organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-butyl-2,3-di­methyl­imidazolium dicarba-7,8-nido-undeca­borate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Ithaca College, 953 Danby Road, Ithaca, NY 14850, USA
*Correspondence e-mail: alarsen@ithaca.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 25 November 2014; accepted 9 February 2015; online 13 February 2015)

In the title mol­ecular salt, C9H17N2+·C2H12B9, the carborane cage has a bridging B—H—B bond on the open B3C2 face. The butyl side chain of the cation adopts an extended conformation [C—C—C—C = 179.6 (1)°]. In the crystal, the imidazolium ring is almost coplanar with the open face of the carborane anion. The cations stack in the [010] direction and the dihedral angle between the imidazolium rings of adjacent cations is 68.45 (6)°. The butyl chains extend into the space between carborane anions.

1. Related literature

For structural and thermodynamic properties of the title compound and similar boron cluster anion low-melting ionic compounds, see: Larsen et al. (2000[Larsen, A. S., Holbrey, J. D., Tham, F. S. & Reed, C. A. (2000). J. Am. Chem. Soc. 122, 7264-7272.]); Dymon et al. (2008[Dymon, J., Wibby, R., Kleingardner, J., Tanski, J. M., Guzei, I. A., Holbrey, J. D. & Larsen, A. S. (2008). Dalton Trans. pp. 2999-3006.]); Suarez et al. (2011[Suarez, S. A., Foi, A., Eady, S., Larsen, A. & Doctorovich, F. (2011). Acta Cryst. C67, o417-o420.]). A similar bridging hydrogen atom was reported by Jones et al. 1997[Jones, P. G., Villacampa, M. D., Crespo, O., Gimeno, M. C. & Laguna, A. (1997). Acta Cryst. C53, 570-572.] in an analogous crystal structure.

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C9H17N2+·C2H12B9

  • Mr = 286.78

  • Monoclinic, P 21 /n

  • a = 9.5242 (2) Å

  • b = 11.5173 (2) Å

  • c = 16.3357 (3) Å

  • β = 104.821 (1)°

  • V = 1732.30 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 100 K

  • 0.42 × 0.32 × 0.26 mm

2.2. Data collection

  • Bruker SMART CCD 1K area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.701, Tmax = 0.746

  • 27028 measured reflections

  • 3964 independent reflections

  • 3582 reflections with I > 2σ(I)

  • Rint = 0.021

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.120

  • S = 1.05

  • 3964 reflections

  • 225 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

The title compound was synthesized as part of a study of low melting ionic compounds with carborane cage anions. (Larsen et al. 2000, Dymon et al. 2008, Suarez et al. 2011). The formula unit consists of a carborane anion and an alkylated imidazolium cation. A similar bridging hydrogen atom was also seen, for example, by Jones et al. 1997 in an analogous crystal structure. In the crystal packing the imidazolium rings are almost coplanar with open face of the carborane anions. The angle between two orientations of coplanar imidazolium rings is 68.45°. The butyl chains form interlinking pattern extending into the space between carborane anions. The carborane anion possesses a bridging hydrogen at the open face of the cage (shown on Figure 1).

Related literature top

For structural and thermodynamic properties of the title compound and similar boron cluster anion low-melting ionic compounds, see: Larsen et al. (2000); Dymon et al. (2008); Suarez et al. (2011). A similar bridging hydrogen atom was reported by Jones et al. 1997 in an analogous crystal structure.

Experimental top

Caesium dicarba-7,8-nido-undecaborate was synthesized according to published procedure (Dymon et al. 2008). Caesium dicarba-7,8-nido-undecaborate (0.300 g, 1.14 mmol) was dissolved in acetone (2 ml). This solution was added to 1-butyl-2,3-dimethylimidazolium chloride (0.215 g, 1.14 mmol) dissolved in dichloromethane (30 ml). The turbid solution was stirred at room temperature for 30 minutes. The mixture was filtered through a plug of celite to remove the caesium chloride precipitate. The volatiles were removed in vacuo and the residue was dissolved in dichloromethane (30 ml) and filtered via celite again. The dichloromethane was removed in vacuo. The solid residue was dissolved in a small amount of absolute ethanol and crystals were grown by slow vapor diffusion of hexane into the absolute ethanol solution at 233 K.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The methyl and aromatic H atoms were constrained to an ideal geometry; the methyl H atoms were allowed to rotate freely about the C—C bonds. The H atoms attached to B atoms were placed in calculated positions.

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound, showing coplanar alignment of the imidazolium rings and parallel butyl chains. The angle between two orientations of coplanar imidazolium rings is 68.45°.
[Figure 3] Fig. 3. Packing diagram of the title compound showing the imidazolium rings nearly coplanar with the open B3C2 face. For clarity, H-atoms are removed.
1-Butyl-2,3-dimethylimidazolium dicarba-7,8-nido-undecaborate top
Crystal data top
C9H17N2+·C2H12B9F(000) = 616
Mr = 286.78Dx = 1.099 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.5242 (2) ÅCell parameters from 3582 reflections
b = 11.5173 (2) Åθ = 2.2–27.5°
c = 16.3357 (3) ŵ = 0.06 mm1
β = 104.821 (1)°T = 100 K
V = 1732.30 (6) Å3Prism, clear light colourless
Z = 40.42 × 0.32 × 0.26 mm
Data collection top
Bruker SMART CCD 1K area-detector
diffractometer
3964 independent reflections
Radiation source: sealed X-ray tube3582 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 7.9 pixels mm-1θmax = 27.5°, θmin = 2.2°
ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 1414
Tmin = 0.701, Tmax = 0.746l = 2120
27028 measured reflections
Refinement top
Refinement on F237 constraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0633P)2 + 0.7865P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.004
3964 reflectionsΔρmax = 0.40 e Å3
225 parametersΔρmin = 0.28 e Å3
0 restraints
Crystal data top
C9H17N2+·C2H12B9V = 1732.30 (6) Å3
Mr = 286.78Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.5242 (2) ŵ = 0.06 mm1
b = 11.5173 (2) ÅT = 100 K
c = 16.3357 (3) Å0.42 × 0.32 × 0.26 mm
β = 104.821 (1)°
Data collection top
Bruker SMART CCD 1K area-detector
diffractometer
3964 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
3582 reflections with I > 2σ(I)
Tmin = 0.701, Tmax = 0.746Rint = 0.021
27028 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.40 e Å3
3964 reflectionsΔρmin = 0.28 e Å3
225 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.76133 (10)0.49244 (8)0.20979 (6)0.0148 (2)
N20.67739 (10)0.47136 (8)0.31974 (6)0.0149 (2)
C30.85032 (13)0.52932 (10)0.15375 (7)0.0201 (2)
H3a0.8045 (5)0.5960 (5)0.1201 (4)0.0301 (4)*
H3b0.9471 (3)0.5514 (8)0.18769 (8)0.0301 (4)*
H3c0.8590 (8)0.4653 (3)0.1159 (4)0.0301 (4)*
C60.90467 (12)0.59313 (10)0.34029 (7)0.0195 (2)
H6a0.99760 (12)0.5562 (4)0.3408 (5)0.0292 (4)*
H6b0.9000 (6)0.6697 (3)0.3136 (3)0.0292 (4)*
H6c0.8963 (6)0.6019 (7)0.39853 (18)0.0292 (4)*
C50.78385 (12)0.51986 (9)0.29174 (7)0.0145 (2)
C40.63722 (12)0.42556 (9)0.18504 (7)0.0169 (2)
H40.59636 (12)0.39499 (9)0.13008 (7)0.0203 (3)*
C70.58539 (12)0.41206 (9)0.25370 (7)0.0167 (2)
H70.50115 (12)0.36962 (9)0.25636 (7)0.0200 (3)*
C80.66132 (12)0.47245 (10)0.40748 (7)0.0165 (2)
H8a0.72201 (12)0.53512 (10)0.43998 (7)0.0198 (3)*
H8b0.55882 (12)0.48834 (10)0.40668 (7)0.0198 (3)*
C90.70717 (12)0.35634 (10)0.45034 (7)0.0178 (2)
H9a0.64746 (12)0.29405 (10)0.41672 (7)0.0214 (3)*
H9b0.80982 (12)0.34134 (10)0.45104 (7)0.0214 (3)*
C100.69123 (12)0.35140 (10)0.54080 (7)0.0164 (2)
H10a0.75173 (12)0.41286 (10)0.57497 (7)0.0197 (3)*
H10b0.58876 (12)0.36634 (10)0.54054 (7)0.0197 (3)*
C110.73738 (13)0.23351 (10)0.58104 (7)0.0205 (2)
H11a0.7246 (10)0.2324 (3)0.6387 (2)0.0308 (4)*
H11b0.6775 (7)0.17259 (13)0.5473 (3)0.0308 (4)*
H11c0.8397 (3)0.2197 (4)0.5830 (5)0.0308 (4)*
C20.17288 (12)0.08417 (9)0.42860 (7)0.0147 (2)
C10.21122 (12)0.08264 (9)0.34140 (7)0.0149 (2)
B50.33450 (13)0.14839 (11)0.42313 (8)0.0167 (2)
H50.44690 (13)0.11671 (11)0.45362 (8)0.0201 (3)*
B60.22452 (13)0.21212 (11)0.48302 (8)0.0158 (2)
H60.26690 (13)0.22484 (11)0.55298 (8)0.0190 (3)*
B10.04205 (13)0.16869 (11)0.43443 (8)0.0147 (2)
B20.01661 (13)0.23783 (11)0.33083 (8)0.0150 (2)
B30.10220 (13)0.16468 (11)0.27283 (8)0.0153 (2)
B40.28625 (13)0.20985 (11)0.32130 (8)0.0161 (2)
H4a0.36949 (13)0.22198 (11)0.28446 (8)0.0193 (3)*
B90.28663 (13)0.29761 (11)0.40908 (8)0.0161 (2)
H90.36735 (13)0.36940 (11)0.42941 (8)0.0193 (3)*
B70.10328 (13)0.30870 (10)0.41803 (8)0.0147 (2)
H7a0.06430 (13)0.38730 (10)0.44608 (8)0.0176 (3)*
B80.14080 (13)0.30817 (11)0.31390 (8)0.0154 (2)
H80.12680 (13)0.38547 (11)0.27096 (8)0.0185 (3)*
H20.1878 (15)0.0099 (13)0.4581 (9)0.019 (3)*
H2a0.1222 (16)0.2751 (13)0.2999 (9)0.025 (4)*
H10.2458 (16)0.0102 (14)0.3259 (9)0.024 (4)*
H1a0.0255 (15)0.1466 (12)0.4776 (9)0.020 (3)*
H30.0733 (16)0.1437 (13)0.2064 (9)0.022 (4)*
H2b0.0116 (18)0.1414 (15)0.3104 (10)0.038 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0161 (4)0.0128 (4)0.0155 (4)0.0003 (3)0.0040 (3)0.0013 (3)
N20.0157 (4)0.0125 (4)0.0168 (5)0.0006 (3)0.0049 (3)0.0002 (3)
C30.0226 (6)0.0218 (6)0.0174 (5)0.0036 (4)0.0080 (4)0.0018 (4)
C60.0191 (5)0.0163 (5)0.0208 (6)0.0031 (4)0.0010 (4)0.0010 (4)
C50.0166 (5)0.0112 (5)0.0158 (5)0.0031 (4)0.0045 (4)0.0019 (4)
C40.0164 (5)0.0134 (5)0.0191 (5)0.0000 (4)0.0013 (4)0.0006 (4)
C70.0149 (5)0.0131 (5)0.0208 (5)0.0009 (4)0.0025 (4)0.0001 (4)
C80.0201 (5)0.0158 (5)0.0161 (5)0.0014 (4)0.0091 (4)0.0003 (4)
C90.0205 (5)0.0179 (5)0.0168 (5)0.0059 (4)0.0081 (4)0.0017 (4)
C100.0174 (5)0.0179 (5)0.0142 (5)0.0033 (4)0.0045 (4)0.0011 (4)
C110.0258 (6)0.0212 (6)0.0150 (5)0.0065 (4)0.0059 (4)0.0013 (4)
C20.0176 (5)0.0120 (5)0.0151 (5)0.0005 (4)0.0055 (4)0.0016 (4)
C10.0166 (5)0.0129 (5)0.0165 (5)0.0003 (4)0.0067 (4)0.0014 (4)
B50.0138 (5)0.0173 (6)0.0187 (6)0.0015 (4)0.0035 (4)0.0006 (5)
B60.0175 (6)0.0153 (6)0.0142 (5)0.0010 (4)0.0032 (4)0.0003 (4)
B10.0152 (5)0.0145 (6)0.0156 (6)0.0002 (4)0.0060 (4)0.0013 (4)
B20.0128 (5)0.0152 (6)0.0167 (6)0.0004 (4)0.0033 (4)0.0007 (4)
B30.0159 (6)0.0161 (6)0.0146 (5)0.0017 (4)0.0052 (4)0.0005 (4)
B40.0150 (5)0.0167 (6)0.0180 (6)0.0015 (4)0.0067 (4)0.0000 (5)
B90.0144 (5)0.0156 (6)0.0178 (6)0.0021 (4)0.0034 (4)0.0005 (4)
B70.0161 (6)0.0126 (5)0.0157 (5)0.0006 (4)0.0048 (4)0.0007 (4)
B80.0169 (6)0.0139 (5)0.0157 (6)0.0011 (4)0.0047 (4)0.0018 (4)
Geometric parameters (Å, º) top
N1—C31.4608 (14)C1—B51.7125 (16)
N1—C51.3382 (14)C1—B31.6219 (16)
N1—C41.3819 (14)C1—B41.6986 (16)
N2—C51.3367 (14)C1—H10.955 (16)
N2—C71.3836 (14)B5—H51.1200
N2—C81.4798 (13)B5—B61.7656 (17)
C3—H3a0.9800B5—B41.7574 (18)
C3—H3b0.9800B5—B91.7778 (18)
C3—H3c0.9800B6—H61.1200
C6—H6a0.9800B6—B11.7873 (17)
C6—H6b0.9800B6—B91.7732 (18)
C6—H6c0.9800B6—B71.7524 (17)
C6—C51.4827 (15)B1—B21.8238 (17)
C4—H40.9500B1—B71.7584 (17)
C4—C71.3451 (16)B1—H1a1.099 (14)
C7—H70.9500B2—B31.8538 (17)
C8—H8a0.9900B2—B71.7796 (17)
C8—H8b0.9900B2—B81.7868 (17)
C8—C91.5208 (15)B2—H2a1.091 (15)
C9—H9a0.9900B2—H2b1.165 (17)
C9—H9b0.9900B3—B41.8056 (17)
C9—C101.5246 (14)B3—B81.7862 (17)
C10—H10a0.9900B3—H31.077 (14)
C10—H10b0.9900B3—H2b1.401 (16)
C10—C111.5236 (15)B4—H4a1.1200
C11—H11a0.9800B4—B91.7536 (18)
C11—H11b0.9800B4—B81.7693 (18)
C11—H11c0.9800B9—H91.1200
C2—C11.5585 (14)B9—B71.7938 (17)
C2—B51.7305 (16)B9—B81.8046 (18)
C2—B61.7263 (16)B7—H7a1.1200
C2—B11.6030 (16)B7—B81.8254 (17)
C2—H20.975 (15)B8—H81.1200
C5—N1—C3126.02 (10)B6—B1—C260.93 (7)
C4—N1—C3124.66 (10)B2—B1—C2105.57 (8)
C4—N1—C5109.30 (9)B2—B1—B6108.80 (8)
C7—N2—C5108.90 (9)B7—B1—C2104.76 (8)
C8—N2—C5127.11 (9)B7—B1—B659.23 (7)
C8—N2—C7123.89 (9)B7—B1—B259.54 (7)
H3a—C3—N1109.5H1a—B1—C2119.3 (7)
H3b—C3—N1109.5H1a—B1—B6116.2 (7)
H3b—C3—H3a109.5H1a—B1—B2127.3 (7)
H3c—C3—N1109.5H1a—B1—B7125.5 (7)
H3c—C3—H3a109.5B3—B2—B1101.16 (8)
H3c—C3—H3b109.5B7—B2—B158.40 (7)
H6b—C6—H6a109.5B7—B2—B3105.48 (8)
H6c—C6—H6a109.5B8—B2—B1105.76 (8)
H6c—C6—H6b109.5B8—B2—B358.73 (7)
C5—C6—H6a109.5B8—B2—B761.57 (7)
C5—C6—H6b109.5H2a—B2—B1128.9 (8)
C5—C6—H6c109.5H2a—B2—B3123.6 (8)
N2—C5—N1107.59 (9)H2a—B2—B7121.1 (8)
C6—C5—N1124.98 (10)H2a—B2—B8117.4 (8)
C6—C5—N2127.42 (10)H2b—B2—B179.9 (8)
H4—C4—N1126.59 (6)H2b—B2—B349.1 (8)
C7—C4—N1106.82 (10)H2b—B2—B7127.0 (8)
C7—C4—H4126.59 (7)H2b—B2—B8106.9 (8)
C4—C7—N2107.39 (9)H2b—B2—H2a110.1 (11)
H7—C7—N2126.31 (6)B2—B3—C1106.17 (8)
H7—C7—C4126.31 (7)B4—B3—C159.13 (7)
H8a—C8—N2109.56 (6)B4—B3—B2107.22 (8)
H8b—C8—N2109.56 (6)B8—B3—C1104.23 (8)
H8b—C8—H8a108.1B8—B3—B258.76 (7)
C9—C8—N2110.48 (9)B8—B3—B459.02 (7)
C9—C8—H8a109.56 (6)H3—B3—C1121.3 (8)
C9—C8—H8b109.56 (6)H3—B3—B2125.8 (8)
H9a—C9—C8108.98 (6)H3—B3—B4118.4 (8)
H9b—C9—C8108.98 (6)H3—B3—B8124.1 (8)
H9b—C9—H9a107.8H2b—B3—C190.9 (7)
C10—C9—C8113.02 (9)H2b—B3—B238.9 (7)
C10—C9—H9a108.98 (6)H2b—B3—B4129.5 (7)
C10—C9—H9b108.98 (6)H2b—B3—B896.9 (7)
H10a—C10—C9109.39 (6)H2b—B3—H3111.8 (10)
H10b—C10—C9109.39 (6)B5—B4—C159.38 (7)
H10b—C10—H10a108.0B3—B4—C155.04 (6)
C11—C10—C9111.23 (9)B3—B4—B5106.77 (8)
C11—C10—H10a109.39 (6)H4a—B4—C1127.03 (5)
C11—C10—H10b109.39 (6)H4a—B4—B5120.62 (6)
H11a—C11—C10109.5H4a—B4—B3122.79 (5)
H11b—C11—C10109.5B9—B4—C1104.60 (8)
H11b—C11—H11a109.5B9—B4—B560.84 (7)
H11c—C11—C10109.5B9—B4—B3108.87 (8)
H11c—C11—H11a109.5B9—B4—H4a120.92 (6)
H11c—C11—H11b109.5B8—B4—C1101.80 (8)
B5—C2—C162.50 (7)B8—B4—B5109.46 (9)
B6—C2—C1112.20 (8)B8—B4—B359.94 (7)
B6—C2—B561.43 (7)B8—B4—H4a122.20 (6)
B1—C2—C1115.37 (9)B8—B4—B961.62 (7)
B1—C2—B5117.30 (9)B6—B9—B559.63 (7)
B1—C2—B664.82 (7)B4—B9—B559.68 (7)
H2—C2—C1113.8 (8)B4—B9—B6107.80 (9)
H2—C2—B5112.5 (8)H9—B9—B5122.78 (5)
H2—C2—B6120.6 (8)H9—B9—B6122.09 (6)
H2—C2—B1121.4 (8)H9—B9—B4121.72 (6)
B5—C1—C263.68 (7)B7—B9—B5106.33 (8)
B3—C1—C2111.49 (8)B7—B9—B658.85 (7)
B3—C1—B5118.09 (9)B7—B9—B4108.02 (8)
B4—C1—C2112.05 (8)B7—B9—H9122.14 (6)
B4—C1—B562.02 (7)B8—B9—B5106.97 (8)
B4—C1—B365.83 (7)B8—B9—B6107.88 (8)
H1—C1—C2115.4 (9)B8—B9—B459.62 (7)
H1—C1—B5112.3 (9)B8—B9—H9121.63 (5)
H1—C1—B3122.0 (9)B8—B9—B760.97 (7)
H1—C1—B4120.8 (9)B1—B7—B661.21 (7)
C1—B5—C253.82 (6)B2—B7—B6112.47 (8)
H5—B5—C2126.83 (5)B2—B7—B162.06 (7)
H5—B5—C1126.11 (5)B9—B7—B659.99 (7)
B6—B5—C259.17 (7)B9—B7—B1108.35 (8)
B6—B5—C1103.31 (8)B9—B7—B2109.93 (8)
B6—B5—H5121.61 (6)H7a—B7—B6120.08 (6)
B4—B5—C2101.56 (8)H7a—B7—B1121.43 (5)
B4—B5—C158.60 (7)H7a—B7—B2119.10 (5)
B4—B5—H5122.74 (6)H7a—B7—B9121.49 (6)
B4—B5—B6107.97 (8)B8—B7—B6107.87 (8)
B9—B5—C2102.58 (8)B8—B7—B1106.89 (8)
B9—B5—C1102.99 (8)B8—B7—B259.41 (7)
B9—B5—H5123.83 (5)B8—B7—B959.81 (7)
B9—B5—B660.05 (7)B8—B7—H7a123.25 (5)
B9—B5—B459.47 (7)B3—B8—B262.51 (7)
B5—B6—C259.40 (7)B4—B8—B2111.87 (8)
H6—B6—C2128.17 (5)B4—B8—B361.04 (7)
H6—B6—B5120.64 (6)B9—B8—B2109.11 (8)
B1—B6—C254.26 (6)B9—B8—B3107.48 (8)
B1—B6—B5106.55 (8)B9—B8—B458.76 (7)
B1—B6—H6123.06 (5)B7—B8—B259.02 (7)
B9—B6—C2102.94 (8)B7—B8—B3106.41 (8)
B9—B6—B560.31 (7)B7—B8—B4105.96 (8)
B9—B6—H6121.77 (6)B7—B8—B959.23 (7)
B9—B6—B1107.98 (8)H8—B8—B2119.15 (5)
B7—B6—C299.97 (8)H8—B8—B3121.34 (5)
B7—B6—B5108.69 (8)H8—B8—B4121.15 (6)
B7—B6—H6123.01 (6)H8—B8—B9122.36 (5)
B7—B6—B159.56 (7)H8—B8—B7124.10 (5)
B7—B6—B961.16 (7)B3—H2b—B292.0 (11)

Experimental details

Crystal data
Chemical formulaC9H17N2+·C2H12B9
Mr286.78
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)9.5242 (2), 11.5173 (2), 16.3357 (3)
β (°) 104.821 (1)
V3)1732.30 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.06
Crystal size (mm)0.42 × 0.32 × 0.26
Data collection
DiffractometerBruker SMART CCD 1K area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2012)
Tmin, Tmax0.701, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
27028, 3964, 3582
Rint0.021
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.120, 1.05
No. of reflections3964
No. of parameters225
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.28

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

AL thanks Professor Maitland Jones for the generous donation of the starting orthocarborane stock and Dr John Holbrey for the supply of imidazolium halide reagents. The research support by ACS PRF and Cottrell College awards (44692.01-GB and CC6755) is gratefully acknowledged.

References

First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDymon, J., Wibby, R., Kleingardner, J., Tanski, J. M., Guzei, I. A., Holbrey, J. D. & Larsen, A. S. (2008). Dalton Trans. pp. 2999–3006.  Web of Science CSD CrossRef Google Scholar
First citationJones, P. G., Villacampa, M. D., Crespo, O., Gimeno, M. C. & Laguna, A. (1997). Acta Cryst. C53, 570–572.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLarsen, A. S., Holbrey, J. D., Tham, F. S. & Reed, C. A. (2000). J. Am. Chem. Soc. 122, 7264–7272.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuarez, S. A., Foi, A., Eady, S., Larsen, A. & Doctorovich, F. (2011). Acta Cryst. C67, o417–o420.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds