research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages 291-295

Crystal structure of (18-crown-6)potassium(I) [(1,2,3,4,5-η)-cyclo­hepta­dien­yl][(1,2,3-η)-cyclo­hepta­trien­yl]cobalt(I)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, 120 Trustee Road, University of Rochester, Rochester, NY 14627, USA, and bDepartment of Chemistry, 207 Pleasant Street SE, University of Minnesota, Minneapolis, MN 55455, USA
*Correspondence e-mail: brennessel@chem.rochester.edu

Edited by S. Bernès, UANL, México (Received 23 October 2014; accepted 13 February 2015; online 21 February 2015)

The reaction of bis­(anthracene)cobaltate(−I) with excess cyclo­hepta­triene, C7H8, resulted in a new 18-electron cobaltate containing two different seven-membered ring ligands, based on single-crystal X-ray diffraction. The asymmetric unit of this structure contains two independent cation–anion pairs of the title complex, [K(18-crown-6)][Co(η3-C7H7)(η5-C7H9)], where 18-crown-6 stands for 1,4,7,10,13,16-hexa­oxa­cyclo­octa­decane (C12H24O6), in general positions and well separated. Each (18-crown-6)potassium cation is in contact with the η3-coordinating ligand of one cobaltate complex. Each η3-coordinating ligand behaves as an allylic anion whose exo-diene moiety is bent away from the allylic plane, and thus is not involved directly in the bonding. The metal-coordinating portions of the anionic η5 ligands are planar and one of these ligands is modeled as disordered over two positions, with occupancy ratio 0.699 (5):0.301 (5), such that one orientation is rotated by one carbon atom with respect to the other. The diffraction intensities were integrated according to non-merohedral twin law [-1 0 0/0 -1 0/0.064 0 1], a 180° rotation about reciprocal lattice axis [001], and the masses of the twin domains refined to equal amounts. As both ligands are formally coordinated as anions, the cobalt atom is best considered to be CoI. This compound is of inter­est as the first to possess cyclo­hepta­trienyl and cyclo­hepta­dienyl ligands in an anionic metal complex.

1. Chemical context

To date there is only one crystal structure reported of a homoleptic cyclo­hepta­triene (CHT) transition metal complex, Zr(η6-C7H8)2 (Green & Walker, 1989[Green, M. L. H. & Walker, N. M. (1989). J. Chem. Soc. Chem. Commun. pp. 850-852.]), presumably because such mol­ecules tend to isomerize. In the case of this zirconium species, room-temperature syntheses produced a mixture of it and its hydrogen-migrated isomer Zr(η7-C7H7)(η5-C7H9). For the titanium analog, although the homoleptic CHT complex was initially observed by NMR, no crystals were obtained, and it readily isomerized. Metal vapor co-condensation reactions of titanium and iron with CHT also led to the isomerized forms (Timms & Turney, 1976[Timms, P. L. & Turney, T. W. (1976). J. Chem. Soc. Dalton Trans. pp. 2021-2025.]; Blackborow et al., 1976[Blackborow, J. R., Hildenbrand, K., von Gustorf, E. K., Scrivanti, A., Eady, C. R., Ehntolt, D. & Krüger, C. (1976). J. Chem. Soc. Chem. Commun. pp. 16-17.]). Co-condensation of molybdenum atoms with CHT resulted in Mo(η6-C7H8)2, which could be isolated at room temperature, but was observed to isomerize to Mo(η7-C7H7)(η5-C7H9) with a half-life of ca 200 h (Green et al., 1989[Green, M. L. H., Newman, P. A. & Bandy, J. A. (1989). J. Chem. Soc. Dalton Trans. pp. 331-343.]).

Given the tendency for homoleptic CHT complexes to isomerize, we decided to investigate whether this would occur in the late transition metal low-valent cobalt system. The 18-electron anionic precursor bis­(anthracene)cobaltate(−I) was chosen because it had been demonstrated that the anthracene ligands are quite labile (Brennessel et al., 2002[Brennessel, W. W., Young, V. G. Jr & Ellis, J. E. (2002). Angew. Chem. Int. Ed. 41, 1211-1215.]; Brennessel & Ellis, 2012[Brennessel, W. W. & Ellis, J. E. (2012). Inorg. Chem. 51, 9076-9094.]). Under an argon atmosphere, excess CHT was introduced dropwise to a cold tetra­hydro­furan solution of bis­(anthracene)cobaltate(−I). Red–brown single crystals of the isolated product suitable for an X-ray diffraction experiment revealed a new 18-electron cobalt complex anion containing two different cyclic ligands, [Co(η3-C7H7)(η5-C7H9)], which confirmed that isomerization had occurred and that both anthracene ligands had been displaced. As no spectroscopy had been performed, it is unknown if an anionic inter­mediate like `[Co(η-C7H8)2]' was initially formed, and if formed, whether it had any lifetime in cold and/or room-temperature solutions.

[Scheme 1]

2. Structural commentary

There are two independent contact ion pairs of [K(18-crown-6)][Co(η3-C7H7)(η5-C7H9)], (I)[link], in the asymmetric unit (Figs. 1[link] and 2[link]). The potassium cations are complexed by 18-crown-6 cyclic ethers and are in contact with carbon atoms of the η3-coordinating ligands of the cobalt anions, with K⋯C distances ranging from 3.207 (3) to 3.538 (4) Å. The longest K⋯C distance is well within the sum of the van der Waals radii for potassium and carbon of 4.45 Å (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). The C7H7 ligands are bonded η3 to the cobalt atoms, and their Co—C and C C bond lengths are consistent with their formulations as anionic allylic ligands with exo-diene moieties, i.e., η3-cyclo­hepta­trienyl ligands (see Table 1[link]). Especially noteworthy are the lengths of the double bonds in the exo-diene portions, which are normal for C=C bonds and show that the exo-diene moieties are independent of the allylic coordination to the metal centers. The Co—C bond lengths have the typical long–short–long pattern seen in other η3-cyclo­hepta­trienyl transition metal species (Table 2[link][link]), and the exo-diene portions of these ligands are essentially planar and are bent away from the plane of the allylic regions by 28.0 (4) and 27.2 (4)°, for anions containing Co1 and Co2, respectively. Inter­estingly, the tropylium cation (CHT+) also has the formula C7H7; however, tropylium as a ligand is aromatic, and thus planar and with similar C C bond lengths. The η5-coordinating ligands are essentially planar in their cobalt-bonded regions with r.m.s. deviations from planarity of 0.050 and 0.051 Å for planes C8–C12 and C22–C26, respectively (see Figs. 1[link] and 2[link]).

Table 1
Selected bond lengths (Å)

Co1—C2 1.924 (3) Co2—C16 1.918 (3)
Co1—C1 2.014 (4) Co2—C15 2.005 (4)
Co1—C9 2.035 (3) Co2—C22 2.045 (15)
Co1—C11 2.040 (3) Co2—C24 2.046 (13)
Co1—C12 2.055 (3) Co2—C23 2.092 (13)
Co1—C10 2.072 (3) Co2—C25 2.113 (7)
Co1—C8 2.105 (3) Co2—C26 2.150 (5)
Co1—C3 2.142 (3) C15—C16 1.413 (5)
C1—C7 1.430 (6) C15—C21 1.468 (6)
C1—C2 1.439 (6) C15—K2 3.496 (3)
C1—K1 3.436 (4) C16—C17 1.410 (5)
C2—C3 1.420 (5) C16—K2 3.362 (4)
C2—K1 3.307 (3) C17—C18 1.404 (5)
C3—C4 1.437 (5) C18—C19 1.358 (5)
C4—C5 1.353 (5) C18—K2 3.411 (4)
C4—K1 3.538 (4) C19—C20 1.408 (6)
C5—C6 1.398 (6) C19—K2 3.207 (3)
C5—K1 3.346 (4) C20—C21 1.375 (6)
C6—C7 1.354 (6) C20—K2 3.201 (4)
C6—K1 3.242 (4) C21—K2 3.379 (4)
C7—K1 3.295 (4) C22—C23 1.425 (7)
C8—C9 1.395 (4) C22—C28 1.491 (9)
C8—C14 1.515 (4) C23—C24 1.424 (6)
C9—C10 1.415 (5) C24—C25 1.421 (6)
C10—C11 1.421 (5) C25—C26 1.428 (7)
C11—C12 1.421 (5) C26—C27 1.511 (8)
C12—C13 1.502 (5) C27—C28 1.532 (10)
C13—C14 1.507 (5)    

Table 2
Comparison of bond lengths (Å) and fold angles (°) for selected later transition metal complexes containing η3-cyclo­hepta­trienyl ligands, with numbering according to Fig. 3[link]. Fold angles are defined as the angles between the C1–C2–C3 (allylic) and C1–C3–C4–C5–C6–C7 (exo-diene) mean planes.

Bond (I)a (I)b NEFYIIc SEKJOHd SEKJIBe
M—C1 2.014 (4) 2.005 (4) 2.287 (5) 2.252 (7) 2.244 (5)
M—C2 1.924 (3) 1.918 (3) 2.147 (6) 2.113 (7) 2.124 (5)
M—C3 2.142 (3) 2.186 (4) 2.213 (6) 2.230 (7) 2.244 (5)
C1—C2 1.439 (6) 1.413 (5) 1.388 (8) 1.425 (11) 1.439 (8)
C2—C3 1.420 (5) 1.410 (5) 1.420 (8) 1.432 (10) 1.448 (8)
C3—C4 1.437 (5) 1.404 (5) 1.446 (11) 1.468 (10) 1.459 (8)
C4—C5 1.353 (5) 1.358 (5) 1.349 (12) 1.350 (10) 1.348 (8)
C5—C6 1.398 (6) 1.408 (6) 1.419 (10) 1.429 (12) 1.438 (9)
C6—C7 1.354 (6) 1.375 (6) 1.338 (8) 1.358 (11) 1.342 (9)
C7—C1 1.430 (6) 1.468 (6) 1.461 (8) 1.462 (10) 1.455 (8)
           
Fold angle 28.0 (4) 27.2 (4) 29.6 35.8 37.1
Notes: (a) (I)[link], ring C1–C7; (b) (I)[link], ring C15–C21; (c) [Pd(η3-C7H7)(PPh3)2][BF4] (Murahashi et al., 2012[Murahashi, T., Usui, K., Tachibana, Y., Kimura, S. & Ogoshi, S. (2012). Chem. Eur. J. 18, 8886-8890.]); (d) [AsPh4][Ru(η3-C7H7)(CO)3] (Astley et al., 1990[Astley, S. T., Takats, J., Huffman, J. C. & Streib, W. E. (1990). Organometallics, 9, 184-189.]); (e) [AsPh4][Os(η3-C7H7)(CO)3] (Astley et al., 1990[Astley, S. T., Takats, J., Huffman, J. C. & Streib, W. E. (1990). Organometallics, 9, 184-189.]).
[Figure 1]
Figure 1
Structure of the first independent mol­ecule of (I)[link], with displacement ellipsoids shown at the 50% probability level. H atoms have been omitted. Thin lines indicate the primarily electrostatic inter­actions between the K+ cation and the crown ether and η3 ring.
[Figure 2]
Figure 2
Structure of the second independent mol­ecule of (I)[link], with displacement ellipsoids shown at the 50% probability level. H atoms and the minor component of the disordered ring have been omitted. Thin lines indicate the primarily electrostatic inter­actions between the K+ cation and the crown ether and η3 ring.
[Figure 3]
Figure 3
Numbering scheme used for the η3-cyclo­hepta­trienyl ligands in Table 2[link].

With cobalt bound to three (`all­yl') and five (`penta­dien­yl') carbon atoms of the seven-membered rings as described above, it is thought best to consider the cobalt atom as formally CoI with two anionic ligands. Extended Hückel MO calculations on [Fe(η3-C7H7)(CO)3] (Hofmann, 1978[Hofmann, P. (1978). Z. Naturforsch. Teil B, 33, 251-260.]), whose structure has been reported (Sepp et al., 1978[Sepp, E., Pürzer, A., Thiele, G. & Behrens, H. (1978). Z. Naturforsch. Teil B, 33, 261-264.]), not only demonstrated that there is a preference for the metal to bind through the η3-allylic region of the ligand rather than through the diene segment, but showed that there is more charge localization on the ring for the former conformation over the latter.

The exact mechanism of isomerization has not been determined for (I)[link], including whether the hydrogen transfer is intra- or inter­molecular. In one DFT study on selected early transition metal complexes, the mechanism for hydrogen migration was determined to be intra­molecular, and a metal hydride inter­mediate was predicted to be favored over a direct ligand-to-ligand transfer (Herbert et al., 2004[Herbert, B. J., Baik, M.-H. & Green, J. C. (2004). Organometallics, 23, 2658-2669.]). The same conclusion was reached in kinetic studies on similar molybdenum complexes (Green et al., 1989[Green, M. L. H., Newman, P. A. & Bandy, J. A. (1989). J. Chem. Soc. Dalton Trans. pp. 331-343.]). If these studies can be extended to the cobalt system, then it could be proposed that the hydrogen migration occurs via a `[CoH(η-C7H7)(η-C7H8)]' inter­mediate.

3. Database survey

As mentioned above, there is exactly one homoleptic CHT structure in the Cambridge Structural Database to date (CSD, Version 5.36, update No. 1, November 2014; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]), namely Zr(η6-C7H8)2 (Green & Walker, 1989[Green, M. L. H. & Walker, N. M. (1989). J. Chem. Soc. Chem. Commun. pp. 850-852.]). All others have been structurally characterized after isomerization, including (I)[link]. There are 23 structures containing an η5-cyclo­hepta­dienyl ligand, but only 12 structures containing an η3-cyclo­hepta­trienyl ligand bonded to a single metal atom. Of the latter, just three are anionic; they are of the form [AsPh4][M(CO)3(η3-C7H7)], M = Fe (Sepp et al., 1978[Sepp, E., Pürzer, A., Thiele, G. & Behrens, H. (1978). Z. Naturforsch. Teil B, 33, 261-264.]) and M = Ru, Os (Astley et al., 1990[Astley, S. T., Takats, J., Huffman, J. C. & Streib, W. E. (1990). Organometallics, 9, 184-189.]). (I)[link] is the first example of an anionic transition metal complex containing both cyclo­hepta­dienyl and cyclo­hepta­trienyl ligands to be reported.

4. Synthesis and crystallization

All operations were performed under an atmosphere of 99.5% argon further purified by passage through columns of activated BASF catalyst and mol­ecular sieves. Standard Schlenk techniques were employed for all reactions with a double manifold vacuum (0.01 Torr) line. Solutions were transferred via stainless steel double-ended needles (cannulas) and glass-covered magnetic stir bars were employed. Cyclo­hepta­triene was distilled from Na/K alloy.

Excess cyclo­hepta­triene was added dropwise to a deep pinkish-red solution of [K(18-crown-6)(THF)2][Co(η4-C14H10)2] (0.500 g, 0.579 mmol; Brennessel et al., 2002[Brennessel, W. W., Young, V. G. Jr & Ellis, J. E. (2002). Angew. Chem. Int. Ed. 41, 1211-1215.]; Brennessel & Ellis, 2012[Brennessel, W. W. & Ellis, J. E. (2012). Inorg. Chem. 51, 9076-9094.]) in THF (50 ml, 195 K). The solution was slowly warmed to room temperature, at which point it was deep yellowish brown. After the solvent was removed in vacuo and heptane (70 ml) was added, the slurry was filtered. The product was washed with pentane (20 ml) and dried in vacuo, yielding a blackish-gray solid [0.292 g, 92%, based on cobalt and using the formulation of (I)]. This product was only characterized by single-crystal X-ray diffraction. Red–brown blocks were grown from a pentane-layered THF solution at 273 K.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The refinement stalled at R1 = 0.19, at which point the structure was examined for twinning (Parsons et al., 2003[Parsons, S., Gould, B., Cooper, R. & Farrugia, L. (2003). ROTAX. University of Edinburgh, Scotland.]). Non-merohedral twinning was identified and the data were re-integrated accordingly. Application of twin law [[\overline{1}] 0 0 / 0 [\overline{1}] 0 / 0.064 0 1], a 180° rotation about reciprocal lattice direction [001], reduced the R1 residual to its final value of 0.043 (Table 3[link]). The mass ratio of the twin components refined to 0.5040 (7):0.4960 (7).

Table 3
Experimental details

Crystal data
Chemical formula [K(C12H24O6)][Co(C7H7)(C7H9)]
Mr 546.61
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 16.3925 (19), 17.225 (2), 18.678 (2)
β (°) 91.6077 (19)
V3) 5271.8 (11)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.85
Crystal size (mm) 0.32 × 0.24 × 0.16
 
Data collection
Diffractometer Siemens SMART CCD platform
Absorption correction Multi-scan (TWINABS; Sheldrick, 2012[Sheldrick, G. M. (2012). TWINABS, University of Göttingen, Germany.])
Tmin, Tmax 0.612, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 85092, 12058, 9117
Rint 0.055
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.084, 1.00
No. of reflections 12058
No. of parameters 728
No. of restraints 45
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.46, −0.47
Computer programs: SMART and SAINT (Bruker, 2003[Bruker (2003). SAINT and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

The η5-coordinating ligand C8–C14 is modeled as disordered over two positions with site occupancy ratio 0.699 (5):0.301 (5), such that the ethyl linkage is shifted by one carbon atom (see Fig. 4[link]). Analogous bond lengths and angles between the two positions of the disordered ring were heavily restrained to be similar. Anisotropic displacement parameters for pairs of proximal atoms from the two components of the disorder were constrained to be equivalent (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

[Figure 4]
Figure 4
View of the ring ligand disorder. Displacement ellipsoids are shown at the 50% probability level and H atoms have been omitted. The numbering scheme of the minor component of the disorder was chosen to show the mirror-like symmetry that allows both orientations to fit within essentially the same volume.

H-atom positions of ring-ligand carbon atoms, except those in the minor component of the disorder, were located in a difference map and refined freely. All other H atoms were placed geometrically and treated as riding atoms: methine and sp2, C—H = 1.00 Å, and methyl­ene, C—H = 0.99 Å, with Uiso(H) = 1.2Ueq(C).

Supporting information


Chemical context top

To date there is only one crystal structure reported of a homoleptic cyclo­heptatriene (CHT) transition metal complex, Zr(η6-C7H8)2 (Green & Walker, 1989), presumably because such molecules tend to isomerize. In the case of this zirconium species, room-temperature syntheses produced a mixture of it and its hydrogen-migrated isomer Zr(η7-C7H7)(η5-C7H9). For the titanium analog, although the homoleptic CHT complex was initially observed by NMR, no crystals were obtained, and it readily isomerized. Metal–vapor co-condensation reactions of titanium and iron with CHT also led to the isomerized forms (Timms & Turney, 1976; Blackborow et al., 1976). Co-condensation of molybdenum atoms with CHT resulted in Mo(η6-C7H8)2, which could be isolated at room temperature, but was observed to isomerize to Mo(η7-C7H7)(η5-C7H9) with a half-life of ca 200 hours (Green et al., 1989).

Given the tendency for homoleptic CHT complexes to isomerize, we decided to investigate whether this would occur in the late transition metal low-valent cobalt system. The 18-electron anionic precursor bis­(anthracene)cobaltate(-I) was chosen because it had been demonstrated that the anthracene ligands are quite labile (Brennessel et al., 2002; Brennessel & Ellis, 2012). Under an argon atmosphere, excess CHT was introduced dropwise to a cold tetra­hydro­furan solution of bis­(anthracene)cobaltate(-I). Red–brown single crystals of the isolated product suitable for an X-ray diffraction experiment revealed a new 18-electron cobalt complex anion containing two different cyclic ligands, [Co(η3-C7H7)(η5-C7H9)]-, which confirmed that isomerization had occurred and that both anthracene ligands had been displaced. As no spectroscopy had been performed, it is unknown if an anionic inter­mediate like `[Co(η-C7H8)2]-' was initially formed, and if formed, whether it had any lifetime in cold and/or room-temperature solutions.

Structural commentary top

There are two independent contact ion pairs of [K(18-crown-6)][Co(η3-C7H7)(η5-C7H9)], (I), in the asymmetric unit (Figs. 1 and 2). The potassium cations are complexed by 18-crown-6 cyclic ethers and are in contact with carbon atoms of the η3-coordinating ligands of the cobalt anions, with K···C distances ranging from 3.207 (3) to 3.538 (4) Å. The longest K···C distance is well within the sum of the van der Waals radii for potassium and carbon of 4.45 Å (Bondi, 1964). The C7H7 ligands are bonded η3 to the cobalt centers, and their Co—C and CC bond lengths are consistent with their formulations as anionic allylic ligands with exo-diene moieties, i.e., η3-cyclo­heptatrienyl ligands (see Table 1). Especially noteworthy are the lengths of the double bonds in the exo-diene portions, which are normal for CC bonds and show that the exo-diene moieties are independent of the allylic coordination to the metal centers. The Co—C bond lengths have the typical long–short–long pattern seen in other η3-cyclo­heptatrienyl transition metal species (Table 2), and the exo-diene portions of these ligands are essentially planar and are bent away from the plane of the allylic regions by 28.0 (4) and 27.2 (4)°, for anions containing Co1 and Co2, respectively. Inter­estingly, the tropylium cation (CHT+) also has the formula C7H7; however, tropylium as a ligand is aromatic, and thus planar and with similar CC bond lengths. The η5-coordinating ligands are essentially planar in their cobalt-bonded regions with r.m.s. deviations from planarity of 0.050 and 0.051 Å for planes C8–C12 and C22–C26, respectively (see Figs. 1 and 2).

With cobalt bound to three (`allyl') and five (`penta­dienyl') carbon atoms of the seven-membered rings as described above, it is thought best to consider the cobalt center as formally CoI with two anionic ligands. Extended Hückel MO calculations on [Fe(η3-C7H7)(CO)3]- (Hofmann, 1978), whose structure has been reported (Sepp et al., 1978), not only demonstrated that there is a preference for the metal to bind through the η3-allylic region of the ligand rather than through the diene segment, but showed that there is more charge localization on the ring for the former conformation over the latter.

The exact mechanism of isomerization has not been determined for (I), including whether the hydrogen transfer is intra- or inter­molecular. In one DFT study on selected early transition metal complexes, the mechanism for hydrogen migration was determined to be intra­molecular, and a metal hydride inter­mediate was predicted to be favored over a direct ligand-to-ligand transfer (Herbert et al., 2004). The same conclusion was reached in kinetic studies on similar molybdenum complexes (Green et al., 1989). If these studies can be extended to the cobalt system, then it could be proposed that the hydrogen migration occurs via a `[CoH(η-C7H7)(η-C7H8)]-' inter­mediate.

Database survey top

As mentioned above, there is exactly one homoleptic CHT structure in the Cambridge Structural Database to date (CSD, Version 5.36, update No. 1, November 2014; Groom & Allen, 2014), namely Zr(η6-C7H8)2 (Green & Walker, 1989). All others have been structurally characterized after isomerization, including (I). There are 23 structures containing an η5-cyclo­heptadienyl ligand, but only 12 structures containing an η3-cyclo­heptatrienyl ligand bonded to a single metal center. Of the latter, just three are anionic; they are of the form [AsPh4][M(CO)3(η3-C7H7)], M = Fe (Sepp et al., 1978) and M = Ru, Os (Astley et al., 1990). (I) is the first example of an anionic transition metal complex containing both cyclo­heptadienyl and cyclo­heptatrienyl ligands to be reported.

Synthesis and crystallization top

All operations were performed under an atmosphere of 99.5% argon further purified by passage through columns of activated BASF catalyst and molecular sieves. Standard Schlenk techniques were employed for all reactions with a double manifold vacuum (0.01 Torr) line. Solutions were transferred via stainless steel double-ended needles (cannulas) and glass-covered magnetic stir bars were employed. Cyclo­heptatriene was distilled from Na/K alloy.

Excess cyclo­heptatriene was added dropwise to a deep pinkish-red solution of [K(18-crown-6)(THF)2][Co(η4-C14H10)2] (0.500 g, 0.579 mmol; Brennessel et al., 2002; Brennessel & Ellis, 2012) in THF (50 ml, 195 K). The solution was slowly warmed to room temperature, at which point it was deep yellowish brown. After the solvent was removed in vacuo and heptane (70 ml) was added, the slurry was filtered. The product was washed with pentane (20 ml) and dried in vacuo, yielding a blackish-gray solid [0.292 g, 92%, based on cobalt and using the formulation of (I)]. This product was only characterized by single-crystal X-ray diffraction. Red–brown blocks were grown from a pentane-layered THF solution at 273 K.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 3. The refinement stalled at R1 = 0.19, at which point the structure was examined for twinning (Parsons et al., 2003). Non-merohedral twinning was discovered and the data were re-integrated accordingly. Application of twin law [1 0 0 / 0 1 0 / 0.064 0 1], a 180° rotation about reciprocal lattice [001], reduced the R1 residual to its final value of 0.043 (Table 3). The mass ratio of the twin components refined to 0.5040 (7):0.4960 (7).

The η5-coordinating ligand C8–C14 is modeled as disordered over two positions with site occupancy ratio 0.699 (5):0.301 (5), such that the ethyl linkage is shifted by one carbon atom (see Fig. 4). Analogous bond lengths and angles between the two positions of the disordered ring were heavily restrained to be similar. Anisotropic displacement parameters for pairs of proximal atoms from the two components of the disorder were constrained to be equivalent (Sheldrick, 2015).

H-atom positions of ring-ligand carbon atoms, except those in the minor component of the disorder, were located in a difference map and refined freely. All other H atoms were placed geometrically and treated as riding atoms: methine and sp2, C—H = 1.00 Å, and methyl­ene, C—H = 0.99 Å, with Uiso(H) = 1.2Ueq(C).

Related literature top

For related literature, see: Astley et al. (1990); Blackborow et al. (1976); Bondi (1964); Brennessel & Ellis (2012); Brennessel et al. (2002); Green & Walker (1989); Green, Newman & Brandy (1989); Groom & Allen (2014); Herbert et al. (2004); Hofmann (1978); Parsons et al. (2003); Sepp et al. (1978); Timms & Turney (1976).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2015); software used to prepare material for publication: SHELXTL (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. Structure of the first independent molecule of (I), with displacement ellipsoids shown at the 50% probability level. H atoms have been omitted. Thin lines indicate the primarily electrostatic interactions between the K atom and the crown ether and η3 ring.
[Figure 2] Fig. 2. Structure of the second independent molecule of (I), with displacement ellipsoids shown at the 50% probability level. H atoms and the minor component of the disordered ring have been omitted. Thin lines indicate the primarily electrostatic interactions between the K atom and the crown ether and η3 ring.
[Figure 3] Fig. 3. Numbering scheme used for the η3-cycloheptatrienyl ligands in Table 3.
[Figure 4] Fig. 4. View of the ring ligand disorder. Displacement ellipsoids are shown at the 50% probability level and H atoms have been omitted. The numbering scheme of the minor component of the disorder was chosen to show the mirror-like symmetry that allows both orientations to fit within essentially the same volume.
(18-Crown-6)potassium(I) [(1,2,3,4,5-η)-cycloheptadienyl][(1,2,3-η)-cycloheptatrienyl]cobalt(I) top
Crystal data top
[K(C12H24O6)][Co(C7H7)(C7H9)]F(000) = 2320
Mr = 546.61Dx = 1.377 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.3925 (19) ÅCell parameters from 3984 reflections
b = 17.225 (2) Åθ = 2.4–27.4°
c = 18.678 (2) ŵ = 0.85 mm1
β = 91.6077 (19)°T = 173 K
V = 5271.8 (11) Å3Block, red-brown
Z = 80.32 × 0.24 × 0.16 mm
Data collection top
Siemens SMART CCD platform
diffractometer
9117 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.055
ω scansθmax = 27.5°, θmin = 1.2°
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2012)
h = 2121
Tmin = 0.612, Tmax = 0.746k = 022
85092 measured reflectionsl = 024
12058 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: mixed
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0271P)2 + 2.3296P]
where P = (Fo2 + 2Fc2)/3
12058 reflections(Δ/σ)max = 0.001
728 parametersΔρmax = 0.46 e Å3
45 restraintsΔρmin = 0.47 e Å3
Crystal data top
[K(C12H24O6)][Co(C7H7)(C7H9)]V = 5271.8 (11) Å3
Mr = 546.61Z = 8
Monoclinic, P21/cMo Kα radiation
a = 16.3925 (19) ŵ = 0.85 mm1
b = 17.225 (2) ÅT = 173 K
c = 18.678 (2) Å0.32 × 0.24 × 0.16 mm
β = 91.6077 (19)°
Data collection top
Siemens SMART CCD platform
diffractometer
12058 independent reflections
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2012)
9117 reflections with I > 2σ(I)
Tmin = 0.612, Tmax = 0.746Rint = 0.055
85092 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04345 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.46 e Å3
12058 reflectionsΔρmin = 0.47 e Å3
728 parameters
Special details top

Refinement. The structure was integrated and refined as a non-merohedral twin (Parsons et al., 2003). Application of twin law [-1 0 0 / 0 - 1 0 / 0.064 0 1], a 180° rotation about reciprocal lattice [001], reduced the R residual from 19.0% to its final value of 4.3%. The mass ratio of the twin components refined to 0.5039 (7):0.4961 (7).

The η5-coordinating ligand C8—C14 is modeled as disordered over two positions, 0.697 (5):0.303 (5), such that the ethyl linkage is shifted by one carbon atom. Analogous bond lengths and angles between the two positions of the disordered ring were heavily restrained to be similar. Anisotropic displacement parameters for pairs of proximal atoms from the two components of the disorder were constrained to be equivalent.

H atom positions of ring-ligand carbon atoms, except those in the minor component of the disorder, were refined freely. All other H atoms were placed geometrically and treated as riding atoms: methine and sp2, C—H = 1.00 Å, and methylene, C—H = 0.99 Å, with Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.08386 (3)0.87509 (2)0.59699 (2)0.02870 (10)
C10.1495 (3)0.8446 (2)0.5119 (2)0.0510 (11)
H10.172 (3)0.881 (2)0.489 (2)0.078 (14)*
C20.0624 (3)0.8404 (2)0.50036 (18)0.0433 (9)
H20.035 (2)0.867 (2)0.469 (2)0.059 (12)*
C30.0169 (2)0.7864 (2)0.54050 (18)0.0394 (8)
H30.039 (2)0.787 (2)0.5341 (19)0.051 (11)*
C40.0432 (2)0.7125 (2)0.56839 (19)0.0443 (9)
H40.005 (2)0.688 (2)0.592 (2)0.079 (13)*
C50.1172 (3)0.6777 (2)0.56901 (19)0.0500 (10)
H50.124 (2)0.626 (2)0.590 (2)0.076 (13)*
C60.1922 (3)0.7098 (3)0.5507 (2)0.0585 (12)
H60.242 (3)0.675 (2)0.561 (2)0.088 (15)*
C70.2057 (2)0.7831 (3)0.5275 (2)0.0596 (12)
H70.265 (3)0.800 (2)0.522 (2)0.079 (13)*
C80.15714 (18)0.88005 (18)0.69126 (16)0.0293 (7)
H80.1933 (18)0.8412 (17)0.7021 (15)0.031 (8)*
C90.0752 (2)0.86626 (19)0.70514 (16)0.0326 (7)
H90.0561 (17)0.8191 (17)0.7215 (15)0.030 (8)*
C100.0139 (2)0.9175 (2)0.67898 (17)0.0364 (8)
H100.0423 (19)0.9061 (16)0.6853 (15)0.029 (8)*
C110.0287 (2)0.97567 (19)0.62694 (19)0.0391 (8)
H110.019 (2)0.9961 (18)0.6036 (17)0.047 (9)*
C120.1052 (2)0.99269 (17)0.59661 (18)0.0357 (7)
H120.101 (2)1.0225 (19)0.5523 (18)0.051 (10)*
C130.1851 (2)1.00884 (19)0.63506 (18)0.0360 (8)
H13A0.1932 (18)1.0645 (18)0.6471 (15)0.034 (8)*
H13B0.229 (2)0.9996 (19)0.604 (2)0.056 (11)*
C140.1941 (2)0.95999 (19)0.70173 (18)0.0330 (7)
H14A0.1658 (17)0.9837 (16)0.7411 (15)0.029 (8)*
H14B0.2494 (18)0.9562 (16)0.7172 (14)0.024 (7)*
Co20.39803 (2)0.38636 (2)0.59565 (2)0.03271 (10)
C150.3302 (2)0.3197 (2)0.52922 (19)0.0440 (9)
H150.276 (2)0.333 (2)0.518 (2)0.067 (12)*
C160.3926 (3)0.3615 (2)0.49555 (17)0.0451 (9)
H160.381 (2)0.402 (2)0.4625 (18)0.054 (10)*
C170.4764 (2)0.3482 (2)0.50970 (19)0.0438 (9)
H170.519 (2)0.3912 (19)0.4897 (18)0.056 (10)*
C180.5157 (2)0.2777 (2)0.52637 (19)0.0439 (9)
H180.579 (2)0.280 (2)0.525 (2)0.069 (12)*
C190.4846 (2)0.2077 (2)0.54489 (18)0.0455 (9)
H190.527 (2)0.162 (2)0.5528 (17)0.057 (11)*
C200.4028 (3)0.1907 (2)0.55977 (19)0.0480 (9)
H200.392 (2)0.1417 (19)0.5780 (17)0.044 (9)*
C210.3370 (3)0.2401 (3)0.5569 (2)0.0549 (11)
H210.291 (2)0.224 (2)0.572 (2)0.063 (13)*
C220.3724 (5)0.5020 (8)0.6053 (8)0.0308 (11)0.699 (5)
H220.37230.53030.55850.037*0.699 (5)
C230.4523 (5)0.4885 (7)0.6346 (8)0.031 (2)0.699 (5)
H230.49420.52450.62420.038*0.699 (5)
C240.4724 (5)0.4234 (9)0.6786 (8)0.0380 (13)0.699 (5)
H240.52860.41500.69000.046*0.699 (5)
C250.4159 (4)0.3698 (5)0.7071 (4)0.0332 (15)0.699 (5)
H250.43450.32710.73520.040*0.699 (5)
C260.3307 (3)0.3810 (3)0.6927 (3)0.0344 (11)0.699 (5)
H260.29490.33460.69860.041*0.699 (5)
C270.2936 (6)0.4589 (6)0.7100 (3)0.0303 (12)0.699 (5)
H27A0.32410.48250.75100.036*0.699 (5)
H27B0.23630.45150.72400.036*0.699 (5)
C280.2960 (3)0.5137 (3)0.6455 (3)0.0335 (10)0.699 (5)
H28A0.24810.50380.61330.040*0.699 (5)
H28B0.29310.56810.66210.040*0.699 (5)
C22'0.4013 (10)0.3665 (13)0.6930 (10)0.0332 (15)0.301 (5)
H22'0.42120.31320.70560.040*0.301 (5)
C23'0.4652 (10)0.422 (2)0.6851 (19)0.0380 (13)0.301 (5)
H23'0.51180.42150.71650.046*0.301 (5)
C24'0.4570 (11)0.4773 (19)0.629 (2)0.031 (2)0.301 (5)
H24'0.50620.49770.61050.038*0.301 (5)
C25'0.3825 (11)0.506 (2)0.5966 (19)0.0308 (11)0.301 (5)
H25'0.38340.54520.56130.037*0.301 (5)
C26'0.3069 (6)0.4736 (6)0.6182 (5)0.0335 (10)0.301 (5)
H26C0.25920.47810.58390.040*0.301 (5)
C27'0.2893 (16)0.4648 (14)0.6962 (8)0.0303 (12)0.301 (5)
H27C0.22970.46780.70280.036*0.301 (5)
H27D0.31540.50780.72360.036*0.301 (5)
C28'0.3216 (8)0.3867 (7)0.7254 (6)0.0344 (11)0.301 (5)
H28C0.32870.38990.77810.041*0.301 (5)
H28D0.28120.34540.71420.041*0.301 (5)
K10.11102 (4)0.69805 (3)0.39075 (3)0.02821 (14)
O10.21703 (13)0.79524 (13)0.31156 (12)0.0361 (5)
C290.1870 (2)0.87284 (18)0.3082 (2)0.0439 (8)
H29A0.22470.90580.28090.053*
H29B0.18340.89440.35710.053*
C300.1046 (2)0.87240 (18)0.27208 (18)0.0433 (8)
H30A0.08540.92630.26410.052*
H30B0.10710.84610.22510.052*
O20.05022 (13)0.83223 (12)0.31708 (10)0.0332 (5)
C310.0317 (2)0.83326 (19)0.28937 (18)0.0409 (8)
H31A0.03430.80960.24100.049*
H31B0.05150.88740.28540.049*
C320.08384 (19)0.78852 (18)0.33875 (18)0.0405 (8)
H32A0.07880.81030.38770.049*
H32B0.14170.79190.32250.049*
O30.05789 (12)0.71010 (13)0.33890 (12)0.0378 (5)
C330.10669 (19)0.6611 (2)0.38195 (18)0.0422 (8)
H33A0.16490.66530.36670.051*
H33B0.10120.67660.43290.051*
C340.0775 (2)0.5799 (2)0.37251 (19)0.0447 (9)
H34A0.11570.54310.39480.054*
H34B0.07490.56740.32090.054*
O40.00127 (13)0.57276 (11)0.40546 (13)0.0388 (5)
C350.0343 (2)0.49680 (19)0.3986 (2)0.0513 (10)
H35A0.04030.48400.34730.062*
H35B0.00280.45830.41970.062*
C360.1150 (2)0.49405 (19)0.4361 (2)0.0499 (10)
H36A0.11020.51440.48540.060*
H36B0.13420.43960.43930.060*
O50.17146 (13)0.53887 (12)0.39880 (12)0.0364 (5)
C370.2495 (2)0.5416 (2)0.43407 (18)0.0426 (9)
H37A0.27000.48830.44260.051*
H37B0.24530.56790.48090.051*
C380.3067 (2)0.5849 (2)0.38815 (18)0.0414 (8)
H38A0.36260.58320.40950.050*
H38B0.30770.56120.33990.050*
O60.27920 (13)0.66290 (12)0.38309 (12)0.0362 (5)
C390.32695 (19)0.7087 (2)0.33672 (18)0.0407 (8)
H39A0.32080.68960.28690.049*
H39B0.38530.70560.35150.049*
C400.29782 (19)0.7908 (2)0.34127 (18)0.0407 (8)
H40A0.29840.80790.39190.049*
H40B0.33440.82540.31450.049*
K20.39810 (4)0.20452 (3)0.38877 (3)0.02898 (14)
O70.45283 (14)0.33192 (12)0.30801 (11)0.0368 (5)
C410.3973 (2)0.3681 (2)0.25962 (19)0.0485 (9)
H41A0.39140.33670.21530.058*
H41B0.41770.42010.24660.058*
C420.3170 (2)0.37518 (19)0.2941 (2)0.0476 (9)
H42A0.32360.40360.34000.057*
H42B0.27860.40470.26250.057*
O80.28521 (13)0.29987 (12)0.30686 (12)0.0380 (5)
C430.20880 (19)0.3019 (2)0.34089 (19)0.0425 (9)
H43A0.17040.33600.31370.051*
H43B0.21590.32290.39000.051*
C440.17541 (19)0.2215 (2)0.34377 (19)0.0450 (9)
H44A0.11900.22260.36130.054*
H44B0.17430.19810.29540.054*
O90.22655 (13)0.17710 (13)0.39114 (12)0.0390 (5)
C450.1980 (2)0.0998 (2)0.4002 (2)0.0471 (9)
H45A0.18950.07470.35290.056*
H45B0.14520.10030.42480.056*
C460.2594 (2)0.0557 (2)0.44361 (19)0.0460 (9)
H46A0.27070.08260.48970.055*
H46B0.23850.00310.45400.055*
O100.33194 (13)0.05044 (12)0.40421 (12)0.0372 (5)
C470.3896 (2)0.00261 (18)0.4340 (2)0.0499 (10)
H47A0.36620.05560.43450.060*
H47B0.40420.01240.48390.060*
C480.4635 (2)0.00123 (19)0.3895 (2)0.0508 (10)
H48A0.50100.04370.40420.061*
H48B0.44770.00860.33840.061*
O110.50257 (13)0.07131 (11)0.39930 (12)0.0369 (5)
C490.5787 (2)0.0755 (2)0.36519 (19)0.0452 (9)
H49A0.57160.06190.31390.054*
H49B0.61760.03810.38760.054*
C500.61118 (19)0.1558 (2)0.37255 (19)0.0449 (9)
H50A0.61140.17200.42340.054*
H50B0.66790.15800.35570.054*
O120.56028 (12)0.20619 (13)0.33055 (12)0.0370 (5)
C510.5866 (2)0.2849 (2)0.33212 (19)0.0451 (9)
H51A0.64430.28840.31810.054*
H51B0.58220.30630.38110.054*
C520.5337 (2)0.3295 (2)0.28107 (18)0.0430 (9)
H52A0.55510.38280.27590.052*
H52B0.53300.30420.23340.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0393 (2)0.02537 (19)0.02133 (19)0.00096 (19)0.00152 (18)0.00292 (16)
C10.077 (3)0.050 (2)0.0272 (19)0.034 (2)0.0239 (19)0.0144 (17)
C20.074 (3)0.0300 (18)0.0251 (17)0.0044 (19)0.0124 (18)0.0030 (14)
C30.0346 (18)0.049 (2)0.0348 (18)0.0014 (17)0.0005 (15)0.0142 (15)
C40.060 (2)0.0315 (18)0.042 (2)0.0090 (18)0.0182 (18)0.0024 (15)
C50.081 (3)0.0335 (19)0.0358 (19)0.016 (2)0.002 (2)0.0059 (15)
C60.054 (2)0.080 (3)0.041 (2)0.019 (3)0.0118 (19)0.026 (2)
C70.037 (2)0.097 (4)0.045 (2)0.016 (2)0.0044 (18)0.038 (2)
C80.0373 (16)0.0262 (17)0.0244 (16)0.0058 (15)0.0027 (13)0.0016 (12)
C90.0414 (18)0.0349 (17)0.0219 (15)0.0082 (15)0.0068 (14)0.0005 (13)
C100.0299 (17)0.0422 (19)0.0370 (19)0.0042 (15)0.0006 (15)0.0148 (16)
C110.0356 (18)0.0309 (18)0.050 (2)0.0050 (15)0.0118 (16)0.0138 (15)
C120.050 (2)0.0246 (14)0.0324 (17)0.0010 (15)0.0049 (16)0.0002 (14)
C130.0433 (19)0.0273 (18)0.0374 (19)0.0060 (15)0.0036 (16)0.0005 (14)
C140.0305 (17)0.0375 (18)0.0309 (18)0.0008 (15)0.0013 (14)0.0076 (14)
Co20.0306 (2)0.0312 (2)0.0362 (2)0.00488 (19)0.00151 (19)0.01252 (18)
C150.0350 (18)0.056 (2)0.041 (2)0.0139 (17)0.0100 (16)0.0203 (18)
C160.069 (3)0.0418 (19)0.0245 (16)0.020 (2)0.0061 (17)0.0050 (14)
C170.055 (2)0.0360 (19)0.041 (2)0.0036 (18)0.0107 (18)0.0036 (16)
C180.044 (2)0.048 (2)0.0394 (19)0.0062 (18)0.0088 (17)0.0044 (16)
C190.057 (2)0.041 (2)0.0379 (19)0.0158 (19)0.0108 (17)0.0020 (15)
C200.079 (3)0.0316 (18)0.0331 (18)0.004 (2)0.0024 (19)0.0010 (14)
C210.057 (3)0.071 (3)0.038 (2)0.002 (2)0.0151 (19)0.009 (2)
C220.039 (3)0.027 (2)0.027 (4)0.000 (2)0.001 (2)0.0030 (18)
C230.0296 (18)0.027 (4)0.037 (3)0.004 (2)0.0002 (18)0.014 (3)
C240.029 (2)0.051 (2)0.034 (3)0.013 (2)0.003 (2)0.013 (2)
C250.048 (3)0.0353 (19)0.015 (3)0.018 (3)0.014 (2)0.008 (2)
C260.044 (2)0.035 (2)0.024 (3)0.0001 (19)0.002 (3)0.002 (3)
C270.0300 (19)0.036 (2)0.025 (3)0.0070 (16)0.002 (3)0.004 (3)
C280.033 (2)0.024 (2)0.043 (3)0.008 (2)0.003 (2)0.0027 (18)
C22'0.048 (3)0.0353 (19)0.015 (3)0.018 (3)0.014 (2)0.008 (2)
C23'0.029 (2)0.051 (2)0.034 (3)0.013 (2)0.003 (2)0.013 (2)
C24'0.0296 (18)0.027 (4)0.037 (3)0.004 (2)0.0002 (18)0.014 (3)
C25'0.039 (3)0.027 (2)0.027 (4)0.000 (2)0.001 (2)0.0030 (18)
C26'0.033 (2)0.024 (2)0.043 (3)0.008 (2)0.003 (2)0.0027 (18)
C27'0.0300 (19)0.036 (2)0.025 (3)0.0070 (16)0.002 (3)0.004 (3)
C28'0.044 (2)0.035 (2)0.024 (3)0.0001 (19)0.002 (3)0.002 (3)
K10.0271 (3)0.0252 (3)0.0322 (4)0.0006 (3)0.0016 (3)0.0035 (3)
O10.0371 (12)0.0336 (12)0.0376 (13)0.0071 (10)0.0006 (10)0.0006 (10)
C290.060 (2)0.0255 (17)0.047 (2)0.0121 (17)0.0115 (17)0.0086 (15)
C300.063 (2)0.0337 (18)0.0334 (17)0.0069 (18)0.0004 (17)0.0099 (14)
O20.0384 (12)0.0314 (12)0.0294 (12)0.0044 (10)0.0043 (9)0.0045 (9)
C310.048 (2)0.0359 (18)0.0375 (19)0.0170 (16)0.0203 (16)0.0051 (15)
C320.0334 (17)0.046 (2)0.0422 (19)0.0128 (16)0.0044 (15)0.0109 (16)
O30.0303 (11)0.0411 (13)0.0421 (13)0.0051 (10)0.0023 (10)0.0026 (11)
C330.0238 (16)0.063 (2)0.0398 (19)0.0076 (16)0.0015 (14)0.0025 (16)
C340.0392 (19)0.054 (2)0.0405 (19)0.0227 (18)0.0011 (16)0.0024 (16)
O40.0400 (12)0.0293 (11)0.0470 (13)0.0078 (10)0.0013 (11)0.0035 (11)
C350.058 (2)0.0286 (17)0.069 (3)0.0108 (17)0.026 (2)0.0085 (19)
C360.065 (2)0.0269 (17)0.059 (2)0.0092 (18)0.024 (2)0.0113 (16)
O50.0420 (13)0.0352 (12)0.0321 (12)0.0052 (10)0.0036 (10)0.0062 (10)
C370.055 (2)0.0396 (19)0.0325 (18)0.0239 (17)0.0056 (16)0.0003 (15)
C380.0344 (18)0.050 (2)0.0397 (19)0.0196 (16)0.0059 (15)0.0092 (16)
O60.0281 (11)0.0430 (13)0.0377 (13)0.0047 (10)0.0047 (10)0.0008 (10)
C390.0262 (16)0.062 (2)0.0341 (18)0.0014 (16)0.0058 (13)0.0067 (17)
C400.0323 (17)0.053 (2)0.0370 (19)0.0142 (17)0.0071 (14)0.0057 (17)
K20.0277 (3)0.0263 (3)0.0329 (4)0.0028 (3)0.0007 (3)0.0054 (3)
O70.0481 (13)0.0332 (12)0.0294 (12)0.0045 (10)0.0067 (10)0.0041 (10)
C410.068 (2)0.0327 (17)0.044 (2)0.0093 (19)0.0025 (19)0.0153 (15)
C420.067 (2)0.0256 (18)0.049 (2)0.0151 (18)0.0116 (19)0.0085 (15)
O80.0407 (12)0.0324 (12)0.0408 (14)0.0103 (11)0.0019 (10)0.0003 (10)
C430.0360 (17)0.048 (2)0.043 (2)0.0218 (17)0.0104 (15)0.0078 (17)
C440.0229 (16)0.071 (3)0.041 (2)0.0118 (16)0.0020 (14)0.0047 (18)
O90.0272 (11)0.0472 (13)0.0423 (14)0.0015 (10)0.0025 (10)0.0040 (11)
C450.0318 (17)0.065 (2)0.045 (2)0.0154 (17)0.0060 (16)0.0024 (19)
C460.054 (2)0.042 (2)0.042 (2)0.0183 (18)0.0070 (17)0.0099 (16)
O100.0398 (12)0.0356 (12)0.0360 (12)0.0014 (10)0.0010 (10)0.0122 (11)
C470.065 (2)0.0254 (17)0.058 (2)0.0029 (18)0.020 (2)0.0122 (15)
C480.056 (2)0.0241 (17)0.071 (3)0.0156 (17)0.016 (2)0.0060 (17)
O110.0375 (12)0.0332 (12)0.0399 (12)0.0094 (10)0.0002 (10)0.0050 (11)
C490.043 (2)0.053 (2)0.0396 (19)0.0237 (18)0.0013 (17)0.0009 (16)
C500.0219 (16)0.074 (3)0.0387 (19)0.0068 (17)0.0033 (14)0.0057 (17)
O120.0270 (11)0.0403 (12)0.0434 (13)0.0053 (10)0.0060 (9)0.0035 (10)
C510.0370 (18)0.054 (2)0.044 (2)0.0175 (17)0.0068 (16)0.0136 (17)
C520.053 (2)0.0366 (19)0.040 (2)0.0177 (17)0.0147 (17)0.0064 (16)
Geometric parameters (Å, º) top
Co1—C21.924 (3)C26'—H26C1.0000
Co1—C12.014 (4)C27'—C28'1.538 (15)
Co1—C92.035 (3)C27'—H27C0.9900
Co1—C112.040 (3)C27'—H27D0.9900
Co1—C122.055 (3)C28'—H28C0.9900
Co1—C102.072 (3)C28'—H28D0.9900
Co1—C82.105 (3)K1—O42.828 (2)
Co1—C32.142 (3)K1—O62.830 (2)
C1—C71.430 (6)K1—O22.855 (2)
C1—C21.439 (6)K1—O12.856 (2)
C1—K13.436 (4)K1—O32.915 (2)
C1—H10.85 (4)K1—O52.918 (2)
C2—C31.420 (5)O1—C401.424 (4)
C2—K13.307 (3)O1—C291.425 (4)
C2—H20.85 (4)C29—C301.493 (5)
C3—C41.437 (5)C29—H29A0.9900
C3—H30.91 (4)C29—H29B0.9900
C4—C51.353 (5)C30—O21.422 (4)
C4—K13.538 (4)C30—H30A0.9900
C4—H41.01 (4)C30—H30B0.9900
C5—C61.398 (6)O2—C311.426 (4)
C5—K13.346 (4)C31—C321.489 (5)
C5—H50.98 (4)C31—H31A0.9900
C6—C71.354 (6)C31—H31B0.9900
C6—K13.242 (4)C32—O31.416 (3)
C6—H61.04 (4)C32—H32A0.9900
C7—K13.295 (4)C32—H32B0.9900
C7—H71.03 (4)O3—C331.427 (4)
C8—C91.395 (4)C33—C341.491 (5)
C8—C141.515 (4)C33—H33A0.9900
C8—H80.91 (3)C33—H33B0.9900
C9—C101.415 (5)C34—O41.419 (4)
C9—H90.93 (3)C34—H34A0.9900
C10—C111.421 (5)C34—H34B0.9900
C10—H100.95 (3)O4—C351.423 (4)
C11—C121.421 (5)C35—C361.480 (5)
C11—H110.95 (3)C35—H35A0.9900
C12—C131.502 (5)C35—H35B0.9900
C12—H120.97 (3)C36—O51.406 (4)
C13—C141.507 (5)C36—H36A0.9900
C13—H13A0.99 (3)C36—H36B0.9900
C13—H13B0.95 (4)O5—C371.423 (4)
C14—H14A0.97 (3)C37—C381.489 (5)
C14—H14B0.95 (3)C37—H37A0.9900
Co2—C22'1.850 (18)C37—H37B0.9900
Co2—C161.918 (3)C38—O61.419 (4)
Co2—C24'1.93 (3)C38—H38A0.9900
Co2—C152.005 (4)C38—H38B0.9900
Co2—C222.045 (15)O6—C391.423 (4)
Co2—C242.046 (13)C39—C401.496 (4)
Co2—C23'2.07 (3)C39—H39A0.9900
Co2—C25'2.07 (3)C39—H39B0.9900
Co2—C232.092 (13)C40—H40A0.9900
Co2—C252.113 (7)C40—H40B0.9900
Co2—C262.150 (5)K2—O72.823 (2)
Co2—C26'2.167 (10)K2—O92.853 (2)
C15—C161.413 (5)K2—O112.867 (2)
C15—C211.468 (6)K2—O82.882 (2)
C15—K23.496 (3)K2—O102.885 (2)
C15—H150.94 (4)K2—O122.901 (2)
C16—C171.410 (5)O7—C411.410 (4)
C16—K23.362 (4)O7—C521.432 (4)
C16—H160.95 (3)C41—C421.487 (5)
C17—C181.404 (5)C41—H41A0.9900
C17—H171.09 (4)C41—H41B0.9900
C18—C191.358 (5)C42—O81.420 (4)
C18—K23.411 (4)C42—H42A0.9900
C18—H181.03 (4)C42—H42B0.9900
C19—C201.408 (6)O8—C431.421 (4)
C19—K23.207 (3)C43—C441.490 (5)
C19—H191.05 (4)C43—H43A0.9900
C20—C211.375 (6)C43—H43B0.9900
C20—K23.201 (4)C44—O91.425 (4)
C20—H200.93 (3)C44—H44A0.9900
C21—K23.379 (4)C44—H44B0.9900
C21—H210.85 (4)O9—C451.424 (4)
C22—C231.425 (7)C45—C461.484 (5)
C22—C281.491 (9)C45—H45A0.9900
C22—H221.0000C45—H45B0.9900
C23—C241.424 (6)C46—O101.419 (4)
C23—H230.9500C46—H46A0.9900
C24—C251.421 (6)C46—H46B0.9900
C24—H240.9500O10—C471.418 (4)
C25—C261.428 (7)C47—C481.488 (5)
C25—H250.9500C47—H47A0.9900
C26—C271.511 (8)C47—H47B0.9900
C26—H261.0000C48—O111.414 (4)
C27—C281.532 (10)C48—H48A0.9900
C27—H27A0.9900C48—H48B0.9900
C27—H27B0.9900O11—C491.419 (4)
C28—H28A0.9900C49—C501.487 (5)
C28—H28B0.9900C49—H49A0.9900
C22'—C23'1.424 (10)C49—H49B0.9900
C22'—C28'1.497 (11)C50—O121.424 (4)
C22'—H22'1.0000C50—H50A0.9900
C23'—C24'1.428 (9)C50—H50B0.9900
C23'—H23'0.9500O12—C511.422 (4)
C24'—C25'1.430 (9)C51—C521.485 (5)
C24'—H24'0.9500C51—H51A0.9900
C25'—C26'1.424 (10)C51—H51B0.9900
C25'—H25'0.9500C52—H52A0.9900
C26'—C27'1.502 (10)C52—H52B0.9900
C2—Co1—C142.78 (16)O1—K1—O3111.86 (7)
C2—Co1—C9153.16 (15)O4—K1—O559.59 (6)
C1—Co1—C9144.86 (17)O6—K1—O558.11 (6)
C2—Co1—C11116.74 (15)O2—K1—O5154.03 (7)
C1—Co1—C11133.54 (17)O1—K1—O5111.53 (6)
C9—Co1—C1175.37 (14)O3—K1—O5113.71 (6)
C2—Co1—C12109.21 (14)O4—K1—C6101.77 (11)
C1—Co1—C1299.20 (15)O6—K1—C671.64 (9)
C9—Co1—C1295.37 (14)O2—K1—C6121.46 (10)
C11—Co1—C1240.60 (13)O1—K1—C6101.57 (11)
C2—Co1—C10135.42 (16)O3—K1—C6131.52 (9)
C1—Co1—C10173.91 (17)O5—K1—C683.19 (10)
C9—Co1—C1040.30 (13)O4—K1—C7123.43 (10)
C11—Co1—C1040.43 (14)O6—K1—C772.30 (9)
C12—Co1—C1075.68 (14)O2—K1—C799.46 (11)
C2—Co1—C8151.90 (15)O1—K1—C781.99 (10)
C1—Co1—C8111.47 (16)O3—K1—C7130.41 (9)
C9—Co1—C839.34 (12)O5—K1—C7103.05 (11)
C11—Co1—C889.04 (13)C6—K1—C723.89 (11)
C12—Co1—C882.53 (13)O4—K1—C2109.94 (9)
C10—Co1—C871.48 (13)O6—K1—C2116.23 (9)
C2—Co1—C340.45 (15)O2—K1—C267.10 (7)
C1—Co1—C372.70 (14)O1—K1—C292.66 (8)
C9—Co1—C3112.76 (14)O3—K1—C284.82 (8)
C11—Co1—C3121.05 (13)O5—K1—C2138.81 (8)
C12—Co1—C3141.81 (14)C6—K1—C258.85 (10)
C10—Co1—C3109.20 (13)C7—K1—C246.11 (11)
C8—Co1—C3135.52 (13)O4—K1—C579.94 (9)
C7—C1—C2128.7 (4)O6—K1—C591.46 (9)
C7—C1—Co1112.8 (3)O2—K1—C5124.37 (8)
C2—C1—Co165.3 (2)O1—K1—C5125.07 (9)
C7—C1—K172.2 (2)O3—K1—C5109.88 (9)
C2—C1—K172.7 (2)O5—K1—C581.36 (8)
Co1—C1—K1128.27 (15)C6—K1—C524.44 (10)
C7—C1—H1111 (3)C7—K1—C543.50 (11)
C2—C1—H1114 (3)C2—K1—C557.50 (9)
Co1—C1—H1117 (3)O4—K1—C1127.02 (8)
K1—C1—H1107 (3)O6—K1—C191.69 (9)
C3—C2—C1119.1 (4)O2—K1—C177.15 (9)
C3—C2—Co178.0 (2)O1—K1—C178.89 (8)
C1—C2—Co171.9 (2)O3—K1—C1108.74 (9)
C3—C2—K188.8 (2)O5—K1—C1126.92 (10)
C1—C2—K182.8 (2)C6—K1—C144.31 (12)
Co1—C2—K1140.36 (17)C7—K1—C124.41 (11)
C3—C2—H2116 (3)C2—K1—C124.54 (10)
C1—C2—H2125 (3)C5—K1—C154.68 (9)
Co1—C2—H2123 (3)O4—K1—C475.23 (8)
K1—C2—H296 (2)O6—K1—C4113.25 (8)
C2—C3—C4128.0 (3)O2—K1—C4106.28 (8)
C2—C3—Co161.50 (19)O1—K1—C4131.02 (7)
C4—C3—Co1108.0 (2)O3—K1—C489.20 (8)
C2—C3—H3117 (2)O5—K1—C497.64 (7)
C4—C3—H3111 (2)C6—K1—C442.52 (10)
Co1—C3—H3123 (2)C7—K1—C452.78 (10)
C5—C4—C3130.9 (4)C2—K1—C443.91 (8)
C5—C4—K170.8 (2)C5—K1—C422.45 (9)
C3—C4—K179.7 (2)C1—K1—C452.22 (8)
C5—C4—H4121 (2)C40—O1—C29112.5 (3)
C3—C4—H4108 (2)C40—O1—K1109.87 (18)
K1—C4—H4131 (2)C29—O1—K1111.03 (17)
C4—C5—C6128.1 (4)O1—C29—C30108.8 (3)
C4—C5—K186.7 (2)O1—C29—H29A109.9
C6—C5—K173.6 (2)C30—C29—H29A109.9
C4—C5—H5119 (2)O1—C29—H29B109.9
C6—C5—H5112 (2)C30—C29—H29B109.9
K1—C5—H5120 (2)H29A—C29—H29B108.3
C7—C6—C5126.8 (4)O2—C30—C29108.1 (2)
C7—C6—K180.2 (2)O2—C30—H30A110.1
C5—C6—K182.0 (2)C29—C30—H30A110.1
C7—C6—H6118 (2)O2—C30—H30B110.1
C5—C6—H6115 (2)C29—C30—H30B110.1
K1—C6—H6116 (2)H30A—C30—H30B108.4
C6—C7—C1130.2 (4)C30—O2—C31112.3 (2)
C6—C7—K175.9 (2)C30—O2—K1117.54 (18)
C1—C7—K183.3 (2)C31—O2—K1119.83 (19)
C6—C7—H7117 (2)O2—C31—C32108.6 (3)
C1—C7—H7112 (2)O2—C31—H31A110.0
K1—C7—H7119 (2)C32—C31—H31A110.0
C9—C8—C14121.0 (3)O2—C31—H31B110.0
C9—C8—Co167.60 (18)C32—C31—H31B110.0
C14—C8—Co1111.2 (2)H31A—C31—H31B108.3
C9—C8—H8117.1 (18)O3—C32—C31108.5 (3)
C14—C8—H8112.5 (19)O3—C32—H32A110.0
Co1—C8—H8120.5 (18)C31—C32—H32A110.0
C8—C9—C10120.6 (3)O3—C32—H32B110.0
C8—C9—Co173.07 (18)C31—C32—H32B110.0
C10—C9—Co171.29 (18)H32A—C32—H32B108.4
C8—C9—H9123.2 (18)C32—O3—C33113.1 (2)
C10—C9—H9114.6 (18)C32—O3—K1110.55 (17)
Co1—C9—H9115.3 (17)C33—O3—K1108.24 (17)
C9—C10—C11122.9 (3)O3—C33—C34107.5 (3)
C9—C10—Co168.42 (18)O3—C33—H33A110.2
C11—C10—Co168.56 (19)C34—C33—H33A110.2
C9—C10—H10120.6 (18)O3—C33—H33B110.2
C11—C10—H10114.5 (17)C34—C33—H33B110.2
Co1—C10—H10125.2 (17)H33A—C33—H33B108.5
C12—C11—C10126.0 (3)O4—C34—C33108.7 (3)
C12—C11—Co170.29 (18)O4—C34—H34A109.9
C10—C11—Co171.00 (19)C33—C34—H34A109.9
C12—C11—H11118 (2)O4—C34—H34B109.9
C10—C11—H11115 (2)C33—C34—H34B109.9
Co1—C11—H11124 (2)H34A—C34—H34B108.3
C11—C12—C13128.0 (3)C34—O4—C35112.5 (3)
C11—C12—Co169.12 (18)C34—O4—K1117.73 (18)
C13—C12—Co1109.1 (2)C35—O4—K1116.62 (18)
C11—C12—H12114 (2)O4—C35—C36108.9 (3)
C13—C12—H12110 (2)O4—C35—H35A109.9
Co1—C12—H12121.0 (19)C36—C35—H35A109.9
C12—C13—C14110.9 (3)O4—C35—H35B109.9
C12—C13—H13A113.4 (18)C36—C35—H35B109.9
C14—C13—H13A110.0 (17)H35A—C35—H35B108.3
C12—C13—H13B110 (2)O5—C36—C35109.8 (3)
C14—C13—H13B111 (2)O5—C36—H36A109.7
H13A—C13—H13B102 (3)C35—C36—H36A109.7
C13—C14—C8111.8 (3)O5—C36—H36B109.7
C13—C14—H14A110.7 (17)C35—C36—H36B109.7
C8—C14—H14A106.4 (17)H36A—C36—H36B108.2
C13—C14—H14B111.2 (17)C36—O5—C37112.6 (3)
C8—C14—H14B110.7 (17)C36—O5—K1108.31 (17)
H14A—C14—H14B106 (2)C37—O5—K1106.98 (18)
C22'—Co2—C16156.4 (7)O5—C37—C38108.8 (3)
C22'—Co2—C24'80.5 (9)O5—C37—H37A109.9
C16—Co2—C24'120.1 (10)C38—C37—H37A109.9
C22'—Co2—C15120.2 (8)O5—C37—H37B109.9
C16—Co2—C1542.17 (16)C38—C37—H37B109.9
C24'—Co2—C15157.8 (8)H37A—C37—H37B108.3
C16—Co2—C22107.4 (4)O6—C38—C37108.0 (3)
C15—Co2—C22120.0 (4)O6—C38—H38A110.1
C16—Co2—C24144.9 (4)C37—C38—H38A110.1
C15—Co2—C24162.9 (4)O6—C38—H38B110.1
C22—Co2—C2475.5 (5)C37—C38—H38B110.1
C22'—Co2—C23'42.2 (6)H38A—C38—H38B108.4
C16—Co2—C23'149.7 (7)C38—O6—C39112.7 (2)
C24'—Co2—C23'41.7 (6)C38—O6—K1120.47 (18)
C15—Co2—C23'160.5 (8)C39—O6—K1117.74 (17)
C22'—Co2—C25'100.1 (10)O6—C39—C40107.9 (3)
C16—Co2—C25'103.2 (10)O6—C39—H39A110.1
C24'—Co2—C25'41.7 (6)C40—C39—H39A110.1
C15—Co2—C25'120.5 (9)O6—C39—H39B110.1
C23'—Co2—C25'76.3 (12)C40—C39—H39B110.1
C16—Co2—C23122.3 (4)H39A—C39—H39B108.4
C15—Co2—C23156.9 (3)O1—C40—C39108.9 (3)
C22—Co2—C2340.3 (3)O1—C40—H40A109.9
C24—Co2—C2340.2 (3)C39—C40—H40A109.9
C16—Co2—C25158.6 (2)O1—C40—H40B109.9
C15—Co2—C25126.2 (3)C39—C40—H40B109.9
C22—Co2—C2593.9 (4)H40A—C40—H40B108.3
C24—Co2—C2539.9 (2)O7—K2—O9117.72 (7)
C23—Co2—C2574.1 (3)O7—K2—O11117.43 (7)
C16—Co2—C26143.25 (19)O9—K2—O11116.98 (7)
C15—Co2—C26102.01 (18)O7—K2—O858.82 (6)
C22—Co2—C2681.7 (3)O9—K2—O858.94 (6)
C24—Co2—C2671.6 (3)O11—K2—O8150.02 (7)
C23—Co2—C2688.1 (3)O7—K2—O10153.45 (7)
C25—Co2—C2639.13 (19)O9—K2—O1058.17 (6)
C22'—Co2—C26'86.5 (5)O11—K2—O1058.82 (6)
C16—Co2—C26'109.3 (3)O8—K2—O10109.87 (7)
C24'—Co2—C26'73.6 (8)O7—K2—O1258.92 (6)
C15—Co2—C26'98.3 (3)O9—K2—O12157.17 (7)
C23'—Co2—C26'89.6 (9)O11—K2—O1258.77 (6)
C25'—Co2—C26'39.2 (4)O8—K2—O12112.15 (7)
C16—C15—C21125.7 (3)O10—K2—O12113.44 (7)
C16—C15—Co265.6 (2)O7—K2—C20126.27 (8)
C21—C15—Co2106.4 (3)O9—K2—C2088.19 (10)
C16—C15—K272.9 (2)O11—K2—C2082.78 (8)
C21—C15—K273.3 (2)O8—K2—C20124.69 (9)
Co2—C15—K2127.35 (15)O10—K2—C2080.25 (8)
C16—C15—H15118 (2)O12—K2—C20112.20 (9)
C21—C15—H15112 (2)O7—K2—C19109.48 (9)
Co2—C15—H15120 (2)O9—K2—C19113.56 (9)
K2—C15—H15107 (2)O11—K2—C1972.73 (8)
C17—C16—C15123.2 (3)O8—K2—C19137.22 (8)
C17—C16—Co280.5 (2)O10—K2—C1994.75 (8)
C15—C16—Co272.2 (2)O12—K2—C1987.36 (8)
C17—C16—K286.5 (2)C20—K2—C1925.38 (10)
C15—C16—K283.5 (2)O7—K2—C1672.91 (8)
Co2—C16—K2139.18 (16)O9—K2—C1694.65 (9)
C17—C16—H16115 (2)O11—K2—C16128.96 (8)
C15—C16—H16122 (2)O8—K2—C1680.16 (8)
Co2—C16—H16118 (2)O10—K2—C16131.61 (8)
K2—C16—H16102 (2)O12—K2—C16104.74 (8)
C18—C17—C16128.3 (4)C20—K2—C1657.88 (9)
C18—C17—Co2111.9 (3)C19—K2—C1657.69 (9)
C16—C17—Co259.95 (19)O7—K2—C21117.55 (9)
C18—C17—H17111.9 (18)O9—K2—C2172.39 (9)
C16—C17—H17116.8 (18)O11—K2—C21105.88 (9)
Co2—C17—H17116.1 (18)O8—K2—C21100.79 (9)
C19—C18—C17130.6 (4)O10—K2—C2187.24 (9)
C19—C18—K269.9 (2)O12—K2—C21130.20 (9)
C17—C18—K284.6 (2)C20—K2—C2123.92 (10)
C19—C18—H18115 (2)C19—K2—C2144.53 (10)
C17—C18—H18114 (2)C16—K2—C2144.71 (10)
K2—C18—H18123 (2)O7—K2—C1886.21 (8)
C18—C19—C20126.9 (4)O9—K2—C18125.87 (8)
C18—C19—K286.7 (2)O11—K2—C1885.43 (8)
C20—C19—K277.1 (2)O8—K2—C18122.02 (8)
C18—C19—H19116.7 (19)O10—K2—C18118.10 (8)
C20—C19—H19116.1 (19)O12—K2—C1876.96 (8)
K2—C19—H19112.7 (18)C20—K2—C1843.81 (10)
C21—C20—C19128.0 (4)C19—K2—C1823.42 (9)
C21—C20—K285.3 (2)C16—K2—C1843.92 (9)
C19—C20—K277.5 (2)C21—K2—C1853.75 (10)
C21—C20—H20114 (2)O7—K2—C1594.16 (8)
C19—C20—H20117 (2)O9—K2—C1575.37 (8)
K2—C20—H20116 (2)O11—K2—C15127.23 (8)
C20—C21—C15130.0 (4)O8—K2—C1582.05 (8)
C20—C21—K270.8 (2)O10—K2—C15108.57 (8)
C15—C21—K282.2 (2)O12—K2—C15126.18 (8)
C20—C21—H21119 (3)C20—K2—C1544.99 (9)
C15—C21—H21111 (3)C19—K2—C1556.64 (9)
K2—C21—H21122 (3)C16—K2—C1523.68 (9)
C23—C22—C28127.2 (10)C21—K2—C1524.58 (10)
C23—C22—Co271.6 (7)C18—K2—C1553.83 (9)
C28—C22—Co2110.7 (6)C41—O7—C52112.1 (3)
C23—C22—H22113.2C41—O7—K2118.45 (18)
C28—C22—H22113.2C52—O7—K2118.42 (19)
Co2—C22—H22113.2O7—C41—C42108.8 (3)
C24—C23—C22123.1 (8)O7—C41—H41A109.9
C24—C23—Co268.2 (7)C42—C41—H41A109.9
C22—C23—Co268.1 (7)O7—C41—H41B109.9
C24—C23—H23118.4C42—C41—H41B109.9
C22—C23—H23118.4H41A—C41—H41B108.3
Co2—C23—H23141.4O8—C42—C41109.3 (3)
C25—C24—C23125.8 (8)O8—C42—H42A109.8
C25—C24—Co272.5 (5)C41—C42—H42A109.8
C23—C24—Co271.6 (7)O8—C42—H42B109.8
C25—C24—H24117.1C41—C42—H42B109.8
C23—C24—H24117.1H42A—C42—H42B108.3
Co2—C24—H24132.5C42—O8—C43112.6 (3)
C24—C25—C26119.1 (6)C42—O8—K2112.13 (18)
C24—C25—Co267.5 (6)C43—O8—K2109.72 (18)
C26—C25—Co271.9 (4)O8—C43—C44108.8 (3)
C24—C25—H25120.5O8—C43—H43A109.9
C26—C25—H25120.5C44—C43—H43A109.9
Co2—C25—H25133.2O8—C43—H43B109.9
C25—C26—C27118.5 (6)C44—C43—H43B109.9
C25—C26—Co269.0 (4)H43A—C43—H43B108.3
C27—C26—Co2111.2 (4)O9—C44—C43108.1 (3)
C25—C26—H26116.4O9—C44—H44A110.1
C27—C26—H26116.4C43—C44—H44A110.1
Co2—C26—H26116.4O9—C44—H44B110.1
C26—C27—C28111.1 (4)C43—C44—H44B110.1
C26—C27—H27A109.4H44A—C44—H44B108.4
C28—C27—H27A109.4C45—O9—C44112.8 (3)
C26—C27—H27B109.4C45—O9—K2118.99 (18)
C28—C27—H27B109.4C44—O9—K2117.67 (18)
H27A—C27—H27B108.0O9—C45—C46108.8 (3)
C22—C28—C27110.7 (5)O9—C45—H45A109.9
C22—C28—H28A109.5C46—C45—H45A109.9
C27—C28—H28A109.5O9—C45—H45B109.9
C22—C28—H28B109.5C46—C45—H45B109.9
C27—C28—H28B109.5H45A—C45—H45B108.3
H28A—C28—H28B108.1O10—C46—C45108.4 (3)
C23'—C22'—C28'122.7 (15)O10—C46—H46A110.0
C23'—C22'—Co277.1 (15)C45—C46—H46A110.0
C28'—C22'—Co2110.6 (9)O10—C46—H46B110.0
C23'—C22'—H22'113.6C45—C46—H46B110.0
C28'—C22'—H22'113.6H46A—C46—H46B108.4
Co2—C22'—H22'113.6C47—O10—C46113.4 (3)
C22'—C23'—C24'118.0 (16)C47—O10—K2112.57 (18)
C22'—C23'—Co260.7 (12)C46—O10—K2108.41 (18)
C24'—C23'—Co264.1 (16)O10—C47—C48108.3 (3)
C22'—C23'—H23'121.0O10—C47—H47A110.0
C24'—C23'—H23'121.0C48—C47—H47A110.0
Co2—C23'—H23'154.0O10—C47—H47B110.0
C23'—C24'—C25'126.8 (17)C48—C47—H47B110.0
C23'—C24'—Co274.2 (16)H47A—C47—H47B108.4
C25'—C24'—Co274.2 (18)O11—C48—C47108.4 (3)
C23'—C24'—H24'116.6O11—C48—H48A110.0
C25'—C24'—H24'116.6C47—C48—H48A110.0
Co2—C24'—H24'127.4O11—C48—H48B110.0
C26'—C25'—C24'119.3 (12)C47—C48—H48B110.0
C26'—C25'—Co274.1 (13)H48A—C48—H48B108.4
C24'—C25'—Co264.1 (16)C48—O11—C49112.8 (3)
C26'—C25'—H25'120.3C48—O11—K2115.52 (18)
C24'—C25'—H25'120.3C49—O11—K2117.40 (18)
Co2—C25'—H25'134.7O11—C49—C50108.8 (3)
C25'—C26'—C27'120.4 (14)O11—C49—H49A109.9
C25'—C26'—Co266.7 (15)C50—C49—H49A109.9
C27'—C26'—Co2105.7 (6)O11—C49—H49B109.9
C25'—C26'—H26C117.4C50—C49—H49B109.9
C27'—C26'—H26C117.4H49A—C49—H49B108.3
Co2—C26'—H26C117.4O12—C50—C49108.3 (3)
C26'—C27'—C28'111.0 (9)O12—C50—H50A110.0
C26'—C27'—H27C109.4C49—C50—H50A110.0
C28'—C27'—H27C109.4O12—C50—H50B110.0
C26'—C27'—H27D109.4C49—C50—H50B110.0
C28'—C27'—H27D109.4H50A—C50—H50B108.4
H27C—C27'—H27D108.0C51—O12—C50113.4 (2)
C22'—C28'—C27'110.8 (9)C51—O12—K2106.40 (18)
C22'—C28'—H28C109.5C50—O12—K2108.45 (18)
C27'—C28'—H28C109.5O12—C51—C52108.0 (3)
C22'—C28'—H28D109.5O12—C51—H51A110.1
C27'—C28'—H28D109.5C52—C51—H51A110.1
H28C—C28'—H28D108.1O12—C51—H51B110.1
O4—K1—O6117.70 (7)C52—C51—H51B110.1
O4—K1—O2116.76 (7)H51A—C51—H51B108.4
O6—K1—O2118.44 (7)O7—C52—C51108.6 (3)
O4—K1—O1153.61 (7)O7—C52—H52A110.0
O6—K1—O159.43 (6)C51—C52—H52A110.0
O2—K1—O159.01 (6)O7—C52—H52B110.0
O4—K1—O359.05 (7)C51—C52—H52B110.0
O6—K1—O3156.35 (7)H52A—C52—H52B108.3
O2—K1—O357.77 (6)
C7—C1—C2—C335.8 (6)C23—C22—C28—C2739.7 (14)
Co1—C1—C2—C364.5 (3)Co2—C22—C28—C2742.5 (9)
K1—C1—C2—C384.6 (3)C26—C27—C28—C2236.4 (9)
C7—C1—C2—Co1100.3 (4)C16—Co2—C22'—C23'133.2 (13)
K1—C1—C2—Co1149.06 (12)C24'—Co2—C22'—C23'19.4 (15)
C7—C1—C2—K148.8 (4)C15—Co2—C22'—C23'169.2 (13)
Co1—C1—C2—K1149.06 (12)C25'—Co2—C22'—C23'56.4 (14)
C1—C2—C3—C430.0 (5)C26'—Co2—C22'—C23'93.3 (13)
Co1—C2—C3—C491.3 (3)C16—Co2—C22'—C28'106.4 (12)
K1—C2—C3—C451.1 (4)C24'—Co2—C22'—C28'101.0 (13)
C1—C2—C3—Co161.3 (3)C15—Co2—C22'—C28'70.5 (14)
K1—C2—C3—Co1142.33 (15)C23'—Co2—C22'—C28'120.4 (15)
C2—C3—C4—C55.5 (6)C25'—Co2—C22'—C28'64.0 (13)
Co1—C3—C4—C562.0 (5)C26'—Co2—C22'—C28'27.0 (13)
C2—C3—C4—K147.6 (3)C28'—C22'—C23'—C24'76 (4)
Co1—C3—C4—K1115.13 (16)Co2—C22'—C23'—C24'30 (3)
C3—C4—C5—C69.7 (7)C28'—C22'—C23'—Co2106.4 (14)
K1—C4—C5—C666.2 (4)C22'—C23'—C24'—C25'27 (6)
C3—C4—C5—K156.5 (4)Co2—C23'—C24'—C25'56 (4)
C4—C5—C6—C70.9 (6)C22'—C23'—C24'—Co229 (3)
K1—C5—C6—C771.3 (4)C23'—C24'—C25'—C26'4 (6)
C4—C5—C6—K172.2 (4)Co2—C24'—C25'—C26'52 (3)
C5—C6—C7—C13.8 (7)C23'—C24'—C25'—Co256 (4)
K1—C6—C7—C168.4 (4)C24'—C25'—C26'—C27'48 (4)
C5—C6—C7—K172.1 (4)Co2—C25'—C26'—C27'95.1 (14)
C2—C1—C7—C616.2 (7)C24'—C25'—C26'—Co247 (3)
Co1—C1—C7—C659.6 (5)C25'—C26'—C27'—C28'87.4 (19)
K1—C1—C7—C665.2 (4)Co2—C26'—C27'—C28'16 (2)
C2—C1—C7—K149.0 (4)C23'—C22'—C28'—C27'44 (2)
Co1—C1—C7—K1124.8 (2)Co2—C22'—C28'—C27'43 (2)
C14—C8—C9—C1046.8 (4)C26'—C27'—C28'—C22'38 (2)
Co1—C8—C9—C1055.3 (3)C40—O1—C29—C30176.3 (3)
C14—C8—C9—Co1102.1 (3)K1—O1—C29—C3060.1 (3)
C8—C9—C10—C1112.5 (5)O1—C29—C30—O266.3 (3)
Co1—C9—C10—C1143.7 (3)C29—C30—O2—C31176.0 (3)
C8—C9—C10—Co156.1 (3)C29—C30—O2—K138.9 (3)
C9—C10—C11—C122.7 (5)C30—O2—C31—C32178.7 (3)
Co1—C10—C11—C1246.3 (3)K1—O2—C31—C3234.5 (3)
C9—C10—C11—Co143.6 (3)O2—C31—C32—O364.0 (3)
C10—C11—C12—C1351.8 (5)C31—C32—O3—C33177.0 (2)
Co1—C11—C12—C1398.4 (3)C31—C32—O3—K161.4 (3)
C10—C11—C12—Co146.6 (3)C32—O3—C33—C34175.3 (3)
C11—C12—C13—C1436.0 (5)K1—O3—C33—C3461.9 (3)
Co1—C12—C13—C1442.0 (3)O3—C33—C34—O469.3 (3)
C12—C13—C14—C835.9 (4)C33—C34—O4—C35179.6 (3)
C9—C8—C14—C1388.9 (4)C33—C34—O4—K139.5 (3)
Co1—C8—C14—C1313.0 (3)C34—O4—C35—C36178.3 (3)
C21—C15—C16—C1727.8 (6)K1—O4—C35—C3641.2 (4)
Co2—C15—C16—C1765.4 (3)O4—C35—C36—O569.5 (4)
K2—C15—C16—C1781.4 (3)C35—C36—O5—C37177.2 (3)
C21—C15—C16—Co293.2 (4)C35—C36—O5—K159.1 (3)
K2—C15—C16—Co2146.80 (12)C36—O5—C37—C38175.7 (3)
C21—C15—C16—K253.6 (3)K1—O5—C37—C3865.5 (3)
Co2—C15—C16—K2146.80 (12)O5—C37—C38—O665.2 (3)
C15—C16—C17—C1833.9 (6)C37—C38—O6—C39176.5 (3)
Co2—C16—C17—C1895.2 (4)C37—C38—O6—K130.2 (3)
K2—C16—C17—C1845.9 (4)C38—O6—C39—C40174.4 (3)
C15—C16—C17—Co261.4 (3)K1—O6—C39—C4038.2 (3)
K2—C16—C17—Co2141.17 (13)C29—O1—C40—C39175.0 (3)
C16—C17—C18—C1912.3 (7)K1—O1—C40—C3960.8 (3)
Co2—C17—C18—C1955.9 (5)O6—C39—C40—O166.8 (3)
C16—C17—C18—K245.2 (4)C52—O7—C41—C42174.6 (3)
Co2—C17—C18—K2113.49 (19)K2—O7—C41—C4241.9 (3)
C17—C18—C19—C207.6 (6)O7—C41—C42—O864.5 (4)
K2—C18—C19—C2071.2 (3)C41—C42—O8—C43179.1 (3)
C17—C18—C19—K263.5 (4)C41—C42—O8—K254.8 (3)
C18—C19—C20—C212.0 (6)C42—O8—C43—C44173.0 (3)
K2—C19—C20—C2173.8 (4)K2—O8—C43—C4461.4 (3)
C18—C19—C20—K275.8 (4)O8—C43—C44—O967.3 (3)
C19—C20—C21—C159.0 (7)C43—C44—O9—C45177.5 (3)
K2—C20—C21—C1561.2 (4)C43—C44—O9—K238.1 (3)
C19—C20—C21—K270.2 (4)C44—O9—C45—C46173.8 (3)
C16—C15—C21—C203.2 (7)K2—O9—C45—C4629.9 (3)
Co2—C15—C21—C2068.2 (5)O9—C45—C46—O1064.5 (4)
K2—C15—C21—C2056.6 (4)C45—C46—O10—C47168.7 (3)
C16—C15—C21—K253.5 (3)C45—C46—O10—K265.5 (3)
Co2—C15—C21—K2124.89 (17)C46—O10—C47—C48178.3 (3)
C28—C22—C23—C2460 (2)K2—O10—C47—C4854.8 (3)
Co2—C22—C23—C2442.2 (14)O10—C47—C48—O1169.0 (3)
C28—C22—C23—Co2102.4 (11)C47—C48—O11—C49173.5 (3)
C22—C23—C24—C259 (3)C47—C48—O11—K247.5 (3)
Co2—C23—C24—C2551.0 (13)C48—O11—C49—C50174.7 (3)
C22—C23—C24—Co242.2 (14)K2—O11—C49—C5036.6 (3)
C23—C24—C25—C261.4 (19)O11—C49—C50—O1268.3 (3)
Co2—C24—C25—C2652.0 (8)C49—C50—O12—C51178.6 (3)
C23—C24—C25—Co250.6 (13)C49—C50—O12—K263.4 (3)
C24—C25—C26—C2753.4 (11)C50—O12—C51—C52174.5 (3)
Co2—C25—C26—C27103.4 (5)K2—O12—C51—C5266.4 (3)
C24—C25—C26—Co250.0 (9)C41—O7—C52—C51175.3 (3)
C25—C26—C27—C2891.0 (9)K2—O7—C52—C5131.7 (3)
Co2—C26—C27—C2814.1 (9)O12—C51—C52—O767.4 (3)
Selected bond lengths (Å) top
Co1—C21.924 (3)Co2—C161.918 (3)
Co1—C12.014 (4)Co2—C152.005 (4)
Co1—C92.035 (3)Co2—C222.045 (15)
Co1—C112.040 (3)Co2—C242.046 (13)
Co1—C122.055 (3)Co2—C232.092 (13)
Co1—C102.072 (3)Co2—C252.113 (7)
Co1—C82.105 (3)Co2—C262.150 (5)
Co1—C32.142 (3)C15—C161.413 (5)
C1—C71.430 (6)C15—C211.468 (6)
C1—C21.439 (6)C15—K23.496 (3)
C1—K13.436 (4)C16—C171.410 (5)
C2—C31.420 (5)C16—K23.362 (4)
C2—K13.307 (3)C17—C181.404 (5)
C3—C41.437 (5)C18—C191.358 (5)
C4—C51.353 (5)C18—K23.411 (4)
C4—K13.538 (4)C19—C201.408 (6)
C5—C61.398 (6)C19—K23.207 (3)
C5—K13.346 (4)C20—C211.375 (6)
C6—C71.354 (6)C20—K23.201 (4)
C6—K13.242 (4)C21—K23.379 (4)
C7—K13.295 (4)C22—C231.425 (7)
C8—C91.395 (4)C22—C281.491 (9)
C8—C141.515 (4)C23—C241.424 (6)
C9—C101.415 (5)C24—C251.421 (6)
C10—C111.421 (5)C25—C261.428 (7)
C11—C121.421 (5)C26—C271.511 (8)
C12—C131.502 (5)C27—C281.532 (10)
C13—C141.507 (5)
Comparison of bond lengths (Å) and fold angles (°) for selected later transition metal complexes containing η3-cycloheptatrienyl ligands, with numbering according to Fig. 3. Fold angles are defined as the angles between the C1–C2–C3 (allylic) and C1–C3–C4–C5–C6–C7 (exo-diene) mean planes. top
Bond(I)a(I)bNEFYIIcSEKJOHdSEKJIBe
M—C12.014 (4)2.005 (4)2.287 (5)2.252 (7)2.244 (5)
M—C21.924 (3)1.918 (3)2.147 (6)2.113 (7)2.124 (5)
M—C32.142 (3)2.186 (4)2.213 (6)2.230 (7)2.244 (5)
C1—C21.439 (6)1.413 (5)1.388 (8)1.425 (11)1.439 (8)
C2—C31.420 (5)1.410 (5)1.420 (8)1.432 (10)1.448 (8)
C3—C41.437 (5)1.404 (5)1.446 (11)1.468 (10)1.459 (8)
C4—C51.353 (5)1.358 (5)1.349 (12)1.350 (10)1.348 (8)
C5—C61.398 (6)1.408 (6)1.419 (10)1.429 (12)1.438 (9)
C6—C71.354 (6)1.375 (6)1.338 (8)1.358 (11)1.342 (9)
C7—C11.430 (6)1.468 (6)1.461 (8)1.462 (10)1.455 (8)
Fold angle28.0 (4)27.2 (4)29.635.837.1
Notes: (a) (I), ring C1–C7; (b) (I), ring C15–C21; (c) [Pd(η3-C7H7)(PPh3)2][BF4] (Murahashi et al., 2012); (d) [AsPh4][Ru(η3-C7H7)(CO)3] (Astley et al., 1990); (e) [AsPh4][Os(η3-C7H7)(CO)3] (Astley et al., 1990).

Experimental details

Crystal data
Chemical formula[K(C12H24O6)][Co(C7H7)(C7H9)]
Mr546.61
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)16.3925 (19), 17.225 (2), 18.678 (2)
β (°) 91.6077 (19)
V3)5271.8 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.32 × 0.24 × 0.16
Data collection
DiffractometerSiemens SMART CCD platform
diffractometer
Absorption correctionMulti-scan
(TWINABS; Sheldrick, 2012)
Tmin, Tmax0.612, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
85092, 12058, 9117
Rint0.055
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.084, 1.00
No. of reflections12058
No. of parameters728
No. of restraints45
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.47

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SIR97 (Altomare et al., 1999), SHELXL2014 (Sheldrick, 2015), SHELXTL (Sheldrick, 2015).

 

Acknowledgements

This research has been supported by the US National Science Foundation and the donors of the Petroleum Research Fund, administered by the American Chemical Society. The authors thank Dr Victor G. Young Jr for supplying the original data for re-integration with the latest software.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAstley, S. T., Takats, J., Huffman, J. C. & Streib, W. E. (1990). Organometallics, 9, 184–189.  CSD CrossRef CAS Google Scholar
First citationBlackborow, J. R., Hildenbrand, K., von Gustorf, E. K., Scrivanti, A., Eady, C. R., Ehntolt, D. & Krüger, C. (1976). J. Chem. Soc. Chem. Commun. pp. 16–17.  CrossRef Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBrennessel, W. W. & Ellis, J. E. (2012). Inorg. Chem. 51, 9076–9094.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBrennessel, W. W., Young, V. G. Jr & Ellis, J. E. (2002). Angew. Chem. Int. Ed. 41, 1211–1215.  CrossRef CAS Google Scholar
First citationBruker (2003). SAINT and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGreen, M. L. H., Newman, P. A. & Bandy, J. A. (1989). J. Chem. Soc. Dalton Trans. pp. 331–343.  CSD CrossRef Google Scholar
First citationGreen, M. L. H. & Walker, N. M. (1989). J. Chem. Soc. Chem. Commun. pp. 850–852.  CrossRef Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationHerbert, B. J., Baik, M.-H. & Green, J. C. (2004). Organometallics, 23, 2658–2669.  CrossRef CAS Google Scholar
First citationHofmann, P. (1978). Z. Naturforsch. Teil B, 33, 251–260.  Google Scholar
First citationMurahashi, T., Usui, K., Tachibana, Y., Kimura, S. & Ogoshi, S. (2012). Chem. Eur. J. 18, 8886–8890.  CSD CrossRef CAS PubMed Google Scholar
First citationParsons, S., Gould, B., Cooper, R. & Farrugia, L. (2003). ROTAX. University of Edinburgh, Scotland.  Google Scholar
First citationSepp, E., Pürzer, A., Thiele, G. & Behrens, H. (1978). Z. Naturforsch. Teil B, 33, 261–264.  Google Scholar
First citationSheldrick, G. M. (2012). TWINABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTimms, P. L. & Turney, T. W. (1976). J. Chem. Soc. Dalton Trans. pp. 2021–2025.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages 291-295
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds