, Iran
*Correspondence e-mail: gbruno@unime.it

Edited by G. Smith, Queensland University of Technology, Australia (Received 8 December 2014; accepted 21 January 2015; online 28 January 2015)

In the centrosymmetric dinuclear title compound, [Pd2(C4H7)2(C16H14N2S2)], the metal atom is η3-coordinated by three C atoms of a crotyl ligand [Pd—C = 2.147 (4), 2.079 (5) and 2.098 (5) Å], the longest distance influenced by the steric inter­action with the benzyl substituents of the di­benzyl­dithio­oximidate (DTO) ligand. The Pd—N and Pd—S bonds to this ligand are 2.080 (3) and 2.3148 (9) Å, respectively, completing a square-planar coordination environment for PdII. The benzyl groups are oriented so as to maximize the inter­action between a benzylic H atom and an S atom, resulting in a dihedral angle of 77.1 (2)° between the benzene rings and the metal complex plane. In the crystal, no inter-complex hydrogen-bonding inter­actions are present.

1. Related literature

For background to structures similar to that of the title compound in which PdII atoms are linked to allyl groups, see: Lanza et al. (2003[Lanza, S., Bruno, G., Nicolò, F., Callipari, G. & Tresoldi, G. (2003). Inorg. Chem. 42, 4545-4552.], 2011[Lanza, S., Nicolò, F., Amiri Rudbari, H., Plutino, M. R. & Bruno, G. (2011). Inorg. Chem. 50, 11653-11666.]). For the stereochemical descriptor of a η3-crotyl plane, see: Schlögl (1967[Schlögl, K. (1967). Top. Stereochem. 1, 39-91.]). For stereochemical descriptors of a palladium square plane, see: Lanza et al. (2000[Lanza, S., Bruno, G., Nicolò, F., Rotondo, A., Scopelliti, R. & Rotondo, E. (2000). Organometallics, 19, 2462-2469.]). For the chemistry of (η3-all­yl)palladium, see: Jalòn et al. (2005[Jalòn, F. A., Manzano, B. R. & Moreno-Lara, B. (2005). Eur. J. Inorg. Chem. pp. 100-109.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Pd2(C4H7)2(C16H14N2S2)]

  • Mr = 621.40

  • Monoclinic, C 2/c

  • a = 18.3240 (2) Å

  • b = 7.1660 (1) Å

  • c = 19.5080 (2) Å

  • β = 109.341 (4)°

  • V = 2417.03 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.67 mm−1

  • T = 298 K

  • 0.35 × 0.10 × 0.08 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.611, Tmax = 0.746

  • 34315 measured reflections

  • 2638 independent reflections

  • 2474 reflections with I > 2σ(I)

  • Rint = 0.019

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.085

  • S = 1.03

  • 2638 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 1.36 e Å−3

  • Δρmin = −0.62 e Å−3

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

η3-Allyl palladium complexes are very widely studied because they can act as precursors or intermediates in different catalytic processes (Jalòn et al., 2005). In the dimeric title η3-allyl–palladium(II) complex [Pd2(C4H6)2(S2N2C16H14)] with the dibenzyldithiooximidate (DTO) ligand, the asymmetric unit consists of a half molecule lying across an inversion center (Fig. 1). The DTO ligands adopt a binucleating role through the S and N atoms bridging two equivalent palladium centres with Pd—N6 and Pd—S bond distances of 2.080 (7) Å and 2.3148 (9) Å, respectively. The C4—C4i bond length within the DTO ligand [1.517 (5) Å] is typical of values found in planar trans-dithiooxamides. The benzyl groups are oriented so as to maximize the intramolecular interaction between a benzylic H-atom and a sulfur atom [C5—H5···Si, 3.005 (4) Å: C—H···S, 116°], resulting in a dihedral angle of 77.1 (2)° between the benzene rings and the metal complex plane. With the allyl ligand, the η3 asymmetric coordination as well as its orientation with respect to the palladium centers are mainly determined by steric hindrance between crotyl and benzyl fragments placing the latter on the opposite side of the methyl group. The Pd—C distances for the three C-atoms of the crotyl ligand (C1, C2, C3) are 2.147 (4), 2.079 (5) and 2.098 (5) Å, respectively. Although the secondary dithiooxamide is chelating the metal via the N···S sites in this complex, structural parameters around the PdII are in good agreement with those in similar compounds in which the planar DTO bridge is chelating the "hard" palladium(II) via N,N' atoms (Lanza et al., 2000; Lanza et al., 2003). The overall molecular packing, as shown in Fig. 2, no inter-complex hydrogen-bonding interactions are present.

The title compound consists of two halves each of which is made by two chiral planes: the one containing palladium and the other perpendicular to it, i.e. the η3-linked crotyl plane. The compound is a mesoform: in fact either chiral crotyl plane and palladium square plane of one half-molecule have opposite configurations with respect to the corresponding planes of the other half (Fig. 3). The compound might exist in different diastereomeric forms: one, represented here, is a mesoform having crotyl CH3 cis to sulfur; the other is a racemate having crotyl CH3 cis to sulfur and crotyl cusps oriented toward the same side of palladium molecular square planes. A more detailed description of the stereochemistry of the title compound has been done by us previously (Lanza et al., 2000; Lanza et al., 2011). Both the other mesoform and the racemate having the crotyl CH3 cis to the nitrogen probably cannot be formed because of close contact between the crotyl CH3 and the DTO benzyl substituents.

Related literature top

For background to structures similar to that of the title compound in which PdII atoms are linked to allyl groups, see: Lanza et al. (2003, 2011). For the stereochemical descriptor of a η3-crotyl plane, see: Schlögl (1967). For stereochemical descriptors of a palladium square plane, see: Lanza et al. (2000). For the chemistry of (η3-allyl)palladium, see: Jalòn et al. (2005).

Experimental top

A solution of 1 mmol (365 mg) of [(η3crotyl)PdCl]2 100 ml of chloroform was reacted with a 2 mmol equivalent of H2benzil2DTO. The solution turned orange and was left to stand for 30 min at room temperature. After the addition with stirring of 2 g of sodium bicarbonate, the mixture turned bright yellow. After filtration of the excess bicarbonate, the filtrate, which contained [(η3crotyl)Pd(H—R2—DTO κ-S,S Pd)], was reacted with 1 mmol (365 mg) of [(η3crotyl)PdCl]2. The mixture was refluxed for 24 h at 50 °C after which the solvent was removed, and the crude product was redissolved in a minimum amount of chloroform and loaded onto an alumina column equilibrated with petroleum ether. Elution with a petroleum ether/chloroform mixture (90:10) gave a yellow fraction from which the homobimetallic title complex [(η3crotyl)Pd]2(µ-benzyl2-DTO κ-N,S Pd, κ-N',S' Pd'] was crystallized. 1H NMR (300 MHz, CDCl3), δ (p.p.m.): 7.34 (m, 10H, N—CH2—C6H5), 4.86 (s, 4H, N—CH2—C6H5),3.96 (m, 2H, CH2CHCHCH3), 3.94 (d, 2H, CHsyn-antiCHCHCH3), 2.80 and 2.76 (2 d, 4H, CHsynHantiCHCHCH3), 1.76 (d, 6H, CH2CHCHCH3. 13C NMR (75 MHz, CDCl3), δ (p.p.m.):, 128.6–126.4 (Ph—CH), 114.2 (CH3—CH—CH2), 80.4 (CH3—CH—CH—CH2), 57.4, 57.5 (CH3—CHCH-CH2), 52.3 (N—CH2—C6H5), 18.2 (CH3—CH—CH—CH2).

Refinement top

Although the hydrogen atoms could be clearly identified in a difference Fourier synthesis, all were idealized and refined at calculated positions riding on the carbon atoms with C–H distances of 0.96 Å (methyl), 0.97 Å (methylene), 0.93 Å (aromatic) and 0.97 Å for C1 and 0.98 Å for C2 and C3. Carbon atoms of the η3-linked crotyl fragment show large anisotropic displacement parameters giving rise to unusual C—C bond lengths and short H—H separations.

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. A perspective view of the centrosymetric title complex, with atom numbering and non H-atoms represented as 40% probability displacement ellipsoids. Symmetry code (i): -x, -y, -z + 1.
[Figure 2] Fig. 2. A packing diagram of the title complex viewed along the b axis with C—H···S interactions shown by dotted lines.
[Figure 3] Fig. 3. Enantiomeric symmetry-related C2-pairs in the title compound.
(µ-N,N'-Dibenzyldithiooxamidato-κN,S:N',S')bis[(η3-crotyl)palladium(II)] top
Crystal data top
[Pd2(C4H7)2(C16H14N2S2)]F(000) = 1240
Mr = 621.40Dx = 1.708 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 236 reflections
a = 18.3240 (2) Åθ = 4.3–24.0°
b = 7.1660 (1) ŵ = 1.67 mm1
c = 19.5080 (2) ÅT = 298 K
β = 109.341 (4)°Prismatic, yellow
V = 2417.03 (7) Å30.35 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2638 independent reflections
Radiation source: fine-focus sealed tube2474 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 27.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 2323
Tmin = 0.611, Tmax = 0.746k = 99
34315 measured reflectionsl = 2424
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0388P)2 + 8.6756P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2638 reflectionsΔρmax = 1.36 e Å3
136 parametersΔρmin = 0.62 e Å3
Crystal data top
[Pd2(C4H7)2(C16H14N2S2)]V = 2417.03 (7) Å3
Mr = 621.40Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.3240 (2) ŵ = 1.67 mm1
b = 7.1660 (1) ÅT = 298 K
c = 19.5080 (2) Å0.35 × 0.10 × 0.08 mm
β = 109.341 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
2638 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
2474 reflections with I > 2σ(I)
Tmin = 0.611, Tmax = 0.746Rint = 0.019
34315 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.03Δρmax = 1.36 e Å3
2638 reflectionsΔρmin = 0.62 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.01936 (2)0.33811 (4)0.42230 (2)0.04724 (11)
S0.10566 (5)0.15413 (15)0.50967 (6)0.0622 (3)
N60.06138 (15)0.1444 (4)0.43152 (13)0.0420 (6)
C50.14245 (18)0.1654 (5)0.38465 (17)0.0483 (8)
H2A0.160.29040.39020.058*
H2B0.17430.07790.40010.058*
C40.04236 (16)0.0084 (4)0.52284 (14)0.0381 (6)
C60.15288 (17)0.1315 (4)0.30539 (16)0.0401 (6)
C80.2302 (3)0.1740 (6)0.1805 (2)0.0663 (11)
H50.27410.22250.14590.08*
C70.2179 (2)0.2040 (5)0.25323 (19)0.0528 (8)
H60.25340.27320.26740.063*
C100.1143 (2)0.0012 (7)0.2104 (2)0.0705 (11)
H70.07920.07120.19590.085*
C110.10169 (19)0.0268 (6)0.28338 (19)0.0540 (8)
H80.05850.02530.31780.065*
C90.1782 (3)0.0736 (7)0.1589 (2)0.0710 (12)
H90.18610.0560.10980.085*
C120.1701 (3)0.5766 (8)0.4400 (3)0.0902 (15)
H12A0.19660.45990.45370.135*
H12B0.17640.65020.48270.135*
H12C0.19140.64260.40820.135*
C10.0440 (3)0.5326 (7)0.3405 (3)0.0850 (15)
H1A0.0610.48860.29060.102*
H1B0.08180.60990.3520.102*
C20.0273 (3)0.5825 (8)0.3678 (4)0.103 (2)
H20.01830.66450.40440.124*
C30.0927 (4)0.5440 (11)0.4048 (5)0.157 (4)
H30.10240.47310.36570.188*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.04780 (16)0.05170 (18)0.04023 (15)0.00269 (11)0.01192 (11)0.00890 (10)
S0.0387 (4)0.0756 (7)0.0600 (5)0.0124 (4)0.0002 (4)0.0248 (5)
N60.0365 (12)0.0535 (15)0.0314 (12)0.0015 (11)0.0049 (10)0.0057 (11)
C50.0354 (15)0.068 (2)0.0374 (15)0.0097 (14)0.0068 (12)0.0095 (14)
C40.0359 (14)0.0492 (16)0.0258 (12)0.0023 (12)0.0059 (11)0.0012 (11)
C60.0338 (13)0.0438 (16)0.0371 (14)0.0010 (12)0.0044 (11)0.0067 (12)
C80.069 (2)0.067 (3)0.0437 (19)0.0010 (19)0.0071 (18)0.0086 (17)
C70.0477 (17)0.055 (2)0.0462 (17)0.0130 (15)0.0021 (14)0.0062 (15)
C100.061 (2)0.090 (3)0.064 (2)0.003 (2)0.0254 (19)0.021 (2)
C110.0390 (15)0.066 (2)0.0502 (18)0.0054 (15)0.0054 (13)0.0051 (16)
C90.084 (3)0.087 (3)0.0376 (17)0.022 (2)0.0136 (18)0.0077 (19)
C120.073 (3)0.088 (4)0.109 (4)0.022 (3)0.028 (3)0.004 (3)
C10.080 (3)0.075 (3)0.087 (3)0.002 (2)0.012 (2)0.044 (3)
C20.078 (3)0.084 (4)0.134 (5)0.006 (3)0.017 (3)0.064 (4)
C30.078 (4)0.145 (6)0.206 (8)0.040 (4)0.009 (4)0.128 (6)
Geometric parameters (Å, º) top
Pd1—C22.079 (5)C8—H50.93
Pd1—N62.080 (3)C7—H60.93
Pd1—C32.098 (5)C10—C91.374 (6)
Pd1—C12.147 (4)C10—C111.380 (5)
Pd1—S2.3148 (9)C10—H70.93
S—C41.722 (3)C11—H80.93
N6—C4i1.288 (4)C9—H90.93
N6—C51.472 (4)C12—C31.377 (7)
C5—C61.513 (4)C12—H12A0.96
C5—H2A0.97C12—H12B0.96
C5—H2B0.97C12—H12C0.96
C4—N6i1.288 (4)C1—C21.289 (7)
C4—C4i1.517 (5)C1—H1A0.97
C6—C111.376 (5)C1—H1B0.97
C6—C71.386 (4)C2—C31.208 (7)
C8—C91.367 (7)C2—H20.98
C8—C71.378 (5)C3—H30.98
C2—Pd1—N6141.18 (17)C9—C10—H7119.7
C2—Pd1—C333.6 (2)C11—C10—H7119.7
N6—Pd1—C3174.70 (17)C6—C11—C10120.2 (3)
C2—Pd1—C135.46 (19)C6—C11—H8119.9
N6—Pd1—C1105.80 (15)C10—C11—H8119.9
C3—Pd1—C168.9 (2)C8—C9—C10119.5 (4)
C2—Pd1—S135.22 (16)C8—C9—H9120.3
N6—Pd1—S83.58 (7)C10—C9—H9120.3
C3—Pd1—S101.66 (16)C3—C12—H12A109.5
C1—Pd1—S170.53 (14)C3—C12—H12B109.5
C4—S—Pd199.53 (10)H12A—C12—H12B109.5
C4i—N6—C5119.6 (3)C3—C12—H12C109.5
C4i—N6—Pd1121.8 (2)H12A—C12—H12C109.5
C5—N6—Pd1118.6 (2)H12B—C12—H12C109.5
N6—C5—C6112.2 (3)C2—C1—Pd169.4 (3)
N6—C5—H2A109.2C2—C1—H1A116.7
C6—C5—H2A109.2Pd1—C1—H1A116.7
N6—C5—H2B109.2C2—C1—H1B116.7
C6—C5—H2B109.2Pd1—C1—H1B116.7
H2A—C5—H2B107.9H1A—C1—H1B113.7
N6i—C4—C4i117.2 (3)C3—C2—C1148.5 (5)
N6i—C4—S125.0 (2)C3—C2—Pd174.1 (3)
C4i—C4—S117.8 (3)C1—C2—Pd175.2 (3)
C11—C6—C7119.0 (3)C3—C2—H294.3
C11—C6—C5122.5 (3)C1—C2—H294.3
C7—C6—C5118.5 (3)Pd1—C2—H294.3
C9—C8—C7120.5 (4)C2—C3—C12156.0 (6)
C9—C8—H5119.8C2—C3—Pd172.3 (3)
C7—C8—H5119.8C12—C3—Pd1130.4 (4)
C8—C7—C6120.3 (4)C2—C3—H393.1
C8—C7—H6119.9C12—C3—H393.1
C6—C7—H6119.9Pd1—C3—H393.1
C9—C10—C11120.5 (4)
C4i—N6—C5—C6112.8 (3)C7—C6—C11—C101.6 (6)
Pd1—N6—C5—C667.6 (3)C5—C6—C11—C10179.4 (4)
Pd1—S—C4—N6i178.6 (3)C9—C10—C11—C60.6 (7)
Pd1—S—C4—C4i1.6 (3)C7—C8—C9—C101.4 (7)
N6—C5—C6—C1123.2 (5)C11—C10—C9—C81.0 (7)
N6—C5—C6—C7159.0 (3)Pd1—C1—C2—C312.2 (17)
C9—C8—C7—C60.4 (6)C1—C2—C3—C12175.4 (17)
C11—C6—C7—C81.1 (6)Pd1—C2—C3—C12163 (3)
C5—C6—C7—C8179.1 (4)C1—C2—C3—Pd112.3 (17)
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Pd2(C4H7)2(C16H14N2S2)]
Mr621.40
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)18.3240 (2), 7.1660 (1), 19.5080 (2)
β (°) 109.341 (4)
V3)2417.03 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.67
Crystal size (mm)0.35 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2012)
Tmin, Tmax0.611, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
34315, 2638, 2474
Rint0.019
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.085, 1.03
No. of reflections2638
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.36, 0.62

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2015), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and enCIFer (Allen et al., 2004).

 

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJalòn, F. A., Manzano, B. R. & Moreno-Lara, B. (2005). Eur. J. Inorg. Chem. pp. 100–109.  Google Scholar
First citationLanza, S., Bruno, G., Nicolò, F., Callipari, G. & Tresoldi, G. (2003). Inorg. Chem. 42, 4545–4552.  CrossRef PubMed CAS Google Scholar
First citationLanza, S., Bruno, G., Nicolò, F., Rotondo, A., Scopelliti, R. & Rotondo, E. (2000). Organometallics, 19, 2462–2469.  CSD CrossRef CAS Google Scholar
First citationLanza, S., Nicolò, F., Amiri Rudbari, H., Plutino, M. R. & Bruno, G. (2011). Inorg. Chem. 50, 11653–11666.  Google Scholar
First citationSchlögl, K. (1967). Top. Stereochem. 1, 39–91.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages m40-m41
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds