research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages 251-253

Crystal structure of langbeinite-related Rb0.743K0.845Co0.293Ti1.707(PO4)3

CROSSMARK_Color_square_no_text.svg

aDepartment of Inorganic Chemistry, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Str., 01601 Kyiv, Ukraine, bSTC "Institute for Single Crystals", NAS of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine, and cV. N. Karazin National University, 4, Svobody Square, 61001 Kharkiv, Ukraine
*Correspondence e-mail: Strutynska_N@bigmir.net

Edited by I. D. Brown, McMaster University, Canada (Received 23 January 2015; accepted 27 January 2015; online 7 February 2015)

Potassium rubidium cobalt(II)/titanium(IV) tris­(orthophosphate), Rb0.743K0.845Co0.293Ti1.707(PO4)3, has been obtained using a high-temperature crystallization method. The obtained compound has a langbeinite-type structure. The three-dimensional framework is built up from mixed-occupied (Co/TiIV)O6 octa­hedra (point group symmetry .3.) and PO4 tetra­hedra. The K+ and Rb+ cations are statistically distributed over two distinct sites (both with site symmetry .3.) in the large cavities of the framework. They are surrounded by 12 O atoms.

1. Chemical context

Nowadays, there are a number of reports on the synthesis and investigation of langbeinite-related complex phosphates, which exhibit inter­esting properties such as magnetic (Ogorodnyk et al., 2006[Ogorodnyk, I. V., Zatovsky, I. V., Slobodyanik, N. S., Baumer, V. N. & Shishkin, O. V. (2006). J. Solid State Chem. 179, 3461-3466.]), luminescence (Zhang et al., 2013[Zhang, Z. J., Lin, X., Zhao, J. T. & Zhang, G. B. (2013). Mater. Res. Bull. 48, 224-231.]; Chawla et al., 2013[Chawla, S., Ravishanker, Rajkumar, Khan, A. F. & Kotnala, R. K. (2013). J. Lumin. 136, 328-333.]) and phase transitions (Hikita et al., 1977[Hikita, T., Sato, S., Sekiguchi, H. & Ikeda, T. (1977). J. Phys. Soc. Jpn, 42, 1656-1659.]). It should be noted that compounds with a langbeinite-type structure are prospects for use as a matrix for the storage of nuclear waste (Orlova et al., 2011[Orlova, A. I., Koryttseva, A. K. & Loginova, E. E. (2011). Radiochemistry, 53, 51-62.]). Zaripov et al. (2009[Zaripov, A. R., Orlova, V. A., Petkov, V. I., Slyunchev, O. M., Galuzin, D. D. & Rovnyi, S. I. (2009). Russ. J. Inorg. Chem. 54, 45-51.]) and Ogorodnyk et al. (2007a[Ogorodnyk, I. V., Baumer, V. N., Zatovsky, I. V., Slobodyanik, N. S., Shishkin, O. V. & Domasevitch, K. V. (2007a). Acta Cryst. B63, 819-827.]) proved that caesium can be introduced into the cavity of a langbeinite framework that can be used for the immobil­ization of 137Cs in an inert matrix for safe disposal.

A large number of compounds with a langbeinite framework based on a variety of different valence elements are known. Three major types of substitutions of the elements are known as well as their combinations. They are: metal substitution in octa­hedra, element substitution in anion tetra­hedra, and substitution of ions in cavities. Among these compounds, potassium-containing langbeinites are the most studied (Ogorodnyk et al., 2006[Ogorodnyk, I. V., Zatovsky, I. V., Slobodyanik, N. S., Baumer, V. N. & Shishkin, O. V. (2006). J. Solid State Chem. 179, 3461-3466.], 2007b[Ogorodnyk, I. V., Zatovsky, I. V., Baumer, V. N., Slobodyanik, N. S. & Shishkin, O. V. (2007b). Cryst. Res. Technol. 42, 1076-1081.],c[Ogorodnyk, I. V., Zatovsky, I. V. & Slobodyanik, N. S. (2007c). Russ. J. Inorg. Chem. 52, 121-125.]; Norberg, 2002[Norberg, S. T. (2002). Acta Cryst. B58, 743-749.]; Orlova et al., 2003[Orlova, A. I., Trubach, I. G., Kurazhkovskaya, V. S., Pertierra, P., Salvadó, M. A., García-Granda, S., Khainakov, S. A. & García, J. R. (2003). J. Solid State Chem. 173, 314-318.]). However, several reports concerning phosphate langbeinites with Rb+ in the cavities of the framework are known: Rb2FeZr(PO4)3 (Trubach et al., 2004[Trubach, I. G., Beskrovnyi, A. I., Orlova, A. I., Orlova, V. A. & Kurazhkovskaya, V. S. (2004). Crystallogr. Rep. 49, 895-898.]), Rb2YbTi(PO4)3 (Gustafsson et al., 2005[Gustafsson, J. C. M., Norberg, S. T., Svensson, G. & Albertsson, J. (2005). Acta Cryst. C61, i9-i13.]) and Rb2TiY(PO4)3 (Gustafsson et al., 2006[Gustafsson, J. C. M., Norberg, S. T. & Svensson, G. (2006). Acta Cryst. E62, i160-i162.]).

Herein, the structure of Rb0.743K0.845Co0.293Ti1.707(PO4)3, potassium rubidium cobalt(II)/titanium(IV) tris­(ortho­phos­phate) is reported.

2. Structural commentary

The asymmetric unit of Rb0.743K0.845Co0.293Ti1.707(PO4)3 consists of two mixed-occupied (Co/TiIV), two (Rb/K), one P and four oxygen positions (Fig. 1[link]). The structure of the title compound is built up from mixed (Co/TiIV)O6 octa­hedra and PO4 tetra­hedra, which are connected via common O-atom vertices. Each octa­hedron is linked to six adjacent tetra­hedra and reciprocally, each tetra­hedron is connected to four neighboring octa­hedra into a three-dimensional rigid framework (Fig. 2[link]).

[Figure 1]
Figure 1
The asymmetric unit of Rb0.743K0.845Co0.293Ti1.707(PO4)3, showing displace­ment ellipsoids at the 50% probability level.
[Figure 2]
Figure 2
Two-dimensional net and three-dimensional framework for Rb0.743K0.845Co0.293Ti1.707(PO4)3.

The oxygen environment of the metal atoms in the (Co/TiIV)1O6 octa­hedra is slightly distorted, with M—O bonds of 1.940 (2) and 1.966 (2) Å. These distances are close to the corresponding bond lengths in K2Ti2(PO4)3 [d(Ti—O) = 1.877 (10)–1.965 (10) Å; Masse et al., 1972[Masse, R., Durif, A., Guitel, J. C. & Tordjman, I. (1972). Bull. Soc. Fr. Miner. Cristallogr. 95, 47-55.]], which could be explained by the small occupancy of cobalt in the mixed (Co/TiIV)1 [occupancy = 0.1307 (9)] and (Co/TiIV)2 [occupancy = 0.162 (3)] sites. It should be noted that (Co/TiIV)2—O distances [1.949 (2) and 1.969 (2) Å] are slightly shorter than those in K2Co0.5Ti1.5(PO4)3 (Ogorodnyk et al., 2006[Ogorodnyk, I. V., Zatovsky, I. V., Slobodyanik, N. S., Baumer, V. N. & Shishkin, O. V. (2006). J. Solid State Chem. 179, 3461-3466.]).

The orthophosphate tetra­hedra are also slightly distorted with P—O bond lengths ranging from 1.525 (2) to 1.531 (2) Å. These distances are almost identical to the corresponding ones in K2Co0.5Ti1.5(PO4)3 [d(P—O) =1.525 (2)–1.529 (9) Å; Ogorodnyk et al., 2006[Ogorodnyk, I. V., Zatovsky, I. V., Slobodyanik, N. S., Baumer, V. N. & Shishkin, O. V. (2006). J. Solid State Chem. 179, 3461-3466.]). A comparison of the corresponding inter­atomic distances for the octa­hedra and tetra­hedra in Rb0.743K0.845Co0.293Ti1.707(PO4)3 and K2Co0.5Ti1.5(PO4)3 shows that partial substitution of K+ by Rb+ and decreasing the amount of cobalt slightly influences the distances in the polyhedra for Rb0.743K0.845Co0.293Ti1.707(PO4)3.

The K+ and Rb+ cations are located in large cavities of the three-dimensional framework in Rb0.743K0.845Co0.293Ti1.707(PO4)3. They are statistically distributed over two distinct sites in which they have partial occupancies of 0.540 (9) and 0.330 (18) for Rb1 and K1, respectively, and 0.203 (8) and 0.514 (17) for Rb2 and K2, respectively. For the determination of the (Rb/K)1 and (Rb/K)2 coordination numbers (CN), Voronoi–Dirichlet polyhedra (VDP) were built using the DIRICHLET program included in the TOPOS package (Blatov et al., 1995[Blatov, V. A., Shevchenko, A. P. & Serenzhkin, V. N. (1995). Acta Cryst. A51, 909-916.]). Analysis of the solid-angle (Ω) distribution revealed twelve (Rb/K)—O contacts for both the (Rb/K)1 and (Rb/K)2 sites (cut-off distance of 4.0 Å, neglecting those corresponding to Ω < 1.5%; Blatov et al., 1998[Blatov, V. A., Pogildyakova, L. V. & Serezhkin, V. N. (1998). Z. Kristallogr. 213, 202-209.]). The results of the construction of the Voronoi–Dirichlet polyhedra (Blatov et al., 1995[Blatov, V. A., Shevchenko, A. P. & Serenzhkin, V. N. (1995). Acta Cryst. A51, 909-916.]) indicated that the coordination scheme for (Rb/K)1 is described as [9 + 3] [nine meaning `ion–covalent' bonds are in the range 2.896 (2)–3.095 (2) Å which have Ω > 5.0% and three (Rb/K)1—O distances equal to 3.438 (8) Å with Ω = 2.42%]. The (Rb/K)—O distances in the [(Rb/K)2O12]-polyhedra are in the range 2.870 (2)–3.219 (2) Å (4.91% < Ω < 9.5%).

The corresponding K1—O contacts in K2Co0.5Ti1.5(PO4)3 (Ogorodnyk et al., 2006[Ogorodnyk, I. V., Zatovsky, I. V., Slobodyanik, N. S., Baumer, V. N. & Shishkin, O. V. (2006). J. Solid State Chem. 179, 3461-3466.]) are in the range 2.872 (2)–3.231 (3) Å while the K2—O distances in the K2O12 polyhedra are in the range 2.855 (2)–3.473 (3) Å, slightly longer than those in Rb0.743K0.845Co0.293Ti1.707(PO4)3. These results indicate that the substitution of K+ cations by Rb+ cations in Rb0.743K0.845Co0.293Ti1.707(PO4)3 caused a decrease of the (Rb/K)—O bond length. This fact confirms the rigidity of the framework and the suitability of the cavity dimensions to accommodate different sized ions whose size and nature insignificantly influence the framework.

3. Synthesis and crystallization

The title compound was prepared during crystallization of a self-flux in the Rb2O–K2O–P2O5–TiO2–CoO system. The starting components RbH2PO4 (4.0 g), KPO3 (2.4 g), TiO2 (0.532 g) and CoO (0.50 g) were ground in an agate mortar, placed in a platinum crucible and H3PO4 (85%, 0.42 g) was added. The mixture was heated up to 1273 K. The melt was kept at this temperature for one h. After that, the temperature was decreased to 873 K at a rate of 10 K h−1. The crystals of Rb0.743K0.845Co0.293Ti1.707(PO4)3 were separated from the rest flux by washing in hot water. The chemical composition of a single crystal was verified using EDX analysis. Analysis found: K 6.72, Rb 13.85, Co 3.74, Ti 16.86, P 19.96 and O 38.87 at%, while Rb0.743K0.845Co0.293Ti1.707(PO4)3 requires K 6.86, Rb 13.15, Co 3.60, Ti 17.06, P 19.36 and O 39.97 at%.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The O-atom sites were determined from difference Fourier maps. It was assumed that both types of alkaline ions occupy cavity sites while the transition metals occupy framework sites. The occupancies were refined using linear combinations of free variables taking into account the total charge of the cell.

Table 1
Experimental details

Crystal data
Chemical formula Rb0.743K0.845Co0.293Ti1.707(PO4)3
Mr 480.40
Crystal system, space group Cubic, P213
Temperature (K) 293
a (Å) 9.8527 (1)
V3) 956.46 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 6.63
Crystal size (mm) 0.10 × 0.07 × 0.05
 
Data collection
Diffractometer Oxford Diffraction Xcalibur-3
Absorption correction Multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])
Tmin, Tmax 0.559, 0.734
No. of measured, independent and observed [I > 2σ(I)] reflections 1414, 1414, 1312
Rint 0.025
(sin θ/λ)max−1) 0.804
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.051, 1.05
No. of reflections 1414
No. of parameters 67
No. of restraints 3
Δρmax, Δρmin (e Å−3) 0.37, −0.36
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 612 Friedel pairs
Absolute structure parameter 0.024 (10)
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Chemical context top

Nowadays, there are a number of reports on the synthesis and investigation of langbeinite-related complex phosphates, which exhibit inter­esting properties such as magnetic (Ogorodnyk et al., 2006), luminescence (Zhang et al., 2013; Chawla et al., 2013) and phase transitions (Hikita et al., 1977). It should be noted that compounds with a langbeinite-like structure are prospects for use as a matrix for the storage of nuclear waste (Orlova et al., 2011). Zaripov et al. (2009) and Ogorodnyk et al. (2007a) proved that caesium can be introduced into the cavity of a langbeinite framework that can be used for the immobilization of 137Cs in an inert matrix for safe disposal.

A large number of compounds with a langbeinite framework based on a variety of different valence element are known. Three major types of substitutions of the elements are known as well as their combinations. They are: metal substitution in o­cta­hedra, element substitution in anion tetra­hedra, and substitution of ions in cavities. Among these compounds, potassium-containing langbeinites are the most studied (Ogorodnyk et al., 2006, 2007b,c; Norberg, 2002; Orlova et al., 2003). However, several reports concerning phosphate langbeinites with Rb in the cavities of the framework are known: Rb2FeZr(PO4)3 (Trubach et al., 2004), Rb2YbTi(PO4)3 (Gustafsson et al., 2005) and Rb2TiY(PO4)3 (Gustafsson et al., 2006).

Herein, the structure of Rb0.743K0.845Co0.293Ti1.707(PO4)3, potassium rubidium cobalt(II)/titanium(IV) tris­(orthophosphate) is reported.

Structural commentary top

The unit of Rb0.743K0.845Co0.293Ti1.707(PO4)3 consists of two mixed-occupied (Co/TiIV), two (Rb/K), one P and four oxygen positions (Fig. 1). The structure of Rb0.743K0.845Co0.293Ti1.707(PO4)3 is built up from mixed (Co/TiIV)O6 o­cta­hedra and PO4 tetra­hedra, which are connected via common O-atom vertices. Each o­cta­hedron is linked to six adjacent tetra­hedra and reciprocally, each tetra­hedron is connected to four neighboring o­cta­hedra into three-dimensional rigid framework (Fig. 2).

The oxygen environment of the metal atoms in the (Co/TiIV)1O6 o­cta­hedra shows slightly distorted geometry, with M—O bonds of 1.940 (2) and 1.966 (2) Å. These distances are close to the corresponding bond lengths in K2Ti2(PO4)3 [d(Ti—O) = 1.877 (10)–1.965 (10) Å; Masse et al., 1972], which could be explained by the small occupancy of cobalt in the mixed (Co/TiIV)1 [occupancy = 0.1307 (9)] and (Co/TiIV)2 [occupancy = 0.162 (3)] sites. It should be noted that (Co/TiIV)2—O distances [1.949 (2) and 1.969 (2) Å] are slightly shorter than those in K2Co0.5Ti1.5(PO4)3 (Ogorodnyk et al., 2006).

The orthophosphate tetra­hedra are also slightly distorted with P—O bond lengths ranging from 1.525 (2) to 1.531 (2) Å. These distances are almost identical to corresponding in K2Co0.5Ti1.5(PO4)3 [d(P—O) =1.525 (2)–1.529 (9) Å; Ogorodnyk et al., 2006). A comparison of the corresponding inter­atomic distances for the o­cta­hedra and tetra­hedra in Rb0.743K0.845Co0.293Ti1.707(PO4)3 and K2Co0.5Ti1.5(PO4)3 shows that partial substitution of K by Rb and decreasing the amount of cobalt slightly influences the distances in the polyhedra for Rb0.743K0.845Co0.293Ti1.707(PO4)3.

The K+ and Rb+ cations are located in large cavities of the three-dimensional framework in Rb0.743K0.845Co0.293Ti1.707(PO4)3. They are statistically distributed over two distinct sites in which they have partial occupancies of 0.540 (9) and 0.330 (18) for Rb1 and K1, respectively and 0.203 (8) and 0.514 (17) for Rb2 and K2, respectively. For the determination of the (Rb/K)1 and (Rb/K)2 coordination numbers (CN), Voronoi–Dirichlet polyhedra (VDP) were built using the DIRICHLET program included in the TOPOS package (Blatov et al., 1995). Analysis of the solid-angle (Ω) distribution revealed twelve (Rb/K)—O contacts for both the (Rb/K)1 and (Rb/K)2 sites (cut-off distance of 4.0 Å, neglecting those corresponding to Ω < 1.5%; Blatov et al., 1998). The results of the construction of the Voronoi–Dirichlet polyhedra (Blatov et al., 1995) indicated that the coordination scheme for (Rb/K)1 is described as [9 + 3] [nine meaning `ion–covalent' bonds are in the range 2.896 (2)–3.095 (2) Å which have Ω > 5.0% and three (Rb/K)1—O distances equal to 3.438 (8) Å with Ω = 2.42%]. The (Rb/K)—O distances in the [(Rb/K)2O12]-polyhedra are in the range 2.870 (2)–3.219 (2) Å (4.91% < Ω < 9.5%).

The corresponding K1—O contacts in the K2Co0.5Ti1.5(PO4)3 (Ogorodnyk et al., 2006) are in the range 2.872 (2)–3.231 (3) Å while the K2—O distances in the K2O12 polyhedra are in the range 2.855 (2)–3.473 (3) Å, slightly longer than those in Rb0.743K0.845Co0.293Ti1.707(PO4)3. These results indicate that the substitution of K atoms by Rb atoms in Rb0.743K0.845Co0.293Ti1.707(PO4)3 caused a decrease of the (Rb/K)—O bond length. This fact confirms the rigidity of the framework and the suitability of the cavity dimensions to accommodate different sized ions whose size and nature insignificantly influence the framework.

Synthesis and crystallization top

The title compound was prepared during crystallization of the self-flux of the Rb2O–K2O–P2O5–TiO2–CoO system. The starting components RbH2PO4 (4.0 g), KPO3 (2.4 g), TiO2 (0.532 g) and CoO (0.50 g) were ground in an agate mortar, placed in a platinum crucible and H3PO4 (0.42 g) was added. The mixture was heated up to 1273 K. The melt was kept at this temperature for one hour. After that, the temperature was decreased to 873 K at a rate of 10 K h-1. The crystals of Rb0.743K0.845Co0.293Ti1.707(PO4)3 were separated from the rest flux by washing in hot water. The chemical composition of a single crystal was verified using EDX analysis. Analysis found: K 6.72, Rb 13.85, Co 3.74, Ti 16.86, P 19.96 and O 38.87 at%, while Rb0.743K0.845Co0.293Ti1.707(PO4)3 requires K 6.86, Rb 13.15, Co 3.60, Ti 17.06, P 19.36 and O 39.97 at%.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The structure was solved by direct method. The O-atom sites were determined from difference Fourier maps. It was assumed that both types of alkaline metals occupy cavity sites while the transition metals occupy framework sites. The occupancies were refined using linear combinations of free variables taking into account the total charge of the cell.

Related literature top

For related structure, see: Ogorodnyk et al. (2006); Ogorodnyk et al. (2007b); Ogorodnyk etal. (2007c); Gustafsson et al. (2006). For application of langbeinite-related phosphates, see: Zhang et al. (2013); Chawla et al. (2013); Orlova et al. (2011). For crystal-space analysis using Voronoi–Dirichlet polyhedra, see Blatov et al. (1995); Blatov et al. (1998).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. A connected set of numbered atoms in Rb0.743K0.845Co0.293Ti1.707(PO4)3, showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Two-dimensional net and three-dimensional framework for Rb0.743K0.845Co0.293Ti1.707(PO4)3.
Potassium rubidium cobalt(II)/titanium(IV) tris(orthophosphate) top
Crystal data top
Rb0.743K0.845Co0.293Ti1.707(PO4)3Dx = 3.336 Mg m3
Mr = 480.40Mo Kα radiation, λ = 0.71073 Å
Cubic, P213Cell parameters from 1414 reflections
Hall symbol: P 2ac 2ab 3θ = 2.9–34.9°
a = 9.8527 (1) ŵ = 6.63 mm1
V = 956.46 (2) Å3T = 293 K
Z = 4Tetrahedron, dark red
F(000) = 9200.1 × 0.07 × 0.05 mm
Data collection top
Oxford Diffraction Xcalibur-3
diffractometer
1414 independent reflections
Radiation source: fine focus sealed tube1312 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 34.9°, θmin = 2.9°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1010
Tmin = 0.559, Tmax = 0.734k = 011
1414 measured reflectionsl = 115
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0183P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.026(Δ/σ)max = 0.051
wR(F2) = 0.051Δρmax = 0.37 e Å3
S = 1.05Δρmin = 0.36 e Å3
1414 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008)
67 parametersExtinction coefficient: 0.0026 (6)
3 restraintsAbsolute structure: Flack (1983), 612 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.024 (10)
Crystal data top
Rb0.743K0.845Co0.293Ti1.707(PO4)3Z = 4
Mr = 480.40Mo Kα radiation
Cubic, P213µ = 6.63 mm1
a = 9.8527 (1) ÅT = 293 K
V = 956.46 (2) Å30.1 × 0.07 × 0.05 mm
Data collection top
Oxford Diffraction Xcalibur-3
diffractometer
1414 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
1312 reflections with I > 2σ(I)
Tmin = 0.559, Tmax = 0.734Rint = 0.025
1414 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0263 restraints
wR(F2) = 0.051Δρmax = 0.37 e Å3
S = 1.05Δρmin = 0.36 e Å3
1414 reflectionsAbsolute structure: Flack (1983), 612 Friedel pairs
67 parametersAbsolute structure parameter: 0.024 (10)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rb10.71155 (4)0.71155 (4)0.71155 (4)0.02169 (18)0.540 (9)
K10.71155 (4)0.71155 (4)0.71155 (4)0.02169 (18)0.330 (18)
Rb20.93045 (5)0.93045 (5)0.93045 (5)0.0199 (3)0.203 (8)
K20.93045 (5)0.93045 (5)0.93045 (5)0.0199 (3)0.514 (17)
Ti10.14135 (4)0.14135 (4)0.14135 (4)0.00760 (12)0.8693 (9)
Co10.14135 (4)0.14135 (4)0.14135 (4)0.00760 (12)0.1307 (9)
Ti20.41386 (3)0.41386 (3)0.41386 (3)0.00709 (12)0.838 (3)
Co20.41386 (3)0.41386 (3)0.41386 (3)0.00709 (12)0.162 (3)
P10.45604 (5)0.22826 (5)0.12582 (5)0.00682 (10)
O10.30739 (16)0.23395 (16)0.08086 (17)0.0141 (3)
O20.54329 (18)0.29756 (17)0.01814 (17)0.0179 (3)
O30.50157 (16)0.08190 (16)0.14744 (18)0.0168 (3)
O40.47835 (17)0.30686 (19)0.25786 (18)0.0190 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.02169 (18)0.02169 (18)0.02169 (18)0.00120 (13)0.00120 (13)0.00120 (13)
K10.02169 (18)0.02169 (18)0.02169 (18)0.00120 (13)0.00120 (13)0.00120 (13)
Rb20.0199 (3)0.0199 (3)0.0199 (3)0.00172 (19)0.00172 (19)0.00172 (19)
K20.0199 (3)0.0199 (3)0.0199 (3)0.00172 (19)0.00172 (19)0.00172 (19)
Ti10.00760 (12)0.00760 (12)0.00760 (12)0.00051 (11)0.00051 (11)0.00051 (11)
Co10.00760 (12)0.00760 (12)0.00760 (12)0.00051 (11)0.00051 (11)0.00051 (11)
Ti20.00709 (12)0.00709 (12)0.00709 (12)0.00033 (11)0.00033 (11)0.00033 (11)
Co20.00709 (12)0.00709 (12)0.00709 (12)0.00033 (11)0.00033 (11)0.00033 (11)
P10.0059 (2)0.0076 (2)0.0070 (2)0.00019 (16)0.00100 (16)0.00054 (17)
O10.0088 (7)0.0167 (8)0.0169 (8)0.0001 (5)0.0032 (6)0.0021 (6)
O20.0183 (9)0.0185 (8)0.0170 (8)0.0001 (7)0.0075 (6)0.0049 (6)
O30.0160 (8)0.0130 (8)0.0214 (8)0.0064 (6)0.0022 (6)0.0034 (6)
O40.0196 (9)0.0229 (10)0.0146 (8)0.0027 (7)0.0001 (7)0.0099 (6)
Geometric parameters (Å, º) top
Rb1—O1i2.8956 (17)Rb2—O4ix3.219 (2)
Rb1—O1ii2.8956 (17)Rb2—O4viii3.219 (2)
Rb1—O1iii2.8956 (17)Ti1—O2x1.9404 (17)
Rb1—O2iv3.0780 (19)Ti1—O2xi1.9404 (17)
Rb1—O2v3.0780 (19)Ti1—O2xii1.9404 (17)
Rb1—O2vi3.0780 (19)Ti1—O1xiii1.9657 (16)
Rb1—O4iv3.0945 (18)Ti1—O11.9657 (16)
Rb1—O4vi3.0945 (18)Ti1—O1xiv1.9657 (16)
Rb1—O4v3.0945 (18)Ti2—O3ii1.9494 (16)
Rb2—O3iv2.8703 (18)Ti2—O3iii1.9494 (16)
Rb2—O3vi2.8703 (18)Ti2—O3i1.9494 (16)
Rb2—O3v2.8703 (18)Ti2—O4xiii1.9691 (17)
Rb2—O2vii2.9452 (19)Ti2—O41.9691 (17)
Rb2—O2viii2.9452 (19)Ti2—O4xiv1.9691 (17)
Rb2—O2ix2.9452 (19)P1—O31.5252 (17)
Rb2—O4iv3.028 (2)P1—O21.5266 (17)
Rb2—O4vi3.028 (2)P1—O41.5299 (17)
Rb2—O4v3.028 (2)P1—O11.5312 (16)
Rb2—O4vii3.219 (2)
O1i—Rb1—O1ii90.95 (5)O2ix—Rb2—O4v94.29 (5)
O1i—Rb1—O1iii90.95 (5)O4iv—Rb2—O4v87.83 (5)
O1ii—Rb1—O1iii90.95 (5)O4vi—Rb2—O4v87.83 (5)
O1i—Rb1—O2iv145.70 (5)O3iv—Rb2—O4vii86.01 (4)
O1ii—Rb1—O2iv82.60 (4)O3vi—Rb2—O4vii55.94 (4)
O1iii—Rb1—O2iv55.72 (4)O3v—Rb2—O4vii157.18 (5)
O1i—Rb1—O2v55.72 (4)O2vii—Rb2—O4vii46.55 (5)
O1ii—Rb1—O2v145.70 (5)O2viii—Rb2—O4vii86.90 (5)
O1iii—Rb1—O2v82.60 (4)O2ix—Rb2—O4vii101.29 (5)
O2iv—Rb1—O2v119.386 (9)O4iv—Rb2—O4vii53.03 (6)
O1i—Rb1—O2vi82.60 (4)O4vi—Rb2—O4vii104.695 (9)
O1ii—Rb1—O2vi55.72 (4)O4v—Rb2—O4vii137.38 (4)
O1iii—Rb1—O2vi145.70 (5)O3iv—Rb2—O4ix55.94 (4)
O2iv—Rb1—O2vi119.386 (9)O3vi—Rb2—O4ix157.18 (5)
O2v—Rb1—O2vi119.386 (9)O3v—Rb2—O4ix86.01 (4)
O1i—Rb1—O4iv165.33 (5)O2vii—Rb2—O4ix86.90 (5)
O1ii—Rb1—O4iv82.87 (5)O2viii—Rb2—O4ix101.29 (5)
O1iii—Rb1—O4iv102.41 (5)O2ix—Rb2—O4ix46.55 (5)
O2iv—Rb1—O4iv46.75 (5)O4iv—Rb2—O4ix104.695 (9)
O2v—Rb1—O4iv131.42 (5)O4vi—Rb2—O4ix137.38 (4)
O2vi—Rb1—O4iv82.92 (5)O4v—Rb2—O4ix53.03 (6)
O1i—Rb1—O4vi82.87 (5)O4vii—Rb2—O4ix115.47 (2)
O1ii—Rb1—O4vi102.41 (5)O3iv—Rb2—O4viii157.18 (5)
O1iii—Rb1—O4vi165.33 (5)O3vi—Rb2—O4viii86.01 (4)
O2iv—Rb1—O4vi131.42 (5)O3v—Rb2—O4viii55.94 (4)
O2v—Rb1—O4vi82.92 (5)O2vii—Rb2—O4viii101.29 (5)
O2vi—Rb1—O4vi46.75 (5)O2viii—Rb2—O4viii46.55 (5)
O4iv—Rb1—O4vi85.47 (6)O2ix—Rb2—O4viii86.90 (5)
O1i—Rb1—O4v102.41 (5)O4iv—Rb2—O4viii137.38 (4)
O1ii—Rb1—O4v165.33 (5)O4vi—Rb2—O4viii53.03 (6)
O1iii—Rb1—O4v82.87 (5)O4v—Rb2—O4viii104.695 (9)
O2iv—Rb1—O4v82.92 (5)O4vii—Rb2—O4viii115.47 (2)
O2v—Rb1—O4v46.75 (5)O4ix—Rb2—O4viii115.47 (2)
O2vi—Rb1—O4v131.42 (5)O2x—Ti1—O2xi90.14 (7)
O4iv—Rb1—O4v85.47 (6)O2x—Ti1—O2xii90.14 (7)
O4vi—Rb1—O4v85.47 (6)O2xi—Ti1—O2xii90.14 (7)
O3iv—Rb2—O3vi101.27 (5)O2x—Ti1—O1xiii91.43 (7)
O3iv—Rb2—O3v101.27 (5)O2xi—Ti1—O1xiii88.09 (7)
O3vi—Rb2—O3v101.27 (5)O2xii—Ti1—O1xiii177.64 (7)
O3iv—Rb2—O2vii99.30 (5)O2x—Ti1—O188.09 (7)
O3vi—Rb2—O2vii96.75 (5)O2xi—Ti1—O1177.64 (7)
O3v—Rb2—O2vii149.30 (5)O2xii—Ti1—O191.43 (7)
O3iv—Rb2—O2viii149.30 (5)O1xiii—Ti1—O190.39 (7)
O3vi—Rb2—O2viii99.30 (5)O2x—Ti1—O1xiv177.64 (7)
O3v—Rb2—O2viii96.75 (5)O2xi—Ti1—O1xiv91.43 (7)
O2vii—Rb2—O2viii55.61 (6)O2xii—Ti1—O1xiv88.09 (7)
O3iv—Rb2—O2ix96.75 (5)O1xiii—Ti1—O1xiv90.39 (7)
O3vi—Rb2—O2ix149.30 (5)O1—Ti1—O1xiv90.39 (7)
O3v—Rb2—O2ix99.30 (5)O3ii—Ti2—O3iii91.87 (7)
O2vii—Rb2—O2ix55.61 (6)O3ii—Ti2—O3i91.87 (7)
O2viii—Rb2—O2ix55.61 (6)O3iii—Ti2—O3i91.87 (7)
O3iv—Rb2—O4iv49.64 (5)O3ii—Ti2—O4xiii94.30 (7)
O3vi—Rb2—O4iv52.65 (5)O3iii—Ti2—O4xiii172.63 (8)
O3v—Rb2—O4iv116.41 (6)O3i—Ti2—O4xiii83.90 (7)
O2vii—Rb2—O4iv94.29 (5)O3ii—Ti2—O483.90 (7)
O2viii—Rb2—O4iv138.73 (5)O3iii—Ti2—O494.30 (7)
O2ix—Rb2—O4iv133.42 (5)O3i—Ti2—O4172.63 (8)
O3iv—Rb2—O4vi116.41 (6)O4xiii—Ti2—O490.39 (7)
O3vi—Rb2—O4vi49.64 (5)O3ii—Ti2—O4xiv172.63 (8)
O3v—Rb2—O4vi52.65 (5)O3iii—Ti2—O4xiv83.90 (7)
O2vii—Rb2—O4vi133.42 (5)O3i—Ti2—O4xiv94.30 (7)
O2viii—Rb2—O4vi94.29 (5)O4xiii—Ti2—O4xiv90.39 (7)
O2ix—Rb2—O4vi138.73 (5)O4—Ti2—O4xiv90.39 (7)
O4iv—Rb2—O4vi87.83 (5)O3—P1—O2110.75 (9)
O3iv—Rb2—O4v52.65 (5)O3—P1—O4108.52 (11)
O3vi—Rb2—O4v116.41 (6)O2—P1—O4106.48 (10)
O3v—Rb2—O4v49.64 (5)O3—P1—O1110.87 (9)
O2vii—Rb2—O4v138.73 (5)O2—P1—O1108.74 (10)
O2viii—Rb2—O4v133.42 (5)O4—P1—O1111.40 (10)
Symmetry codes: (i) z+1/2, x+1, y+1/2; (ii) y+1/2, z+1/2, x+1; (iii) x+1, y+1/2, z+1/2; (iv) x+3/2, y+1, z+1/2; (v) z+1/2, x+3/2, y+1; (vi) y+1, z+1/2, x+3/2; (vii) y+3/2, z+1, x+1/2; (viii) z+1, x+1/2, y+3/2; (ix) x+1/2, y+3/2, z+1; (x) y+1/2, z, x1/2; (xi) z, x1/2, y+1/2; (xii) x1/2, y+1/2, z; (xiii) y, z, x; (xiv) z, x, y.

Experimental details

Crystal data
Chemical formulaRb0.743K0.845Co0.293Ti1.707(PO4)3
Mr480.40
Crystal system, space groupCubic, P213
Temperature (K)293
a (Å)9.8527 (1)
V3)956.46 (2)
Z4
Radiation typeMo Kα
µ (mm1)6.63
Crystal size (mm)0.1 × 0.07 × 0.05
Data collection
DiffractometerOxford Diffraction Xcalibur-3
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.559, 0.734
No. of measured, independent and
observed [I > 2σ(I)] reflections
1414, 1414, 1312
Rint0.025
(sin θ/λ)max1)0.804
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.051, 1.05
No. of reflections1414
No. of parameters67
No. of restraints3
Δρmax, Δρmin (e Å3)0.37, 0.36
Absolute structureFlack (1983), 612 Friedel pairs
Absolute structure parameter0.024 (10)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 2012) and enCIFer (Allen et al., 2004).

 

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlatov, V. A., Pogildyakova, L. V. & Serezhkin, V. N. (1998). Z. Kristallogr. 213, 202–209.  Web of Science CrossRef CAS Google Scholar
First citationBlatov, V. A., Shevchenko, A. P. & Serenzhkin, V. N. (1995). Acta Cryst. A51, 909–916.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChawla, S., Ravishanker, Rajkumar, Khan, A. F. & Kotnala, R. K. (2013). J. Lumin. 136, 328–333.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGustafsson, J. C. M., Norberg, S. T. & Svensson, G. (2006). Acta Cryst. E62, i160–i162.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGustafsson, J. C. M., Norberg, S. T., Svensson, G. & Albertsson, J. (2005). Acta Cryst. C61, i9–i13.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHikita, T., Sato, S., Sekiguchi, H. & Ikeda, T. (1977). J. Phys. Soc. Jpn, 42, 1656–1659.  CrossRef CAS Web of Science Google Scholar
First citationMasse, R., Durif, A., Guitel, J. C. & Tordjman, I. (1972). Bull. Soc. Fr. Miner. Cristallogr. 95, 47–55.  CAS Google Scholar
First citationNorberg, S. T. (2002). Acta Cryst. B58, 743–749.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOgorodnyk, I. V., Baumer, V. N., Zatovsky, I. V., Slobodyanik, N. S., Shishkin, O. V. & Domasevitch, K. V. (2007a). Acta Cryst. B63, 819–827.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOgorodnyk, I. V., Zatovsky, I. V., Baumer, V. N., Slobodyanik, N. S. & Shishkin, O. V. (2007b). Cryst. Res. Technol. 42, 1076–1081.  Web of Science CrossRef CAS Google Scholar
First citationOgorodnyk, I. V., Zatovsky, I. V. & Slobodyanik, N. S. (2007c). Russ. J. Inorg. Chem. 52, 121–125.  Web of Science CrossRef Google Scholar
First citationOgorodnyk, I. V., Zatovsky, I. V., Slobodyanik, N. S., Baumer, V. N. & Shishkin, O. V. (2006). J. Solid State Chem. 179, 3461–3466.  Web of Science CrossRef CAS Google Scholar
First citationOrlova, A. I., Trubach, I. G., Kurazhkovskaya, V. S., Pertierra, P., Salvadó, M. A., García-Granda, S., Khainakov, S. A. & García, J. R. (2003). J. Solid State Chem. 173, 314–318.  Web of Science CrossRef CAS Google Scholar
First citationOrlova, A. I., Koryttseva, A. K. & Loginova, E. E. (2011). Radiochemistry, 53, 51–62.  CrossRef CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrubach, I. G., Beskrovnyi, A. I., Orlova, A. I., Orlova, V. A. & Kurazhkovskaya, V. S. (2004). Crystallogr. Rep. 49, 895–898.  Web of Science CrossRef CAS Google Scholar
First citationZaripov, A. R., Orlova, V. A., Petkov, V. I., Slyunchev, O. M., Galuzin, D. D. & Rovnyi, S. I. (2009). Russ. J. Inorg. Chem. 54, 45–51.  Web of Science CrossRef Google Scholar
First citationZhang, Z. J., Lin, X., Zhao, J. T. & Zhang, G. B. (2013). Mater. Res. Bull. 48, 224–231.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages 251-253
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds