organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-{[(naphthalen-2-yl)sulfonyl­amino]­meth­yl}cyclo­hexa­necarb­­oxy­lic acid

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Institute of Natural Sciences, University of Gujrat, Gujrat 50700, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Punjab, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

Edited by M. Gdaniec, Adam Mickiewicz University, Poland (Received 25 January 2015; accepted 30 January 2015; online 4 February 2015)

The title compound, C18H21NO4S, is a new sulfonamide derivative of tranexamic acid. In the crystal, mol­ecules form inversion dimers via O—H⋯O hydrogen bonds involving the carb­oxy­lic acid groups. Hydrogen bonding between the sulfonamide N—H group and the carb­oxy­lic acid O atom assembles the dimers into thick layers parallel to (100). The naphthalene groups of adjacent layers are arranged in a herring-bone motif. There are C—H⋯π inter­actions between the naphthalene rings of neighbouring layers.

1. Related literature

For related structures, see: Ashfaq et al. (2011a[Ashfaq, M., Iram, S., Akkurt, M., Khan, I. U., Mustafa, G. & Sharif, S. (2011a). Acta Cryst. E67, o1563.],b[Ashfaq, M., Iram, S., Akkurt, M., Khan, I. U., Mustafa, G. & Danish, M. (2011b). Acta Cryst. E67, o2248-o2249.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C18H21NO4S

  • Mr = 347.42

  • Monoclinic, P 21 /c

  • a = 16.5301 (13) Å

  • b = 6.0573 (4) Å

  • c = 17.0036 (12) Å

  • β = 100.810 (4)°

  • V = 1672.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 K

  • 0.40 × 0.22 × 0.20 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.920, Tmax = 0.956

  • 13364 measured reflections

  • 3636 independent reflections

  • 2315 reflections with I > 2σ(I)

  • Rint = 0.036

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.117

  • S = 1.02

  • 3636 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C9–C12/C17/C18 and C12–C17 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.83 2.623 (2) 163
N1—H1A⋯O2ii 0.86 2.46 3.043 (2) 124
C11—H11⋯Cg1iii 0.93 2.91 3.639 (3) 137
C13—H13⋯Cg2iii 0.93 2.82 3.527 (3) 134
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON.

Supporting information


Structural commentary top

The title compound (Fig. 1), a derivative of tranexamic acid, was prepared as a part of our studies on sulfonamides. It is also planned to use this compound for complexing metal ions. The crystal structures of similar compounds have been reported earlier [4-((((4-methyl­phenyl)­sulfonyl)­amino)­methyl)­cyclo­hexane­carb­oxy­lic acid (Ashfaq et al., 2011a); 4-((4-meth­oxy­benzene­sulfonamido)­methyl)­cyclo­hexane-1- carb­oxy­lic acid (Ashfaq et al., 2011b).

The cyclo­hexyl ring of tranexamic acidic moiety is in a chair form. The atoms forming the basal plane A (C3/C4/C6/C7) are co-planar (r. m.s deviation of 0.0032 Å). The C2 and C5 atoms are at a distance of 0.653 (3) and 0.678 (3) Å from the plane A. The naphthalene ring B (C9—C18) is also planar with r. m.s deviation of 0.0051 Å. The dihedral angle between A/B is 45.76 (6)°. The carb­oxy­lic group is oriented at a dihedral angle of 38.5 (2)° with the plane A. The molecules form centrosymmetric dimers due to O—H···O type hydrogen bonds of the carb­oxy­lic groups and complete R22(8) ring motif. The dimers are inter­linked through N—H···O bonds (Table 1, Fig. 2) completing R22(22) ring motif to form two dimensional polymeric network parallel to (100). There are C—H···π (Table 1) inter­actions between the naphthalene rings from neighboring (100) layers.

Synthesis and crystallization top

The title compound was prepared from 2-naphthalene­sulfonyl chloride (1 mmol, 0.226 g) and tranexamic acid(1 mmol, 0.157 g) added to 20 ml of distilled water. The mixture was constantly stirred and its pH was maintained at 8–9 by using 1 M sodium bicarbonate solution. Completion of the reaction after 3 h was confirmed by observing clear solution. The final product was precipitated by adding 0.1 M HCl solution, separated and recrystallized from ethanol-water mixture in 1:1 volume ratio. Colorless needles suitable for X-ray data collection were obtained after one week (yield: 59%, m.p. 483 K).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The H-atoms were positioned geometrically (C–H = 0.93—0.98 Å, N–H = 0.86 Å, O–H = 0.82 Å) and refined as riding with Uiso(H) = xUeq (C, N, O), where x = 1.5 for hy­droxy and x = 1.2 for all other H-atoms.

Related literature top

For related structures, see: Ashfaq et al. (2011a,b).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii.
[Figure 2] Fig. 2. View of the crystal packing in the title compound with hydrogen bonds shown as dashed lines.
4-{[(Naphthalen-2-yl)sulfonylamino]methyl}cyclohexanecarboxylic acid top
Crystal data top
C18H21NO4SF(000) = 736
Mr = 347.42Dx = 1.380 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.5301 (13) ÅCell parameters from 2315 reflections
b = 6.0573 (4) Åθ = 1.3–27.0°
c = 17.0036 (12) ŵ = 0.22 mm1
β = 100.810 (4)°T = 296 K
V = 1672.3 (2) Å3Needle, colourless
Z = 40.40 × 0.22 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3636 independent reflections
Radiation source: fine-focus sealed tube2315 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 7.80 pixels mm-1θmax = 27.0°, θmin = 1.3°
ω scansh = 2120
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 76
Tmin = 0.920, Tmax = 0.956l = 2121
13364 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.049P)2 + 0.3363P]
where P = (Fo2 + 2Fc2)/3
3636 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C18H21NO4SV = 1672.3 (2) Å3
Mr = 347.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.5301 (13) ŵ = 0.22 mm1
b = 6.0573 (4) ÅT = 296 K
c = 17.0036 (12) Å0.40 × 0.22 × 0.20 mm
β = 100.810 (4)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3636 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2315 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 0.956Rint = 0.036
13364 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.02Δρmax = 0.27 e Å3
3636 reflectionsΔρmin = 0.36 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.22360 (4)1.11590 (10)0.03913 (3)0.04790 (19)
O10.46462 (13)1.1212 (3)0.40940 (10)0.0784 (6)
H10.48861.13310.45600.118*
O20.43679 (11)0.7932 (3)0.45431 (9)0.0664 (5)
O30.16554 (11)1.1324 (3)0.01273 (9)0.0690 (5)
O40.25871 (12)1.3099 (3)0.06651 (9)0.0676 (5)
N10.29769 (11)0.9664 (3)0.00539 (10)0.0494 (5)
H1A0.34550.98950.00610.059*
C10.42778 (14)0.9398 (4)0.40022 (12)0.0481 (6)
C20.37262 (13)0.8893 (3)0.32200 (12)0.0407 (5)
H20.31950.83920.33310.049*
C30.40971 (15)0.7018 (4)0.28063 (13)0.0513 (6)
H3A0.46460.74330.27370.062*
H3B0.41460.57150.31440.062*
C40.35752 (15)0.6468 (4)0.19930 (12)0.0493 (6)
H4A0.38480.53320.17370.059*
H4B0.30470.58910.20670.059*
C50.34370 (13)0.8489 (3)0.14548 (12)0.0404 (5)
H50.39750.90080.13700.048*
C60.30492 (14)1.0314 (4)0.18683 (11)0.0436 (5)
H6A0.25080.98470.19440.052*
H6B0.29801.16150.15300.052*
C70.35715 (14)1.0900 (3)0.26754 (12)0.0440 (5)
H7A0.32931.20290.29300.053*
H7B0.40941.14980.25960.053*
C80.29161 (15)0.7938 (4)0.06398 (12)0.0484 (6)
H8A0.30990.65460.04520.058*
H8B0.23450.77690.06930.058*
C90.17432 (12)0.9711 (4)0.12510 (11)0.0388 (5)
C100.14017 (14)0.7621 (4)0.11635 (13)0.0484 (6)
H100.14530.69880.06580.058*
C110.09970 (14)0.6527 (4)0.18159 (13)0.0483 (6)
H110.07690.51490.17530.058*
C120.09160 (12)0.7449 (4)0.25889 (12)0.0405 (5)
C130.04936 (14)0.6359 (4)0.32851 (14)0.0514 (6)
H130.02580.49820.32400.062*
C140.04315 (15)0.7311 (4)0.40141 (14)0.0577 (7)
H140.01500.65860.44660.069*
C150.07844 (14)0.9367 (4)0.40943 (13)0.0546 (6)
H150.07420.99880.46000.066*
C160.11865 (13)1.0470 (4)0.34486 (12)0.0465 (6)
H160.14131.18490.35130.056*
C170.12663 (12)0.9548 (3)0.26764 (11)0.0379 (5)
C180.16767 (12)1.0656 (4)0.19883 (11)0.0389 (5)
H180.19041.20420.20370.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0589 (4)0.0505 (4)0.0310 (3)0.0083 (3)0.0001 (2)0.0049 (2)
O10.0973 (15)0.0765 (13)0.0477 (10)0.0415 (11)0.0217 (10)0.0108 (9)
O20.0784 (13)0.0717 (12)0.0406 (9)0.0267 (9)0.0110 (8)0.0139 (8)
O30.0673 (12)0.0963 (14)0.0427 (9)0.0280 (10)0.0083 (8)0.0136 (9)
O40.1019 (15)0.0441 (11)0.0472 (9)0.0130 (9)0.0105 (9)0.0006 (8)
N10.0459 (11)0.0638 (13)0.0364 (10)0.0060 (9)0.0022 (8)0.0065 (9)
C10.0510 (14)0.0551 (16)0.0358 (12)0.0152 (11)0.0021 (10)0.0050 (11)
C20.0390 (12)0.0473 (14)0.0335 (10)0.0092 (10)0.0007 (9)0.0025 (9)
C30.0609 (16)0.0422 (14)0.0439 (12)0.0037 (11)0.0079 (11)0.0061 (10)
C40.0592 (15)0.0416 (14)0.0416 (12)0.0057 (11)0.0050 (11)0.0024 (10)
C50.0429 (13)0.0418 (13)0.0338 (10)0.0015 (10)0.0006 (9)0.0004 (9)
C60.0484 (13)0.0421 (13)0.0366 (11)0.0051 (10)0.0015 (10)0.0008 (10)
C70.0519 (14)0.0405 (13)0.0375 (11)0.0018 (10)0.0027 (10)0.0035 (9)
C80.0590 (15)0.0462 (15)0.0357 (11)0.0009 (11)0.0019 (10)0.0015 (10)
C90.0398 (12)0.0422 (13)0.0337 (11)0.0049 (9)0.0048 (9)0.0018 (9)
C100.0567 (15)0.0465 (14)0.0408 (12)0.0049 (11)0.0062 (11)0.0099 (11)
C110.0517 (14)0.0387 (14)0.0546 (14)0.0024 (10)0.0102 (11)0.0059 (11)
C120.0355 (12)0.0427 (13)0.0437 (12)0.0011 (10)0.0083 (9)0.0036 (10)
C130.0475 (14)0.0488 (15)0.0576 (15)0.0080 (11)0.0087 (11)0.0147 (12)
C140.0552 (16)0.0710 (18)0.0440 (13)0.0046 (13)0.0022 (12)0.0222 (12)
C150.0532 (15)0.0743 (19)0.0362 (12)0.0012 (13)0.0079 (11)0.0049 (11)
C160.0507 (14)0.0538 (15)0.0349 (11)0.0045 (11)0.0076 (10)0.0005 (10)
C170.0366 (12)0.0407 (13)0.0367 (11)0.0007 (9)0.0074 (9)0.0023 (9)
C180.0395 (12)0.0412 (13)0.0351 (11)0.0033 (9)0.0049 (9)0.0010 (9)
Geometric parameters (Å, º) top
S1—O31.4235 (17)C6—H6B0.9700
S1—O41.4267 (17)C7—H7A0.9700
S1—N11.5955 (19)C7—H7B0.9700
S1—C91.767 (2)C8—H8A0.9700
O1—C11.252 (3)C8—H8B0.9700
O1—H10.8200C9—C181.364 (3)
O2—C11.267 (3)C9—C101.405 (3)
N1—C81.461 (3)C10—C111.356 (3)
N1—H1A0.8600C10—H100.9300
C1—C21.496 (3)C11—C121.411 (3)
C2—C71.521 (3)C11—H110.9300
C2—C31.524 (3)C12—C171.416 (3)
C2—H20.9800C12—C131.420 (3)
C3—C41.523 (3)C13—C141.353 (3)
C3—H3A0.9700C13—H130.9300
C3—H3B0.9700C14—C151.392 (3)
C4—C51.520 (3)C14—H140.9300
C4—H4A0.9700C15—C161.349 (3)
C4—H4B0.9700C15—H150.9300
C5—C61.515 (3)C16—C171.410 (3)
C5—C81.525 (3)C16—H160.9300
C5—H50.9800C17—C181.408 (3)
C6—C71.520 (3)C18—H180.9300
C6—H6A0.9700
O3—S1—O4120.48 (11)C6—C7—C2111.43 (17)
O3—S1—N1107.01 (10)C6—C7—H7A109.3
O4—S1—N1107.41 (11)C2—C7—H7A109.3
O3—S1—C9106.71 (10)C6—C7—H7B109.3
O4—S1—C9106.94 (10)C2—C7—H7B109.3
N1—S1—C9107.73 (10)H7A—C7—H7B108.0
C1—O1—H1109.5N1—C8—C5111.32 (18)
C8—N1—S1125.80 (16)N1—C8—H8A109.4
C8—N1—H1A117.1C5—C8—H8A109.4
S1—N1—H1A117.1N1—C8—H8B109.4
O1—C1—O2122.5 (2)C5—C8—H8B109.4
O1—C1—C2119.4 (2)H8A—C8—H8B108.0
O2—C1—C2118.1 (2)C18—C9—C10120.71 (19)
C1—C2—C7112.50 (18)C18—C9—S1119.82 (17)
C1—C2—C3109.38 (18)C10—C9—S1119.44 (16)
C7—C2—C3110.55 (16)C11—C10—C9120.0 (2)
C1—C2—H2108.1C11—C10—H10120.0
C7—C2—H2108.1C9—C10—H10120.0
C3—C2—H2108.1C10—C11—C12121.0 (2)
C4—C3—C2111.94 (18)C10—C11—H11119.5
C4—C3—H3A109.2C12—C11—H11119.5
C2—C3—H3A109.2C11—C12—C17118.95 (19)
C4—C3—H3B109.2C11—C12—C13122.6 (2)
C2—C3—H3B109.2C17—C12—C13118.5 (2)
H3A—C3—H3B107.9C14—C13—C12120.4 (2)
C5—C4—C3111.48 (18)C14—C13—H13119.8
C5—C4—H4A109.3C12—C13—H13119.8
C3—C4—H4A109.3C13—C14—C15120.6 (2)
C5—C4—H4B109.3C13—C14—H14119.7
C3—C4—H4B109.3C15—C14—H14119.7
H4A—C4—H4B108.0C16—C15—C14121.0 (2)
C6—C5—C4109.71 (17)C16—C15—H15119.5
C6—C5—C8111.43 (18)C14—C15—H15119.5
C4—C5—C8111.49 (17)C15—C16—C17120.5 (2)
C6—C5—H5108.0C15—C16—H16119.8
C4—C5—H5108.0C17—C16—H16119.8
C8—C5—H5108.0C18—C17—C16122.1 (2)
C5—C6—C7111.78 (17)C18—C17—C12118.91 (18)
C5—C6—H6A109.3C16—C17—C12119.00 (19)
C7—C6—H6A109.3C9—C18—C17120.5 (2)
C5—C6—H6B109.3C9—C18—H18119.8
C7—C6—H6B109.3C17—C18—H18119.8
H6A—C6—H6B107.9
O3—S1—N1—C828.1 (2)O3—S1—C9—C1055.32 (19)
O4—S1—N1—C8158.77 (17)O4—S1—C9—C10174.51 (17)
C9—S1—N1—C886.34 (19)N1—S1—C9—C1059.31 (19)
O1—C1—C2—C710.3 (3)C18—C9—C10—C110.4 (3)
O2—C1—C2—C7171.3 (2)S1—C9—C10—C11177.71 (17)
O1—C1—C2—C3112.9 (3)C9—C10—C11—C120.4 (3)
O2—C1—C2—C365.4 (3)C10—C11—C12—C170.1 (3)
C1—C2—C3—C4178.34 (18)C10—C11—C12—C13179.7 (2)
C7—C2—C3—C453.9 (3)C11—C12—C13—C14180.0 (2)
C2—C3—C4—C555.6 (3)C17—C12—C13—C140.2 (3)
C3—C4—C5—C656.2 (3)C12—C13—C14—C150.4 (4)
C3—C4—C5—C8179.88 (19)C13—C14—C15—C160.9 (4)
C4—C5—C6—C757.0 (2)C14—C15—C16—C170.7 (4)
C8—C5—C6—C7179.07 (18)C15—C16—C17—C18179.6 (2)
C5—C6—C7—C256.8 (2)C15—C16—C17—C120.2 (3)
C1—C2—C7—C6176.83 (18)C11—C12—C17—C180.6 (3)
C3—C2—C7—C654.2 (2)C13—C12—C17—C18179.13 (19)
S1—N1—C8—C5117.30 (19)C11—C12—C17—C16179.93 (19)
C6—C5—C8—N173.3 (2)C13—C12—C17—C160.3 (3)
C4—C5—C8—N1163.77 (18)C10—C9—C18—C170.2 (3)
O3—S1—C9—C18122.76 (18)S1—C9—C18—C17178.28 (15)
O4—S1—C9—C187.4 (2)C16—C17—C18—C9179.9 (2)
N1—S1—C9—C18122.61 (17)C12—C17—C18—C90.7 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C9–C12/C17/C18 and C12–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.832.623 (2)163
N1—H1A···O2ii0.862.463.043 (2)124
C11—H11···Cg1iii0.932.913.639 (3)137
C13—H13···Cg2iii0.932.823.527 (3)134
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+3/2, z1/2; (iii) x, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C9–C12/C17/C18 and C12–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.832.623 (2)163
N1—H1A···O2ii0.862.463.043 (2)124
C11—H11···Cg1iii0.932.913.639 (3)137
C13—H13···Cg2iii0.932.823.527 (3)134
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+3/2, z1/2; (iii) x, y1/2, z1/2.
 

Acknowledgements

The authors acknowledge the provision of funds by the Higher Education Commission, Islamabad, Pakistan for project (P-2549).

References

First citationAshfaq, M., Iram, S., Akkurt, M., Khan, I. U., Mustafa, G. & Danish, M. (2011b). Acta Cryst. E67, o2248–o2249.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAshfaq, M., Iram, S., Akkurt, M., Khan, I. U., Mustafa, G. & Sharif, S. (2011a). Acta Cryst. E67, o1563.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds