research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages 275-277

Crystal structure of (S)-2-[(3S,8S,9S,10R,13S,14S,17R)-3-hy­dr­oxy-10,13-di­methyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetra­deca­hydro-1H-cyclo­penta[a]phenanthren-17-yl]-N-meth­­oxy-N-methyl­pro­pan­amide (Fernholz Weinreb amide)

CROSSMARK_Color_square_no_text.svg

aSchool of Pharmacy, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway, and bDepartment of Chemistry, University of Oslo, PO Box 1033 Blindern, N-0315 Oslo, Norway
*Correspondence e-mail: pal.rongved@farmasi.uio.no

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 15 December 2014; accepted 27 January 2015; online 18 February 2015)

The literature compound 3β-hy­droxy-bis­nor-5-cholenic aldehyde is an important inter­mediate for the synthesis of new modulators of the nuclear oxysterol receptor Liver X. As part of our ongoing search for new LXR antagonists, the title compound, C24H39NO3, has proven to be an important inter­mediate in our new synthetic pathway, giving the corresponding aldehyde in high yield and in only three steps from the commercially available 3β-hy­droxy-bis­nor-5-cholenic acid. The title amide crystallized with two mol­ecules in the asymmetric unit, linked into helices by O—H⋯O hydrogen bonds involving the hy­droxy and carbonyl groups.

1. Chemical context

In the nuclear receptor (NR) family, the two isoforms of the nuclear oxysterol receptor Liver X (LXRα and LXRβ) are emerging new drug targets. They are key players for a number of important processes related to disease, such as metabolic and cardiovascular diseases, lipid metabolism, inflammation and cancer (Steffensen & Gustafsson, 2006[Steffensen, K. R. & Gustafsson, J. Å. (2006). Future Lipidol. 1, 181-189.]; Laffitte et al., 2003[Laffitte, B. A., Chao, L. C., Li, J., Walczak, R., Hummasti, S., Joseph, S. B., Castrillo, A., Wilpitz, D. C., Mangelsdorf, D. J., Collins, J. L., Saez, E. & Tontonoz, P. (2003). PNAS, 100, 5419-5424.]). LXR modulators have been investigated as potential drugs in the therapy of cardiovascular diseases, metabolic syndrome, regulation of inflammatory response and immunity, skin diseases and are effective in the treatment of murine models of atherosclerosis, diabetes and Alzheimer's disease (Viennois et al., 2011[Viennois, E., Pommier, A. J. C., Mouzat, K., Oumeddour, A., El Hajjaji, F.-Z., Dufour, J., Caira, F., Volle, D. H., Baron, S. & Lobaccaro, J.-M. A. (2011). Expert Opin. Ther. Targets, 15, 219-232.], 2012[Viennois, E., Mouzat, K., Dufour, J., Morel, L., Lobaccaro, J.-M. & Baron, S. (2012). Mol. Cell. Endocrinol. 351, 129-141.]; Jakobsson et al., 2012[Jakobsson, T., Treuter, E., Gustafsson, J.-Å. & Steffensen, K. R. (2012). Trends Pharmacol. Sci. 33, 394-404.]). Further, such agents have been shown to affect anti-inflammatory activity (Zhu & Bakovic, 2008[Zhu, L. & Bakovic, M. (2008). Res. Lett. Biochem. Article ID 801849.]; Zhu et al., 2012[Zhu, R., Ou, Z., Ruan, X. & Gong, J. (2012). Mol. Med. Rep. 5, 895-900.]; Solan et al., 2011[Solan, P. D., Piraino, G., Hake, P. W., Denenberg, A., O'Connor, M., Lentsch, A. & Zingarelli, B. (2011). Shock, 35, 367-374.]) and cell proliferation in a number of major cancer forms such as LNCaP human prostate cancer cells. (Viennois et al., 2012[Viennois, E., Mouzat, K., Dufour, J., Morel, L., Lobaccaro, J.-M. & Baron, S. (2012). Mol. Cell. Endocrinol. 351, 129-141.]; Jakobsson et al., 2012[Jakobsson, T., Treuter, E., Gustafsson, J.-Å. & Steffensen, K. R. (2012). Trends Pharmacol. Sci. 33, 394-404.]). The ligand-binding pocket (LBP) of LXR allows binding of side-chain-oxygenated sterols (OHCs).

Recently, OHCs with a specific stereochemistry at the 23-hy­droxy­ated side-chain carbon have also been shown to regulate the Hedgehog signalling pathway (Hh), a key developmental pathway playing multiple roles in embryonic development, including stem-cell differentiation (Corman et al., 2012[Corman, A., DeBerardinis, A. M. & Hadden, M. K. (2012). ACS Med. Chem. Lett. 3, 828-833.]). In our drug-design programme, our retrosynthetic analysis for the establishment of synthetic routes to the pharmacophores in different OHCs revealed that the aldehyde analogue of the title compound [Fernholz aldehyde, (II)] is a key compound leading to a number of new library candidates for biological testing (Åstrand et al., 2014a[Åstrand, O. A. H., Gikling, I., Sylte, I., Rustan, A. C., Thoresen, G. H., Rongved, P. & Kase, E. T. (2014a). Eur. J. Med. Chem. 74, 258-263.],b[Åstrand, O. A. H., Sandberg, M., Sylte, I., Görbitz, C. H., Thoresen, G. H., Kase, E. T. & Rongved, P. (2014b). Bioorg. Med. Chem. 22, 643-650.]). We have now identified the title compound, Fernholz Weinreb amide (I)[link], as a new key inter­mediate to the Fernholz aldehyde, reducing the number of steps in the stereoselective synthesis. The O-TBDMS-protected Weinreb amide (I)[link] may be used to prepare (II) using DIBALH, transferred to ketones with Grignard reagents or used for other synthetic transformations (Sivaraman et al., 2009[Sivaraman, B., Manjunath, B. N., Senthilmurugan, A., Harikrishna, K. & Singh, A. I. (2009). Indian J. Chem. Sect. B, 48, 1749-1756.]; Davies et al., 2013[Davies, S. G., Fletcher, A. M. & Thomson, J. E. (2013). Chem. Commun. 49, 8586-8598.]).

[Scheme 1]

2. Structural commentary

The asymmetric unit of (I)[link], with two independent mol­ecules A and B, is depicted in Fig. 1[link]a. The macrocyclic part of (I)[link] is also found in the naturally occurring hormone cholesterol and in close to 250 other steroids in the Cambridge Structural Database (CSD; Version 5.35 of November 2013; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]). The mol­ecular conformation of this part of the mol­ecule is rigid, as shown from the overlay between A and B in Fig. 1[link]b. If the substituent at C17 is not included, the fit improves from 0.300 to 0.173 Å. Compound (I)[link] also shares the hy­droxy group at C3 with cholesterol, but the N-meth­oxy-N-methyl­propanamide functionality has not previously been introduced into steroids; only the structure of the parent carb­oxy­lic acid has been reported previously (CSD refcode HAHSAL; Kurek-Tyrlik et al., 2004[Kurek-Tyrlik, A., Michalak, K., Urbanczyk-Lipkowska, Z. & Wicha, J. (2004). Tetrahedron Lett. 45, 7479-7482.]).

[Figure 1]
Figure 1
(a) The asymmetric unit of (I)[link], showing the two mol­ecules A (light grey C atoms and atomic labels included) and B (dark C atoms). (b) An overlay between mol­ecules A (blue) and B (red), with an r.m.s. value of 0.300 Å. H atoms have been omitted in (b).

3. Supra­molecular features

The unit-cell and the mol­ecular packing of (I)[link] are shown in Fig. 2[link]. As a class, steroids display a pronounced tendency to form crystal structures with more than one mol­ecule in the asymmetric unit; e.g. for about 35% of the 250 compounds mentioned above. The maximum Z′ value of 16 is reached for the high-temperature polymorph of cholesterol itself (CHOEST21: Hsu et al., 2002[Hsu, L.-Y., Kampf, J. W. & Nordman, C. E. (2002). Acta Cryst. B58, 260-264.]). Compound (I)[link] has a Z′ value of 2, the two mol­ecules differing in the way the hy­droxy groups make inter­molecular hydrogen bonds (Table 1[link]). Only the carbonyl group of mol­ecule A is an acceptor, while the hy­droxy groups of the B mol­ecules are both donors and acceptors and thus serve to link adjacent A mol­ecules along the a axis. In this process, stacks of either A or B mol­ecules along the a axis expose all the methyl groups on the outside, giving distinct regions with meth­yl–methyl inter­actions (Fig. 2[link]a). This is not a common mol­ecular aggregation pattern for steroids, but some related Z′ = 2 structures were found in the CSD, all hydrates without additional hydrogen-bond donors or acceptors in their C17 substituents (KESNAX: Sheng-Zhi et al., 1990[Sheng-Zhi, H., You-Qing, H., Kai-Liang, S., Rui-Sheng, L. & Li, D. (1990). Jiegou Huaxue (Chin. J. Struct. Chem.), 9, 90.]; ZZZNVG01: Jiang et al., 2001[Jiang, R.-W., Ma, S.-C., But, P. P.-H. & Mak, T. C. W. (2001). J. Nat. Prod. 64, 1266-1272.]; XOSLOH: Subash-Babu et al., 2009[Subash-Babu, P., Ignacimuthu, S., Agastian, P. & Varghese, B. (2009). Bioorg. Med. Chem. 17, 2864-2870.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3A—H3A⋯O3Bi 0.86 (4) 1.93 (4) 2.782 (4) 180 (5)
O3B—H3B⋯O1Aii 0.83 (4) 1.95 (4) 2.768 (3) 169 (4)
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
(a) Unit-cell and crystal packing viewed along the a axis. The colour coding is as in Fig. 1[link]. The orange circles highlight a series of methyl groups; the blue area shades a hydrogen-bonded chain in shape of a flat helix. The chain, as a pink shape, is shown in more detail in (b) (the view is along the b axis).

4. Synthesis and crystallization

Compound (I)[link] (348 mg) was dissolved in a minimum amount of boiling EtOAc (40 ml). The flask containing the solution was wrapped in aluminium foil and left overnight at room temperature to afford colourless crystalline needles.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Coordinates were refined for hydroxyic H atoms; other H atoms were positioned with idealized geometry with fixed C—H = 0.95 (aromatic), 0.98 (meth­yl), 0.99 (methyl­ene) or 1.00 Å (methine) Å. Uiso values were set to 1.2Ueq of the carrier atom, or 1.5Ueq for methyl and hy­droxy groups.

Table 2
Experimental details

Crystal data
Chemical formula C24H39NO3
Mr 389.56
Crystal system, space group Orthorhombic, P212121
Temperature (K) 105
a, b, c (Å) 7.7256 (4), 19.0030 (9), 29.8162 (15)
V3) 4377.3 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.65 × 0.21 × 0.10
 
Data collection
Diffractometer Bruker D8 Vantage single-crystal CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.852, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 44800, 7739, 5760
Rint 0.089
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.098, 1.04
No. of reflections 7739
No. of parameters 511
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.19
Computer programs: APEX2 and SAINT-Plus (Bruker, 2013[Bruker (2013). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Chemical context top

In the nuclear receptor (NR) family, the two isoforms of the nuclear oxysterol receptor Liver X (LXRα and LXRβ) are emerging new drug targets. They are key players for a number of important processes related to disease, such as metabolic and cardiovascular diseases, lipid metabolism, inflammation and cancer (Steffensen & Gustafsson, 2006; Laffitte et al., 2003). LXR modulators have been investigated as potential drugs in the therapy of cardiovascular diseases, metabolic syndrome, regulation of inflammatory responses and immunity, skin diseases and are effective in the treatment of murine models of atherosclerosis, diabetes and Alzheimer's disease (Viennois et al., 2011, 2012; Jakobsson et al., 2012). Further, such agents have been shown to affect anti-inflammatory activity (Zhu & Bakovic, 2008; Zhu et al., 2012; Solan et al., 2011) and cell proliferation in a number of major cancer forms such as LNCaP human prostate cancer cells. (Viennois et al., 2012; Jakobsson et al., 2012). The ligand-binding pocket (LBP) of LXR allows binding of side-chain-oxygenated sterols (OHCs).

Recently, OHCs with a specific stereochemistry at the 23-hy­droxy­ated side-chain carbon have also been shown to regulate the Hedgehog signalling pathway (Hh), a key developmental pathway playing multiple roles in embryonic development, including stem-cell differentiation (Corman et al., 2012). In our drug-design programme, our retrosynthetic analysis for the establishment of synthetic routes to the pharmacophores in different OHCs revealed that the aldehyde analogue of the title compound [Fernholz aldehyde, (II)] is a key compound leading to a number of new library candidates for biological testing.(Åstrand et al., 2014a,b). We have now identified the title compound, Fernholz Weinreb amide (I), as a new key inter­mediate to the Fernholz aldehyde, reducing the number of steps in the stereoselective synthesis. The Weinreb amide (I) may be used to prepare (II) using DIBALH, transferred to ketones with Grignard reagents or used for other synthetic transformations (Sivaraman et al., 2009; Davies et al., 2013).

Structural commentary top

The asymmetric unit of (I), with two independent molecules A and B, is depicted in Fig. 1a. The macrocyclic part of (I) is also found in the naturally occurring hormone cholesterol and in close to 250 other steroids in the Cambridge Structural Database (CSD; Version 5.35 of November 2013; Groom & Allen, 2014). The molecular conformation of this part of the molecule is rigid, as shown from the overlay between A and B in Fig. 1b. If the substituent at C17 is not included, the fit improves from 0.300 to 0.173 Å. Compound (I) also shares the hy­droxy group at C3 with cholesterol, but the N-meth­oxy-N-methyl­propanamide functionality has not previously been introduced into steroids; only the structure of the parent carb­oxy­lic acid has been reported previously (CSD refcode HAHSAL; Kurek-Tyrlik et al., 2004).

Supra­molecular features top

The unit-cell and the molecular packing of (I) are shown in Fig. 2. As a class, steroids display a pronounced tendency to form crystal structures with more than one molecule in the asymmetric unit; e.g. for about 35% of the 250 compounds mentioned above. The maximum Z' value of 16 is reached for the high-temperature polymorph of cholesterol itself (CHOEST21: Hsu et al., 2002). Compound (I) has a Z' value of 2, the two molecules differing in the way the hy­droxy groups make inter­molecular hydrogen bonds. Only the carbonyl group of molecule A is an acceptor, while the hy­droxy groups of the B molecules are both donors and acceptors and thus serve to link adjacent A molecules along the a axis. In this process, stacks of either A or B molecules along the a axis expose all the methyl groups on the outside, giving distinct regions with methyl–methyl inter­actions (Fig. 2a). This is not a common molecular aggregation pattern for steroids, but some related Z' = 2 structures were found in the CSD, all hydrates without additional hydrogen-bond donors or acceptors in their C17 substituents (KESNAX: Sheng-Zhi et al., 1990; ZZZNVG01: Jiang et al., 2001; XOSLOH: Subash-Babu et al., 2009).

Synthesis and crystallization top

Compound (I) (348 mg) was dissolved in a minimum amount of boiling EtOAc (40 ml). The flask containing the solution was wrapped in aluminium foil and left overnight at room temperature to afford colourless crystalline needles.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. Coordinates were refined for hydroxyic H atoms; other H atoms were positioned with idealized geometry with fixed C—H = 0.95 (aromatic), 0.98 (methyl), 0.99 (methyl­ene) or 1.00 Å (methine) Å. Uiso values were set to 1.2Ueq of the carrier atom, or 1.5Ueq for methyl and hy­droxy groups.

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT-Plus (Bruker, 2013); data reduction: SAINT-Plus (Bruker, 2013); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. (a) The asymmetric unit of (I), showing the two molecules A (light grey C atoms and atomic labels included) and B (dark C atoms). (b) An overlay between molecules A (blue) and B (red), with an r.m.s. value of 0.300 Å. H atoms have been omitted in (b).
[Figure 2] Fig. 2. (a) Unit-cell and crystal packing viewed along the a axis. The colour coding is as in Fig. 1. The orange circles highlight a series of methyl groups; the blue area shades a hydrogen-bonded chain in shape of a flat helix. The chain, as a pink shape, is shown in more detail in (b) (the view is along the b axis).
(S)-2-[(3S,8S,9S,10R,13S,14S,17R)-3-Hydroxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]-N-methoxy-N-methylpropanamide top
Crystal data top
C24H39NO3Dx = 1.182 Mg m3
Mr = 389.56Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9981 reflections
a = 7.7256 (4) Åθ = 2.3–24.9°
b = 19.0030 (9) ŵ = 0.08 mm1
c = 29.8162 (15) ÅT = 105 K
V = 4377.3 (4) Å3Flat needle, colourless
Z = 80.65 × 0.21 × 0.10 mm
F(000) = 1712
Data collection top
Bruker D8 Vantage single-crystal CCD
diffractometer
7739 independent reflections
Radiation source: fine-focus sealed tube5760 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.089
Detector resolution: 8.3 pixels mm-1θmax = 25.1°, θmin = 2.3°
Sets of exposures each taken over 0.5° ω rotation scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 2222
Tmin = 0.852, Tmax = 1.000l = 3535
44800 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.1501P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
7739 reflectionsΔρmax = 0.21 e Å3
511 parametersΔρmin = 0.19 e Å3
Crystal data top
C24H39NO3V = 4377.3 (4) Å3
Mr = 389.56Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 7.7256 (4) ŵ = 0.08 mm1
b = 19.0030 (9) ÅT = 105 K
c = 29.8162 (15) Å0.65 × 0.21 × 0.10 mm
Data collection top
Bruker D8 Vantage single-crystal CCD
diffractometer
7739 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
5760 reflections with I > 2σ(I)
Tmin = 0.852, Tmax = 1.000Rint = 0.089
44800 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.21 e Å3
7739 reflectionsΔρmin = 0.19 e Å3
511 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. No constraints or restraints applied

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.8266 (3)0.67664 (11)0.71479 (7)0.0314 (6)
O2A0.7377 (3)0.50014 (11)0.73658 (6)0.0268 (6)
O3A0.7896 (3)0.69062 (13)0.28850 (7)0.0321 (6)
H3A0.893 (6)0.697 (2)0.2790 (13)0.048*
N1A0.8127 (4)0.56722 (14)0.74205 (8)0.0262 (7)
C1A0.6249 (5)0.67785 (17)0.40586 (10)0.0234 (8)
H1A0.50990.66330.41710.028*
H2A0.64380.72720.41530.028*
C2A0.6223 (5)0.67502 (18)0.35440 (10)0.0254 (8)
H4A0.59280.62680.34440.030*
H5A0.53270.70750.34280.030*
C3A0.7964 (5)0.69551 (17)0.33605 (10)0.0250 (8)
H31A0.82100.74540.34460.030*
C4A0.9375 (5)0.64851 (17)0.35544 (10)0.0256 (8)
H41A0.92150.60010.34400.031*
H42A1.05150.66550.34490.031*
C5A0.9374 (5)0.64668 (16)0.40622 (10)0.0202 (8)
C6A1.0815 (5)0.65764 (16)0.42912 (11)0.0243 (8)
H61A1.18320.66850.41260.029*
C7A1.0964 (4)0.65414 (17)0.47918 (10)0.0233 (8)
H71A1.11220.70230.49110.028*
H72A1.20050.62640.48720.028*
C8A0.9385 (4)0.62097 (16)0.50128 (10)0.0172 (7)
H81A0.94380.56890.49680.021*
C9A0.7721 (4)0.64902 (16)0.47901 (10)0.0195 (7)
H91A0.77850.70150.48110.023*
C10A0.7637 (4)0.63144 (15)0.42821 (10)0.0190 (7)
C11A0.6082 (4)0.62733 (18)0.50481 (10)0.0242 (8)
H11A0.50890.65430.49280.029*
H11C0.58550.57690.49900.029*
C12A0.6168 (4)0.63881 (17)0.55576 (10)0.0230 (8)
H12A0.61760.68990.56210.028*
H12C0.51220.61840.56990.028*
C13A0.7778 (4)0.60512 (15)0.57639 (10)0.0183 (7)
C14A0.9350 (4)0.63605 (16)0.55146 (10)0.0181 (8)
H14A0.92550.68830.55450.022*
C15A1.0903 (4)0.61434 (16)0.57969 (10)0.0224 (8)
H15A1.18810.64730.57540.027*
H15C1.12890.56620.57190.027*
C16A1.0214 (4)0.61751 (17)0.62834 (11)0.0229 (8)
H16A1.07350.65780.64450.027*
H16C1.05080.57370.64460.027*
C17A0.8214 (4)0.62640 (16)0.62533 (10)0.0202 (8)
H17A0.79480.67760.62870.024*
C18A0.7693 (5)0.52436 (15)0.57226 (10)0.0219 (8)
H18A0.76300.51120.54050.033*
H18C0.66640.50690.58790.033*
H18D0.87320.50360.58570.033*
C19A0.7198 (5)0.55331 (16)0.42009 (10)0.0277 (9)
H19A0.73650.54200.38830.042*
H19C0.59910.54450.42840.042*
H19D0.79610.52370.43840.042*
C20A0.7291 (4)0.58734 (16)0.66317 (10)0.0223 (8)
H20A0.75720.53610.66080.027*
C21A0.5318 (4)0.59589 (18)0.66345 (11)0.0285 (9)
H21A0.48330.57500.63620.043*
H21C0.50250.64600.66450.043*
H21D0.48360.57210.68980.043*
C22A0.7925 (4)0.61417 (17)0.70820 (10)0.0234 (8)
C23A0.8338 (5)0.58740 (19)0.78883 (11)0.0340 (9)
H23A0.91190.55410.80370.051*
H23C0.72090.58680.80380.051*
H23D0.88290.63490.79050.051*
C24A0.8716 (5)0.44840 (17)0.73243 (12)0.0329 (9)
H24A0.82050.40120.73370.049*
H24C0.95450.45400.75700.049*
H24D0.93140.45460.70370.049*
O1B0.3248 (3)0.29218 (11)0.34061 (7)0.0241 (6)
O2B0.1000 (3)0.43877 (11)0.30237 (7)0.0244 (6)
O3B0.3740 (3)0.28938 (12)0.75771 (7)0.0275 (6)
H3B0.308 (5)0.2590 (19)0.7683 (11)0.041*
N1B0.2268 (4)0.38484 (12)0.30187 (8)0.0212 (6)
C1B0.1604 (4)0.30886 (16)0.64465 (9)0.0203 (8)
H1B0.04110.32240.63620.024*
H2B0.18080.26060.63330.024*
C2B0.1737 (4)0.30804 (17)0.69563 (10)0.0222 (8)
H4B0.14480.35520.70760.027*
H5B0.08970.27390.70800.027*
C3B0.3537 (4)0.28808 (16)0.70983 (10)0.0204 (8)
H31B0.37980.23960.69870.024*
C4B0.4852 (4)0.33881 (16)0.69055 (10)0.0216 (8)
H41B0.60310.32200.69800.026*
H42B0.46950.38550.70470.026*
C5B0.4690 (4)0.34639 (16)0.63992 (10)0.0167 (8)
C6B0.6090 (4)0.34157 (15)0.61433 (10)0.0190 (8)
H61B0.71650.33310.62880.023*
C7B0.6103 (4)0.34850 (16)0.56420 (10)0.0181 (7)
H71B0.63460.30180.55080.022*
H72B0.70530.38060.55540.022*
C8B0.4407 (4)0.37637 (15)0.54505 (10)0.0148 (7)
H81B0.43770.42870.54870.018*
C9B0.2861 (4)0.34433 (15)0.56994 (9)0.0148 (7)
H91B0.29730.29220.56660.018*
C10B0.2883 (4)0.35925 (15)0.62135 (9)0.0164 (7)
C11B0.1142 (4)0.36437 (16)0.54751 (9)0.0186 (8)
H11B0.09260.41510.55250.022*
H11E0.01940.33790.56220.022*
C12B0.1090 (4)0.34958 (17)0.49675 (10)0.0195 (8)
H12B0.11250.29810.49170.023*
H12E0.00130.36750.48430.023*
C13B0.2603 (4)0.38405 (15)0.47190 (10)0.0159 (7)
C14B0.4271 (4)0.35862 (16)0.49529 (10)0.0159 (7)
H14B0.42380.30610.49370.019*
C15B0.5736 (4)0.38110 (16)0.46425 (10)0.0185 (8)
H15B0.67390.34890.46700.022*
H15E0.61190.42960.47110.022*
C16B0.4928 (4)0.37679 (17)0.41675 (10)0.0190 (8)
H16B0.50380.42250.40110.023*
H16E0.55160.34020.39870.023*
C17B0.2998 (4)0.35775 (15)0.42354 (9)0.0163 (7)
H17B0.29240.30520.42420.020*
C18B0.2422 (5)0.46448 (14)0.47231 (10)0.0205 (8)
H18B0.23990.48130.50340.031*
H18E0.13440.47790.45720.031*
H18F0.34070.48560.45660.031*
C19B0.2362 (5)0.43602 (15)0.63154 (10)0.0238 (8)
H19B0.11180.44200.62640.036*
H19E0.30070.46790.61180.036*
H19F0.26320.44700.66290.036*
C20B0.1861 (4)0.38264 (15)0.38456 (10)0.0171 (7)
H20B0.19630.43490.38190.021*
C21B0.0056 (4)0.36319 (18)0.38993 (10)0.0241 (8)
H21B0.01590.31270.39610.036*
H21E0.06800.37450.36220.036*
H21F0.05540.38990.41490.036*
C22B0.2502 (4)0.34904 (16)0.34128 (10)0.0180 (7)
C23B0.2346 (5)0.34870 (17)0.25866 (10)0.0297 (9)
H23B0.31610.30930.26060.045*
H23E0.27350.38170.23550.045*
H23F0.11940.33090.25090.045*
C24B0.1771 (5)0.50416 (17)0.28946 (11)0.0323 (9)
H24B0.26260.51820.31200.048*
H24E0.08720.54040.28720.048*
H24F0.23420.49870.26030.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0366 (16)0.0248 (14)0.0329 (14)0.0014 (12)0.0019 (12)0.0128 (10)
O2A0.0243 (14)0.0266 (13)0.0295 (13)0.0025 (12)0.0005 (11)0.0031 (10)
O3A0.0298 (16)0.0442 (15)0.0224 (14)0.0058 (13)0.0051 (12)0.0016 (11)
N1A0.0296 (19)0.0282 (16)0.0207 (16)0.0023 (14)0.0012 (14)0.0059 (13)
C1A0.018 (2)0.027 (2)0.025 (2)0.0001 (16)0.0036 (16)0.0005 (14)
C2A0.021 (2)0.028 (2)0.027 (2)0.0012 (17)0.0015 (16)0.0008 (15)
C3A0.030 (2)0.0219 (18)0.0228 (19)0.0021 (16)0.0047 (17)0.0006 (14)
C4A0.024 (2)0.0242 (19)0.028 (2)0.0035 (17)0.0075 (16)0.0017 (15)
C5A0.020 (2)0.0133 (17)0.028 (2)0.0011 (16)0.0059 (17)0.0014 (14)
C6A0.016 (2)0.0227 (19)0.034 (2)0.0007 (16)0.0084 (18)0.0027 (15)
C7A0.0145 (19)0.0252 (18)0.030 (2)0.0010 (16)0.0016 (16)0.0002 (15)
C8A0.0149 (18)0.0132 (16)0.0235 (19)0.0002 (15)0.0008 (15)0.0028 (13)
C9A0.0172 (19)0.0161 (16)0.0253 (18)0.0005 (15)0.0024 (16)0.0020 (14)
C10A0.0140 (18)0.0156 (16)0.0274 (18)0.0007 (15)0.0015 (16)0.0008 (13)
C11A0.016 (2)0.033 (2)0.024 (2)0.0011 (17)0.0005 (16)0.0009 (15)
C12A0.015 (2)0.0266 (19)0.027 (2)0.0000 (16)0.0030 (16)0.0003 (15)
C13A0.0190 (19)0.0149 (16)0.0210 (18)0.0003 (15)0.0005 (16)0.0040 (13)
C14A0.0151 (19)0.0112 (17)0.0279 (19)0.0008 (15)0.0012 (16)0.0009 (14)
C15A0.019 (2)0.0187 (18)0.030 (2)0.0024 (16)0.0004 (16)0.0000 (14)
C16A0.021 (2)0.0176 (18)0.030 (2)0.0004 (15)0.0036 (16)0.0021 (14)
C17A0.022 (2)0.0126 (16)0.0259 (19)0.0026 (15)0.0009 (16)0.0042 (13)
C18A0.024 (2)0.0205 (17)0.0214 (18)0.0060 (16)0.0004 (16)0.0035 (13)
C19A0.033 (2)0.0234 (18)0.0266 (19)0.0068 (17)0.0025 (18)0.0024 (14)
C20A0.023 (2)0.0185 (17)0.0254 (19)0.0032 (16)0.0014 (17)0.0062 (14)
C21A0.026 (2)0.031 (2)0.028 (2)0.0026 (17)0.0015 (17)0.0005 (16)
C22A0.018 (2)0.026 (2)0.026 (2)0.0031 (16)0.0052 (16)0.0074 (15)
C23A0.028 (2)0.050 (2)0.024 (2)0.0018 (19)0.0016 (18)0.0092 (17)
C24A0.029 (2)0.028 (2)0.042 (2)0.0008 (18)0.0009 (18)0.0000 (16)
O1B0.0315 (15)0.0202 (12)0.0206 (12)0.0058 (11)0.0002 (11)0.0011 (9)
O2B0.0215 (14)0.0249 (12)0.0269 (13)0.0064 (11)0.0017 (11)0.0063 (10)
O3B0.0290 (16)0.0349 (15)0.0184 (14)0.0094 (12)0.0034 (11)0.0058 (10)
N1B0.0221 (17)0.0238 (14)0.0177 (15)0.0091 (14)0.0002 (13)0.0021 (11)
C1B0.0157 (19)0.0251 (18)0.0199 (18)0.0001 (16)0.0014 (15)0.0018 (14)
C2B0.021 (2)0.0228 (18)0.0226 (19)0.0033 (15)0.0003 (16)0.0018 (14)
C3B0.026 (2)0.0195 (17)0.0153 (18)0.0002 (16)0.0022 (15)0.0001 (14)
C4B0.021 (2)0.0216 (19)0.0224 (19)0.0043 (15)0.0039 (16)0.0014 (14)
C5B0.019 (2)0.0121 (17)0.0191 (18)0.0028 (15)0.0009 (15)0.0001 (13)
C6B0.016 (2)0.0168 (17)0.025 (2)0.0021 (15)0.0064 (16)0.0027 (14)
C7B0.0160 (19)0.0149 (16)0.0233 (19)0.0013 (15)0.0013 (15)0.0015 (13)
C8B0.0138 (18)0.0111 (16)0.0196 (18)0.0002 (15)0.0015 (14)0.0002 (13)
C9B0.0146 (19)0.0116 (15)0.0183 (17)0.0006 (14)0.0006 (14)0.0002 (12)
C10B0.0142 (19)0.0160 (16)0.0189 (17)0.0010 (14)0.0013 (15)0.0006 (13)
C11B0.0130 (19)0.0255 (19)0.0173 (18)0.0004 (15)0.0012 (15)0.0004 (14)
C12B0.0125 (19)0.0246 (18)0.0213 (19)0.0004 (16)0.0011 (15)0.0006 (14)
C13B0.0136 (18)0.0156 (16)0.0184 (17)0.0006 (15)0.0038 (14)0.0019 (13)
C14B0.0148 (18)0.0118 (16)0.0210 (18)0.0003 (15)0.0011 (15)0.0009 (13)
C15B0.0156 (19)0.0181 (17)0.0217 (19)0.0012 (16)0.0017 (15)0.0015 (13)
C16B0.0165 (19)0.0193 (18)0.0214 (18)0.0002 (15)0.0005 (15)0.0013 (14)
C17B0.0161 (19)0.0133 (16)0.0195 (17)0.0013 (14)0.0010 (15)0.0005 (13)
C18B0.022 (2)0.0203 (17)0.0193 (17)0.0061 (17)0.0020 (16)0.0027 (13)
C19B0.028 (2)0.0229 (17)0.0202 (18)0.0055 (18)0.0004 (16)0.0013 (13)
C20B0.0175 (19)0.0151 (16)0.0188 (18)0.0015 (14)0.0012 (15)0.0011 (13)
C21B0.019 (2)0.033 (2)0.0197 (18)0.0022 (16)0.0010 (15)0.0005 (15)
C22B0.0123 (18)0.0189 (17)0.0229 (18)0.0049 (17)0.0040 (15)0.0017 (14)
C23B0.034 (2)0.036 (2)0.0190 (18)0.0055 (19)0.0005 (17)0.0012 (15)
C24B0.038 (2)0.0243 (19)0.035 (2)0.0023 (17)0.0045 (18)0.0064 (16)
Geometric parameters (Å, º) top
O1A—C22A1.232 (4)O1B—C22B1.225 (4)
O2A—N1A1.410 (3)O2B—N1B1.418 (3)
O2A—C24A1.433 (4)O2B—C24B1.431 (4)
O3A—C3A1.422 (4)O3B—C3B1.436 (4)
O3A—H3A0.86 (4)O3B—H3B0.83 (4)
N1A—C22A1.356 (4)N1B—C22B1.370 (4)
N1A—C23A1.456 (4)N1B—C23B1.461 (4)
C1A—C2A1.535 (4)C1B—C2B1.523 (4)
C1A—C10A1.540 (4)C1B—C10B1.541 (4)
C1A—H1A0.9900C1B—H1B0.9900
C1A—H2A0.9900C1B—H2B0.9900
C2A—C3A1.503 (5)C2B—C3B1.503 (4)
C2A—H4A0.9900C2B—H4B0.9900
C2A—H5A0.9900C2B—H5B0.9900
C3A—C4A1.523 (5)C3B—C4B1.513 (4)
C3A—H31A1.0000C3B—H31B1.0000
C4A—C5A1.514 (4)C4B—C5B1.522 (4)
C4A—H41A0.9900C4B—H41B0.9900
C4A—H42A0.9900C4B—H42B0.9900
C5A—C6A1.322 (5)C5B—C6B1.327 (4)
C5A—C10A1.521 (5)C5B—C10B1.522 (4)
C6A—C7A1.499 (4)C6B—C7B1.501 (4)
C6A—H61A0.9500C6B—H61B0.9500
C7A—C8A1.523 (5)C7B—C8B1.524 (4)
C7A—H71A0.9900C7B—H71B0.9900
C7A—H72A0.9900C7B—H72B0.9900
C8A—C14A1.524 (4)C8B—C14B1.525 (4)
C8A—C9A1.542 (4)C8B—C9B1.532 (4)
C8A—H81A1.0000C8B—H81B1.0000
C9A—C11A1.538 (4)C9B—C11B1.535 (4)
C9A—C10A1.552 (4)C9B—C10B1.559 (4)
C9A—H91A1.0000C9B—H91B1.0000
C10A—C19A1.542 (4)C10B—C19B1.544 (4)
C11A—C12A1.536 (4)C11B—C12B1.540 (4)
C11A—H11A0.9900C11B—H11B0.9900
C11A—H11C0.9900C11B—H11E0.9900
C12A—C13A1.528 (4)C12B—C13B1.531 (4)
C12A—H12A0.9900C12B—H12B0.9900
C12A—H12C0.9900C12B—H12E0.9900
C13A—C14A1.541 (4)C13B—C18B1.535 (4)
C13A—C18A1.541 (4)C13B—C14B1.543 (4)
C13A—C17A1.551 (4)C13B—C17B1.556 (4)
C14A—C15A1.522 (4)C14B—C15B1.523 (4)
C14A—H14A1.0000C14B—H14B1.0000
C15A—C16A1.546 (4)C15B—C16B1.550 (4)
C15A—H15A0.9900C15B—H15B0.9900
C15A—H15C0.9900C15B—H15E0.9900
C16A—C17A1.557 (5)C16B—C17B1.548 (4)
C16A—H16A0.9900C16B—H16B0.9900
C16A—H16C0.9900C16B—H16E0.9900
C17A—C20A1.527 (4)C17B—C20B1.531 (4)
C17A—H17A1.0000C17B—H17B1.0000
C18A—H18A0.9800C18B—H18B0.9800
C18A—H18C0.9800C18B—H18E0.9800
C18A—H18D0.9800C18B—H18F0.9800
C19A—H19A0.9800C19B—H19B0.9800
C19A—H19C0.9800C19B—H19E0.9800
C19A—H19D0.9800C19B—H19F0.9800
C20A—C22A1.517 (4)C20B—C22B1.523 (4)
C20A—C21A1.533 (5)C20B—C21B1.535 (4)
C20A—H20A1.0000C20B—H20B1.0000
C21A—H21A0.9800C21B—H21B0.9800
C21A—H21C0.9800C21B—H21E0.9800
C21A—H21D0.9800C21B—H21F0.9800
C23A—H23A0.9800C23B—H23B0.9800
C23A—H23C0.9800C23B—H23E0.9800
C23A—H23D0.9800C23B—H23F0.9800
C24A—H24A0.9800C24B—H24B0.9800
C24A—H24C0.9800C24B—H24E0.9800
C24A—H24D0.9800C24B—H24F0.9800
N1A—O2A—C24A109.5 (2)N1B—O2B—C24B109.7 (2)
C3A—O3A—H3A107 (3)C3B—O3B—H3B107 (2)
C22A—N1A—O2A117.5 (2)C22B—N1B—O2B116.2 (2)
C22A—N1A—C23A123.6 (3)C22B—N1B—C23B121.2 (2)
O2A—N1A—C23A113.3 (2)O2B—N1B—C23B112.2 (2)
C2A—C1A—C10A114.9 (3)C2B—C1B—C10B114.4 (3)
C2A—C1A—H1A108.5C2B—C1B—H1B108.7
C10A—C1A—H1A108.5C10B—C1B—H1B108.7
C2A—C1A—H2A108.5C2B—C1B—H2B108.7
C10A—C1A—H2A108.5C10B—C1B—H2B108.7
H1A—C1A—H2A107.5H1B—C1B—H2B107.6
C3A—C2A—C1A110.0 (3)C3B—C2B—C1B110.3 (3)
C3A—C2A—H4A109.7C3B—C2B—H4B109.6
C1A—C2A—H4A109.7C1B—C2B—H4B109.6
C3A—C2A—H5A109.7C3B—C2B—H5B109.6
C1A—C2A—H5A109.7C1B—C2B—H5B109.6
H4A—C2A—H5A108.2H4B—C2B—H5B108.1
O3A—C3A—C2A108.2 (3)O3B—C3B—C2B112.1 (3)
O3A—C3A—C4A111.5 (3)O3B—C3B—C4B107.1 (2)
C2A—C3A—C4A110.5 (3)C2B—C3B—C4B110.7 (2)
O3A—C3A—H31A108.9O3B—C3B—H31B109.0
C2A—C3A—H31A108.9C2B—C3B—H31B109.0
C4A—C3A—H31A108.9C4B—C3B—H31B109.0
C5A—C4A—C3A113.1 (3)C3B—C4B—C5B112.5 (3)
C5A—C4A—H41A109.0C3B—C4B—H41B109.1
C3A—C4A—H41A109.0C5B—C4B—H41B109.1
C5A—C4A—H42A109.0C3B—C4B—H42B109.1
C3A—C4A—H42A109.0C5B—C4B—H42B109.1
H41A—C4A—H42A107.8H41B—C4B—H42B107.8
C6A—C5A—C4A120.8 (3)C6B—C5B—C4B119.8 (3)
C6A—C5A—C10A123.3 (3)C6B—C5B—C10B123.4 (3)
C4A—C5A—C10A115.8 (3)C4B—C5B—C10B116.8 (3)
C5A—C6A—C7A124.9 (3)C5B—C6B—C7B124.9 (3)
C5A—C6A—H61A117.5C5B—C6B—H61B117.6
C7A—C6A—H61A117.5C7B—C6B—H61B117.6
C6A—C7A—C8A112.8 (3)C6B—C7B—C8B113.5 (3)
C6A—C7A—H71A109.0C6B—C7B—H71B108.9
C8A—C7A—H71A109.0C8B—C7B—H71B108.9
C6A—C7A—H72A109.0C6B—C7B—H72B108.9
C8A—C7A—H72A109.0C8B—C7B—H72B108.9
H71A—C7A—H72A107.8H71B—C7B—H72B107.7
C7A—C8A—C14A111.2 (3)C7B—C8B—C14B110.3 (3)
C7A—C8A—C9A109.8 (2)C7B—C8B—C9B110.5 (2)
C14A—C8A—C9A110.1 (3)C14B—C8B—C9B109.3 (2)
C7A—C8A—H81A108.6C7B—C8B—H81B108.9
C14A—C8A—H81A108.6C14B—C8B—H81B108.9
C9A—C8A—H81A108.6C9B—C8B—H81B108.9
C11A—C9A—C8A112.2 (2)C8B—C9B—C11B111.4 (2)
C11A—C9A—C10A113.3 (3)C8B—C9B—C10B113.3 (2)
C8A—C9A—C10A112.4 (2)C11B—C9B—C10B113.1 (2)
C11A—C9A—H91A106.1C8B—C9B—H91B106.1
C8A—C9A—H91A106.1C11B—C9B—H91B106.1
C10A—C9A—H91A106.1C10B—C9B—H91B106.1
C5A—C10A—C1A108.6 (2)C5B—C10B—C1B108.9 (2)
C5A—C10A—C19A108.0 (3)C5B—C10B—C19B108.6 (3)
C1A—C10A—C19A109.3 (3)C1B—C10B—C19B109.4 (3)
C5A—C10A—C9A110.1 (3)C5B—C10B—C9B109.8 (3)
C1A—C10A—C9A109.1 (2)C1B—C10B—C9B108.9 (2)
C19A—C10A—C9A111.7 (2)C19B—C10B—C9B111.3 (2)
C12A—C11A—C9A114.9 (3)C9B—C11B—C12B113.9 (3)
C12A—C11A—H11A108.5C9B—C11B—H11B108.8
C9A—C11A—H11A108.5C12B—C11B—H11B108.8
C12A—C11A—H11C108.5C9B—C11B—H11E108.8
C9A—C11A—H11C108.5C12B—C11B—H11E108.8
H11A—C11A—H11C107.5H11B—C11B—H11E107.7
C13A—C12A—C11A112.0 (3)C13B—C12B—C11B112.2 (3)
C13A—C12A—H12A109.2C13B—C12B—H12B109.2
C11A—C12A—H12A109.2C11B—C12B—H12B109.2
C13A—C12A—H12C109.2C13B—C12B—H12E109.2
C11A—C12A—H12C109.2C11B—C12B—H12E109.2
H12A—C12A—H12C107.9H12B—C12B—H12E107.9
C12A—C13A—C14A106.7 (2)C12B—C13B—C18B110.6 (3)
C12A—C13A—C18A110.5 (3)C12B—C13B—C14B106.6 (2)
C14A—C13A—C18A112.0 (3)C18B—C13B—C14B112.6 (3)
C12A—C13A—C17A116.5 (3)C12B—C13B—C17B117.4 (2)
C14A—C13A—C17A100.5 (3)C18B—C13B—C17B110.2 (2)
C18A—C13A—C17A110.1 (2)C14B—C13B—C17B98.9 (2)
C15A—C14A—C8A118.6 (3)C15B—C14B—C8B118.5 (3)
C15A—C14A—C13A104.6 (2)C15B—C14B—C13B105.0 (2)
C8A—C14A—C13A114.6 (3)C8B—C14B—C13B115.3 (3)
C15A—C14A—H14A106.1C15B—C14B—H14B105.6
C8A—C14A—H14A106.1C8B—C14B—H14B105.6
C13A—C14A—H14A106.1C13B—C14B—H14B105.6
C14A—C15A—C16A103.7 (3)C14B—C15B—C16B103.9 (3)
C14A—C15A—H15A111.0C14B—C15B—H15B111.0
C16A—C15A—H15A111.0C16B—C15B—H15B111.0
C14A—C15A—H15C111.0C14B—C15B—H15E111.0
C16A—C15A—H15C111.0C16B—C15B—H15E111.0
H15A—C15A—H15C109.0H15B—C15B—H15E109.0
C15A—C16A—C17A107.0 (3)C17B—C16B—C15B106.3 (2)
C15A—C16A—H16A110.3C17B—C16B—H16B110.5
C17A—C16A—H16A110.3C15B—C16B—H16B110.5
C15A—C16A—H16C110.3C17B—C16B—H16E110.5
C17A—C16A—H16C110.3C15B—C16B—H16E110.5
H16A—C16A—H16C108.6H16B—C16B—H16E108.7
C20A—C17A—C13A117.8 (3)C20B—C17B—C16B112.4 (2)
C20A—C17A—C16A111.6 (3)C20B—C17B—C13B119.5 (2)
C13A—C17A—C16A104.0 (3)C16B—C17B—C13B103.6 (2)
C20A—C17A—H17A107.7C20B—C17B—H17B106.9
C13A—C17A—H17A107.7C16B—C17B—H17B106.9
C16A—C17A—H17A107.7C13B—C17B—H17B106.9
C13A—C18A—H18A109.5C13B—C18B—H18B109.5
C13A—C18A—H18C109.5C13B—C18B—H18E109.5
H18A—C18A—H18C109.5H18B—C18B—H18E109.5
C13A—C18A—H18D109.5C13B—C18B—H18F109.5
H18A—C18A—H18D109.5H18B—C18B—H18F109.5
H18C—C18A—H18D109.5H18E—C18B—H18F109.5
C10A—C19A—H19A109.5C10B—C19B—H19B109.5
C10A—C19A—H19C109.5C10B—C19B—H19E109.5
H19A—C19A—H19C109.5H19B—C19B—H19E109.5
C10A—C19A—H19D109.5C10B—C19B—H19F109.5
H19A—C19A—H19D109.5H19B—C19B—H19F109.5
H19C—C19A—H19D109.5H19E—C19B—H19F109.5
C22A—C20A—C17A109.9 (3)C22B—C20B—C17B109.1 (3)
C22A—C20A—C21A106.3 (3)C22B—C20B—C21B107.5 (3)
C17A—C20A—C21A114.6 (3)C17B—C20B—C21B113.6 (2)
C22A—C20A—H20A108.6C22B—C20B—H20B108.8
C17A—C20A—H20A108.6C17B—C20B—H20B108.8
C21A—C20A—H20A108.6C21B—C20B—H20B108.8
C20A—C21A—H21A109.5C20B—C21B—H21B109.5
C20A—C21A—H21C109.5C20B—C21B—H21E109.5
H21A—C21A—H21C109.5H21B—C21B—H21E109.5
C20A—C21A—H21D109.5C20B—C21B—H21F109.5
H21A—C21A—H21D109.5H21B—C21B—H21F109.5
H21C—C21A—H21D109.5H21E—C21B—H21F109.5
O1A—C22A—N1A119.4 (3)O1B—C22B—N1B119.1 (3)
O1A—C22A—C20A122.3 (3)O1B—C22B—C20B122.5 (3)
N1A—C22A—C20A118.3 (3)N1B—C22B—C20B118.4 (3)
N1A—C23A—H23A109.5N1B—C23B—H23B109.5
N1A—C23A—H23C109.5N1B—C23B—H23E109.5
H23A—C23A—H23C109.5H23B—C23B—H23E109.5
N1A—C23A—H23D109.5N1B—C23B—H23F109.5
H23A—C23A—H23D109.5H23B—C23B—H23F109.5
H23C—C23A—H23D109.5H23E—C23B—H23F109.5
O2A—C24A—H24A109.5O2B—C24B—H24B109.5
O2A—C24A—H24C109.5O2B—C24B—H24E109.5
H24A—C24A—H24C109.5H24B—C24B—H24E109.5
O2A—C24A—H24D109.5O2B—C24B—H24F109.5
H24A—C24A—H24D109.5H24B—C24B—H24F109.5
H24C—C24A—H24D109.5H24E—C24B—H24F109.5
C24A—O2A—N1A—C22A112.3 (3)C24B—O2B—N1B—C22B122.9 (3)
C24A—O2A—N1A—C23A93.4 (3)C24B—O2B—N1B—C23B91.7 (3)
C10A—C1A—C2A—C3A57.2 (4)C10B—C1B—C2B—C3B58.0 (3)
C1A—C2A—C3A—O3A178.6 (3)C1B—C2B—C3B—O3B177.7 (2)
C1A—C2A—C3A—C4A56.3 (4)C1B—C2B—C3B—C4B58.2 (3)
O3A—C3A—C4A—C5A174.3 (3)O3B—C3B—C4B—C5B176.0 (3)
C2A—C3A—C4A—C5A53.9 (4)C2B—C3B—C4B—C5B53.5 (4)
C3A—C4A—C5A—C6A129.7 (3)C3B—C4B—C5B—C6B131.5 (3)
C3A—C4A—C5A—C10A50.5 (4)C3B—C4B—C5B—C10B48.4 (4)
C4A—C5A—C6A—C7A177.5 (3)C4B—C5B—C6B—C7B179.6 (3)
C10A—C5A—C6A—C7A2.3 (5)C10B—C5B—C6B—C7B0.5 (5)
C5A—C6A—C7A—C8A12.6 (5)C5B—C6B—C7B—C8B11.6 (4)
C6A—C7A—C8A—C14A164.5 (3)C6B—C7B—C8B—C14B160.5 (2)
C6A—C7A—C8A—C9A42.5 (3)C6B—C7B—C8B—C9B39.6 (3)
C7A—C8A—C9A—C11A170.4 (3)C7B—C8B—C9B—C11B172.9 (3)
C14A—C8A—C9A—C11A47.7 (3)C14B—C8B—C9B—C11B51.4 (3)
C7A—C8A—C9A—C10A60.5 (3)C7B—C8B—C9B—C10B58.2 (3)
C14A—C8A—C9A—C10A176.8 (2)C14B—C8B—C9B—C10B179.7 (2)
C6A—C5A—C10A—C1A133.4 (3)C6B—C5B—C10B—C1B135.2 (3)
C4A—C5A—C10A—C1A46.8 (4)C4B—C5B—C10B—C1B44.7 (3)
C6A—C5A—C10A—C19A108.2 (3)C6B—C5B—C10B—C19B105.8 (3)
C4A—C5A—C10A—C19A71.6 (3)C4B—C5B—C10B—C19B74.3 (3)
C6A—C5A—C10A—C9A14.0 (4)C6B—C5B—C10B—C9B16.1 (4)
C4A—C5A—C10A—C9A166.2 (3)C4B—C5B—C10B—C9B163.8 (2)
C2A—C1A—C10A—C5A50.5 (4)C2B—C1B—C10B—C5B49.4 (3)
C2A—C1A—C10A—C19A67.1 (4)C2B—C1B—C10B—C19B69.1 (3)
C2A—C1A—C10A—C9A170.5 (3)C2B—C1B—C10B—C9B169.1 (3)
C11A—C9A—C10A—C5A173.5 (2)C8B—C9B—C10B—C5B45.2 (3)
C8A—C9A—C10A—C5A45.0 (3)C11B—C9B—C10B—C5B173.2 (2)
C11A—C9A—C10A—C1A67.4 (3)C8B—C9B—C10B—C1B164.3 (2)
C8A—C9A—C10A—C1A164.1 (3)C11B—C9B—C10B—C1B67.7 (3)
C11A—C9A—C10A—C19A53.5 (4)C8B—C9B—C10B—C19B75.1 (3)
C8A—C9A—C10A—C19A75.0 (3)C11B—C9B—C10B—C19B52.9 (3)
C8A—C9A—C11A—C12A47.0 (4)C8B—C9B—C11B—C12B51.4 (3)
C10A—C9A—C11A—C12A175.6 (3)C10B—C9B—C11B—C12B179.6 (2)
C9A—C11A—C12A—C13A52.4 (4)C9B—C11B—C12B—C13B54.1 (3)
C11A—C12A—C13A—C14A56.0 (3)C11B—C12B—C13B—C18B68.3 (3)
C11A—C12A—C13A—C18A66.0 (3)C11B—C12B—C13B—C14B54.4 (3)
C11A—C12A—C13A—C17A167.3 (3)C11B—C12B—C13B—C17B164.0 (3)
C7A—C8A—C14A—C15A56.5 (4)C7B—C8B—C14B—C15B54.4 (4)
C9A—C8A—C14A—C15A178.3 (3)C9B—C8B—C14B—C15B176.1 (3)
C7A—C8A—C14A—C13A179.2 (2)C7B—C8B—C14B—C13B179.9 (2)
C9A—C8A—C14A—C13A57.4 (3)C9B—C8B—C14B—C13B58.3 (3)
C12A—C13A—C14A—C15A167.5 (2)C12B—C13B—C14B—C15B168.6 (2)
C18A—C13A—C14A—C15A71.4 (3)C18B—C13B—C14B—C15B69.9 (3)
C17A—C13A—C14A—C15A45.5 (3)C17B—C13B—C14B—C15B46.4 (3)
C12A—C13A—C14A—C8A61.0 (3)C12B—C13B—C14B—C8B59.0 (3)
C18A—C13A—C14A—C8A60.1 (3)C18B—C13B—C14B—C8B62.4 (3)
C17A—C13A—C14A—C8A177.0 (2)C17B—C13B—C14B—C8B178.8 (2)
C8A—C14A—C15A—C16A164.3 (3)C8B—C14B—C15B—C16B162.5 (3)
C13A—C14A—C15A—C16A35.2 (3)C13B—C14B—C15B—C16B32.0 (3)
C14A—C15A—C16A—C17A11.0 (3)C14B—C15B—C16B—C17B4.4 (3)
C12A—C13A—C17A—C20A83.7 (3)C15B—C16B—C17B—C20B154.5 (2)
C14A—C13A—C17A—C20A161.5 (3)C15B—C16B—C17B—C13B24.2 (3)
C18A—C13A—C17A—C20A43.2 (4)C12B—C13B—C17B—C20B77.7 (3)
C12A—C13A—C17A—C16A152.3 (3)C18B—C13B—C17B—C20B50.2 (4)
C14A—C13A—C17A—C16A37.4 (3)C14B—C13B—C17B—C20B168.3 (3)
C18A—C13A—C17A—C16A80.9 (3)C12B—C13B—C17B—C16B156.4 (3)
C15A—C16A—C17A—C20A144.9 (2)C18B—C13B—C17B—C16B75.7 (3)
C15A—C16A—C17A—C13A16.9 (3)C14B—C13B—C17B—C16B42.5 (3)
C13A—C17A—C20A—C22A178.5 (3)C16B—C17B—C20B—C22B58.9 (3)
C16A—C17A—C20A—C22A58.3 (3)C13B—C17B—C20B—C22B179.5 (3)
C13A—C17A—C20A—C21A62.0 (4)C16B—C17B—C20B—C21B178.9 (3)
C16A—C17A—C20A—C21A177.9 (3)C13B—C17B—C20B—C21B59.5 (4)
O2A—N1A—C22A—O1A166.4 (3)O2B—N1B—C22B—O1B162.6 (3)
C23A—N1A—C22A—O1A14.9 (5)C23B—N1B—C22B—O1B20.5 (5)
O2A—N1A—C22A—C20A14.0 (4)O2B—N1B—C22B—C20B18.9 (4)
C23A—N1A—C22A—C20A165.5 (3)C23B—N1B—C22B—C20B161.0 (3)
C17A—C20A—C22A—O1A37.4 (4)C17B—C20B—C22B—O1B27.8 (4)
C21A—C20A—C22A—O1A87.2 (4)C21B—C20B—C22B—O1B95.8 (4)
C17A—C20A—C22A—N1A142.2 (3)C17B—C20B—C22B—N1B150.7 (3)
C21A—C20A—C22A—N1A93.2 (3)C21B—C20B—C22B—N1B85.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3A—H3A···O3Bi0.86 (4)1.93 (4)2.782 (4)180 (5)
O3B—H3B···O1Aii0.83 (4)1.95 (4)2.768 (3)169 (4)
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x+1, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3A—H3A···O3Bi0.86 (4)1.93 (4)2.782 (4)180 (5)
O3B—H3B···O1Aii0.83 (4)1.95 (4)2.768 (3)169 (4)
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC24H39NO3
Mr389.56
Crystal system, space groupOrthorhombic, P212121
Temperature (K)105
a, b, c (Å)7.7256 (4), 19.0030 (9), 29.8162 (15)
V3)4377.3 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.65 × 0.21 × 0.10
Data collection
DiffractometerBruker D8 Vantage single-crystal CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2013)
Tmin, Tmax0.852, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
44800, 7739, 5760
Rint0.089
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.098, 1.04
No. of reflections7739
No. of parameters511
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.19

Computer programs: APEX2 (Bruker, 2013), SAINT-Plus (Bruker, 2013), SHELXS2013 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), Mercury (Macrae et al., 2008).

 

References

First citationÅstrand, O. A. H., Gikling, I., Sylte, I., Rustan, A. C., Thoresen, G. H., Rongved, P. & Kase, E. T. (2014a). Eur. J. Med. Chem. 74, 258–263.  PubMed Google Scholar
First citationÅstrand, O. A. H., Sandberg, M., Sylte, I., Görbitz, C. H., Thoresen, G. H., Kase, E. T. & Rongved, P. (2014b). Bioorg. Med. Chem. 22, 643–650.  PubMed Google Scholar
First citationBruker (2013). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCorman, A., DeBerardinis, A. M. & Hadden, M. K. (2012). ACS Med. Chem. Lett. 3, 828–833.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDavies, S. G., Fletcher, A. M. & Thomson, J. E. (2013). Chem. Commun. 49, 8586–8598.  CrossRef CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationHsu, L.-Y., Kampf, J. W. & Nordman, C. E. (2002). Acta Cryst. B58, 260–264.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJakobsson, T., Treuter, E., Gustafsson, J.-Å. & Steffensen, K. R. (2012). Trends Pharmacol. Sci. 33, 394–404.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJiang, R.-W., Ma, S.-C., But, P. P.-H. & Mak, T. C. W. (2001). J. Nat. Prod. 64, 1266–1272.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKurek-Tyrlik, A., Michalak, K., Urbanczyk-Lipkowska, Z. & Wicha, J. (2004). Tetrahedron Lett. 45, 7479–7482.  CAS Google Scholar
First citationLaffitte, B. A., Chao, L. C., Li, J., Walczak, R., Hummasti, S., Joseph, S. B., Castrillo, A., Wilpitz, D. C., Mangelsdorf, D. J., Collins, J. L., Saez, E. & Tontonoz, P. (2003). PNAS, 100, 5419–5424.  CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheng-Zhi, H., You-Qing, H., Kai-Liang, S., Rui-Sheng, L. & Li, D. (1990). Jiegou Huaxue (Chin. J. Struct. Chem.), 9, 90.  Google Scholar
First citationSivaraman, B., Manjunath, B. N., Senthilmurugan, A., Harikrishna, K. & Singh, A. I. (2009). Indian J. Chem. Sect. B, 48, 1749–1756.  Google Scholar
First citationSolan, P. D., Piraino, G., Hake, P. W., Denenberg, A., O'Connor, M., Lentsch, A. & Zingarelli, B. (2011). Shock, 35, 367–374.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSteffensen, K. R. & Gustafsson, J. Å. (2006). Future Lipidol. 1, 181–189.  CrossRef CAS Google Scholar
First citationSubash-Babu, P., Ignacimuthu, S., Agastian, P. & Varghese, B. (2009). Bioorg. Med. Chem. 17, 2864–2870.  PubMed CAS Google Scholar
First citationViennois, E., Mouzat, K., Dufour, J., Morel, L., Lobaccaro, J.-M. & Baron, S. (2012). Mol. Cell. Endocrinol. 351, 129–141.  Web of Science CrossRef CAS PubMed Google Scholar
First citationViennois, E., Pommier, A. J. C., Mouzat, K., Oumeddour, A., El Hajjaji, F.-Z., Dufour, J., Caira, F., Volle, D. H., Baron, S. & Lobaccaro, J.-M. A. (2011). Expert Opin. Ther. Targets, 15, 219–232.  CrossRef CAS PubMed Google Scholar
First citationZhu, L. & Bakovic, M. (2008). Res. Lett. Biochem. Article ID 801849.  Google Scholar
First citationZhu, R., Ou, Z., Ruan, X. & Gong, J. (2012). Mol. Med. Rep. 5, 895–900.  Web of Science CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages 275-277
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds