inorganic compounds
study of a cobaltoan dolomite from Kolwezi, Democratic Republic of Congo
aEarth Sciences Department, Pisa University, Via S. Maria 53, I-56126, Pisa, Italy
*Correspondence e-mail: natale.perchiazzi@unipi.it
A structural study has been undertaken on a cobaltoan dolomite, with chemical formula CaMg0.83Co0.17(CO3)2 (calcium magnesium cobalt dicarbonate), from Kolwezi, Democratic Republic of Congo. Pale-pink cobaltoan dolomite was associated with kolwezite [(Cu1.33Co0.67)(CO3)(OH)2] and cobaltoan malachite [(Cu,Co)2(CO3)(OH)2]. A crystal with a Co:Mg ratio of 1:5.6 (SEM/EDAX measurement), twinned on (11 -2 0) was used for crystal structural The of the structural model of Reeder & Wenk [Am. Mineral. (1983), 68, 769–776; Ca at site 3a with -3; Mg site at site 3b with -3; C at site 6c with 3; O at site 18f with 1] showed that Co is totally incorporated in the Mg site, with refined occupancy Mg0.83Co0.17, which compares with Mg0.85Co0.15 from chemical data. The Co substitution reflects in the expansion of the cell volume, with a pronounced increasing of the c cell parameter.
Keywords: crystal structure; dolomite; cobaltoan; Kolwezi.
CCDC reference: 1049359
1. Related literature
For general background, see: Barton et al. (2015); Pertlik (1986). For isotypic structures, see: Reeder & Wenk (1983). For kolwezite, see: Deliens & Piret (1980).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008, 2015) and WinGX (Farrugia, 2012); molecular graphics: CrystalMaker (CrystalMaker, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 1049359
10.1107/S2056989015003126/br2247sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015003126/br2247Isup2.hkl
Cobaltoan dolomite was picked from a kolwezite sample from Kolwezi (inventory number RC 3987) kindly provided us by H. Goethals, Royal Belgian Institute for Natural Sciences, Brussels. Pale pink
cobaltoan dolomite was associated with kolwezite and cobaltoan malachite. All these minerals occur in the supergene zones of Cu—Co sulfide ore deposits,originating from the alteration of primary sulphides such as carrollite,Cu(Co,Ni)2As4Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008, 2015) and WinGX (Farrugia, 2012); molecular graphics: CrystalMaker (CrystalMaker, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).CaMg0.83Co0.17(CO3)2 | F(000) = 284 |
Mr = 190.38 | Dx = 2.930 Mg m−3 |
Trigonal, R3 | Mo Kα radiation, λ = 0.71073 Å |
a = 4.8158 (1) Å | µ = 2.17 mm−1 |
c = 16.0488 (6) Å | T = 295 K |
V = 322.34 (2) Å3 | Cleavage rhombohedron, pale pink |
Z = 3 | 0.2 × 0.15 × 0.12 mm |
Bruker SMART Breeze CCD diffractometer | 257 reflections with I > 2σ(I) |
ω scans | Rint = 0.010 |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | θmax = 32.4°, θmin = 3.8° |
Tmin = 0.621, Tmax = 0.746 | h = −7→3 |
258 measured reflections | k = 0→7 |
738 independent reflections | l = −23→23 |
Refinement on F2 | 20 parameters |
Least-squares matrix: full | 1 restraint |
R[F2 > 2σ(F2)] = 0.019 | w = 1/[σ2(Fo2) + (0.0438P)2 + 0.562P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.059 | (Δ/σ)max < 0.001 |
S = 0.96 | Δρmax = 0.46 e Å−3 |
258 reflections | Δρmin = −0.32 e Å−3 |
CaMg0.83Co0.17(CO3)2 | Z = 3 |
Mr = 190.38 | Mo Kα radiation |
Trigonal, R3 | µ = 2.17 mm−1 |
a = 4.8158 (1) Å | T = 295 K |
c = 16.0488 (6) Å | 0.2 × 0.15 × 0.12 mm |
V = 322.34 (2) Å3 |
Bruker SMART Breeze CCD diffractometer | 738 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 257 reflections with I > 2σ(I) |
Tmin = 0.621, Tmax = 0.746 | Rint = 0.010 |
258 measured reflections |
R[F2 > 2σ(F2)] = 0.019 | 20 parameters |
wR(F2) = 0.059 | 1 restraint |
S = 0.96 | Δρmax = 0.46 e Å−3 |
258 reflections | Δρmin = −0.32 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ca1 | 0.0000 | 0.0000 | 0.0000 | 0.01249 (17) | |
Mg1 | 0.0000 | 0.0000 | 0.5000 | 0.0104 (3) | 0.828 (4) |
Co1 | 0.0000 | 0.0000 | 0.5000 | 0.0104 (3) | 0.172 (4) |
C1 | 0.0000 | 0.0000 | 0.24297 (12) | 0.0106 (4) | |
O1 | 0.2482 (2) | −0.0341 (2) | 0.24403 (6) | 0.0143 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ca1 | 0.0121 (2) | 0.0121 (2) | 0.0133 (3) | 0.00605 (10) | 0.000 | 0.000 |
Mg1 | 0.0091 (3) | 0.0091 (3) | 0.0130 (4) | 0.00456 (15) | 0.000 | 0.000 |
Co1 | 0.0091 (3) | 0.0091 (3) | 0.0130 (4) | 0.00456 (15) | 0.000 | 0.000 |
C1 | 0.0103 (5) | 0.0103 (5) | 0.0112 (8) | 0.0051 (3) | 0.000 | 0.000 |
O1 | 0.0117 (4) | 0.0156 (4) | 0.0183 (4) | 0.0088 (3) | −0.0024 (3) | −0.0033 (3) |
Ca1—O1i | 2.3833 (10) | Mg1—O1ix | 2.0923 (9) |
Ca1—O1ii | 2.3833 (10) | Mg1—O1x | 2.0923 (9) |
Ca1—O1iii | 2.3833 (10) | Mg1—O1xi | 2.0923 (9) |
Ca1—O1iv | 2.3833 (10) | Mg1—O1xii | 2.0923 (9) |
Ca1—O1v | 2.3833 (10) | C1—O1 | 1.2853 (9) |
Ca1—O1vi | 2.3833 (10) | C1—O1xiii | 1.2853 (9) |
Mg1—O1vii | 2.0923 (9) | C1—O1xiv | 1.2853 (9) |
Mg1—O1viii | 2.0923 (9) | C1—Ca1xv | 3.1359 (9) |
O1i—Ca1—O1ii | 180.00 (5) | O1viii—Mg1—O1ix | 91.62 (4) |
O1i—Ca1—O1iii | 92.43 (3) | O1vii—Mg1—O1x | 91.62 (4) |
O1ii—Ca1—O1iii | 87.57 (3) | O1viii—Mg1—O1x | 88.38 (4) |
O1i—Ca1—O1iv | 87.57 (3) | O1ix—Mg1—O1x | 180.0 |
O1ii—Ca1—O1iv | 92.43 (3) | O1vii—Mg1—O1xi | 91.62 (4) |
O1iii—Ca1—O1iv | 180.00 (4) | O1viii—Mg1—O1xi | 88.38 (4) |
O1i—Ca1—O1v | 87.57 (3) | O1ix—Mg1—O1xi | 91.62 (4) |
O1ii—Ca1—O1v | 92.43 (3) | O1x—Mg1—O1xi | 88.38 (4) |
O1iii—Ca1—O1v | 92.43 (3) | O1vii—Mg1—O1xii | 88.38 (4) |
O1iv—Ca1—O1v | 87.57 (3) | O1viii—Mg1—O1xii | 91.62 (4) |
O1i—Ca1—O1vi | 92.43 (3) | O1ix—Mg1—O1xii | 88.38 (4) |
O1ii—Ca1—O1vi | 87.57 (3) | O1x—Mg1—O1xii | 91.62 (4) |
O1iii—Ca1—O1vi | 87.57 (3) | O1xi—Mg1—O1xii | 180.00 (4) |
O1iv—Ca1—O1vi | 92.43 (3) | O1—C1—O1xiii | 119.984 (5) |
O1v—Ca1—O1vi | 180.00 (8) | O1—C1—O1xiv | 119.983 (5) |
O1vii—Mg1—O1viii | 180.0 | O1xiii—C1—O1xiv | 119.981 (5) |
O1vii—Mg1—O1ix | 88.38 (4) |
Symmetry codes: (i) −x+y+1/3, −x+2/3, z−1/3; (ii) x−y−1/3, x−2/3, −z+1/3; (iii) −x+2/3, −y+1/3, −z+1/3; (iv) x−2/3, y−1/3, z−1/3; (v) −y+1/3, x−y−1/3, z−1/3; (vi) y−1/3, −x+y+1/3, −z+1/3; (vii) −x+y+2/3, −x+1/3, z+1/3; (viii) x−y−2/3, x−1/3, −z+2/3; (ix) −y−1/3, x−y−2/3, z+1/3; (x) y+1/3, −x+y+2/3, −z+2/3; (xi) −x+1/3, −y−1/3, −z+2/3; (xii) x−1/3, y+1/3, z+1/3; (xiii) −x+y, −x, z; (xiv) −y, x−y, z; (xv) x+2/3, y+1/3, z+1/3. |
Ca1—O1i | 2.3833 (10) | Mg1—O1ix | 2.0923 (9) |
Ca1—O1ii | 2.3833 (10) | Mg1—O1x | 2.0923 (9) |
Ca1—O1iii | 2.3833 (10) | Mg1—O1xi | 2.0923 (9) |
Ca1—O1iv | 2.3833 (10) | Mg1—O1xii | 2.0923 (9) |
Ca1—O1v | 2.3833 (10) | C1—O1 | 1.2853 (9) |
Ca1—O1vi | 2.3833 (10) | C1—O1xiii | 1.2853 (9) |
Mg1—O1vii | 2.0923 (9) | C1—O1xiv | 1.2853 (9) |
Mg1—O1viii | 2.0923 (9) |
Symmetry codes: (i) −x+y+1/3, −x+2/3, z−1/3; (ii) x−y−1/3, x−2/3, −z+1/3; (iii) −x+2/3, −y+1/3, −z+1/3; (iv) x−2/3, y−1/3, z−1/3; (v) −y+1/3, x−y−1/3, z−1/3; (vi) y−1/3, −x+y+1/3, −z+1/3; (vii) −x+y+2/3, −x+1/3, z+1/3; (viii) x−y−2/3, x−1/3, −z+2/3; (ix) −y−1/3, x−y−2/3, z+1/3; (x) y+1/3, −x+y+2/3, −z+2/3; (xi) −x+1/3, −y−1/3, −z+2/3; (xii) x−1/3, y+1/3, z+1/3; (xiii) −x+y, −x, z; (xiv) −y, x−y, z. |
Acknowledgements
Dr H. Goethals, Royal Belgian Institute for Natural Sciences, is kindly acknowledged for providing the mineral sample.
References
Barton, I., Yang, H. & Barton, M. D. (2015). Can. Mineral.. In the press. Google Scholar
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
CrystalMaker (2010). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England. Google Scholar
Deliens, M. & Piret, P. (1980). Bull. Mineral. 103, 179–184. CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pertlik, F. (1986). Acta Cryst. C42, 4–5. CrossRef CAS IUCr Journals Google Scholar
Reeder, R. J. & Wenk, H. R. (1983). Am. Mineral. 68, 769–776. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.