organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o158-o159

Crystal structure of 2-methyl­amino-3-nitro-4-p-tolyl­pyrano[3,2-c]chromen-5(4H)-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Pachaiyappa's College for Men, Kanchipuram 631 501, India, bDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and cOrganic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 602 020, India
*Correspondence e-mail: aspandian59@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 21 December 2014; accepted 3 February 2015; online 7 February 2015)

In the racemic title compound, C20H16N2O5, the pyran ring adopts a shallow envelope conformation, with the stereogenic C atom displaced from the other atoms by 0.273 (2) Å. The dihedral angle between the fused-ring system and the pendant p-tolyl group is 87.62 (7)°. The mol­ecular conformation is consolidated by an intra­molecular N—H⋯O hydrogen bond, which generates an S(6) ring. In the crystal, mol­ecules are linked by C—H⋯O inter­actions, resulting in [010] chains.

1. Related literature

For background to the biological activity of chromene derivatives, see: Borges et al. (2005[Borges, F., Roleira, F., Milhazes, N., Santana, L. & Uriarte, E. (2005). Curr. Med. Chem. 12, 887-916.], 2009[Borges, F., Roleira, F., Milhazes, N., Uriarte, E. & Santana, L. (2009). Front. Med. Chem. 4, 23-85.]); Gibbs (2000[Gibbs, J. B. (2000). Science, 287, 1969-1973.]); Varmus (2006[Varmus, H. (2006). Science, 312, 1162-1165.]). For a related structure, see: Narayanan et al. (2013[Narayanan, P., Kamalraja, J., Perumal, P. T. & Sethusankar, K. (2013). Acta Cryst. E69, o931-o932.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C20H16N2O5

  • Mr = 364.35

  • Monoclinic, P 21 /n

  • a = 10.8336 (11) Å

  • b = 11.7927 (11) Å

  • c = 13.7275 (14) Å

  • β = 108.357 (2)°

  • V = 1664.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.21 × 0.19 × 0.18 mm

2.2. Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.981

  • 28712 measured reflections

  • 4571 independent reflections

  • 2862 reflections with I > 2σ(I)

  • Rint = 0.039

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.151

  • S = 1.03

  • 4571 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O5 0.86 1.96 2.590 (2) 129
C9—H9C⋯O4i 0.96 2.46 3.389 (3) 163
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Coumarins and their natural synthetic derivatives are pharmacologically interesting compounds due to their structural diversity and synthetic accessibility (Borges et al., 2005, 2009). Cancer, a diverse group of diseases characterized by uncontrolled growth of abnormal cells, is a major worldwide problem. It is a fatal disease standing next to the cardiovascular disease in terms of morbidity and mortality. Although the cancer research has led to a number of new and effective solutions, the medicines used as treatments have clear limitations and unfortunately cancer is projected as the primary cause of death in the future(Gibbs et al. 2000; Varmus et al. 2006).

The title compound, Fig. 1, consists of a chromene moiety attached to a nitrophenyl ring, a nitro group and a methylamine group. The molecular structure is stabilized by an intra molecular N1—H1A···O5 interaction, which generates an S(6) ring motif. The chromen ring is almost coplanar with the least-square planes of the phenyl ring, making dihedral angle of 87.18 (8)°. The six-membered pyran ring(C7/O1/C8/C10/C11/C12) adopts sofa conformatons, with puckering parameters Q2 = 0.1787 (17) Å, Q3 = -0.0688 (18) Å and ϕ2 = 0.9 (6)°, respectively. The C18 atom deviates from mean plane of the phenyl ring by -0.0260 Å. The title compound exihibits structural similarities with an already reported related structure (Narayanan et al. 2013).

In the crystal, the molecules are linked via intermolecular C9—H9C···O4 hydrogen-bond interaction to generate [010] chains.

Related literature top

For background to the biological activity of chromene derivatives, see: Borges et al. (2005, 2009); Gibbs (2000); Varmus (2006). For a related structure, see: Narayanan et al. (2013).

Experimental top

A solution of 4-methylbenzaldehyde (1.0 mmol), 4-hydroxycoumarin (1.0 mmol), NMSM (1.0 mmol), and piperidine (0.2 equiv) in EtOH (2 ml) was stirred for the three hours. After reaction was complete as indicated by TLC, the product was filtered and washed with EtOH (2 ml) to remove the excess base and other impurities. Finally, the product was recrystallized from EtOH to yield colourless blocks of the title compound.

Refinement top

N and C-bound H atoms were positioned geometrically (C–H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom displacement ellipsoids drawn at the 30% probability level. The intramolecular N—H···O hydrogen bond, which generates an S(6) ring motif, is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis, showing C9—H9C···O4 hydrogen bonds producing chains parallel to the 101 planes.
2-Methylamino-3-nitro-4-p-tolylpyrano[3,2-c]chromen-5(4H)-one top
Crystal data top
C20H16N2O5F(000) = 760
Mr = 364.35Dx = 1.454 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2862 reflections
a = 10.8336 (11) Åθ = 2.1–30.3°
b = 11.7927 (11) ŵ = 0.11 mm1
c = 13.7275 (14) ÅT = 293 K
β = 108.357 (2)°Block, colourless
V = 1664.5 (3) Å30.21 × 0.19 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
4571 independent reflections
Radiation source: fine-focus sealed tube2862 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω and ϕ scansθmax = 30.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1515
Tmin = 0.978, Tmax = 0.981k = 1516
28712 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0607P)2 + 0.7266P]
where P = (Fo2 + 2Fc2)/3
4571 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C20H16N2O5V = 1664.5 (3) Å3
Mr = 364.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.8336 (11) ŵ = 0.11 mm1
b = 11.7927 (11) ÅT = 293 K
c = 13.7275 (14) Å0.21 × 0.19 × 0.18 mm
β = 108.357 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4571 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2862 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.981Rint = 0.039
28712 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.03Δρmax = 0.26 e Å3
4571 reflectionsΔρmin = 0.36 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.39731 (17)0.29273 (15)0.11931 (14)0.0394 (4)
C20.3614 (2)0.18037 (17)0.11445 (17)0.0525 (5)
H20.28020.15940.11810.063*
C30.4481 (2)0.09986 (18)0.10411 (18)0.0569 (6)
H30.42560.02350.10140.068*
C40.5677 (2)0.13063 (17)0.09769 (17)0.0538 (5)
H40.62460.07510.08950.065*
C50.60377 (19)0.24263 (17)0.10328 (15)0.0455 (4)
H50.68490.26290.09900.055*
C60.51827 (16)0.32599 (14)0.11533 (13)0.0358 (4)
C70.54773 (16)0.44453 (14)0.13040 (13)0.0342 (4)
C80.70721 (17)0.58447 (15)0.13873 (13)0.0375 (4)
C90.9063 (2)0.5072 (2)0.11560 (18)0.0560 (5)
H9A0.98500.53860.10890.084*
H9B0.86260.46400.05530.084*
H9C0.92700.45870.17470.084*
C100.62572 (17)0.66705 (14)0.15559 (13)0.0365 (4)
C110.50320 (16)0.64000 (14)0.18012 (13)0.0359 (4)
H110.43400.69180.14220.043*
C120.46442 (16)0.52058 (15)0.14680 (13)0.0350 (4)
C130.33590 (17)0.48409 (16)0.14373 (14)0.0422 (4)
C140.52303 (15)0.65125 (14)0.29503 (13)0.0331 (4)
C150.60210 (17)0.57475 (15)0.36318 (14)0.0400 (4)
H150.64100.51590.33840.048*
C160.62389 (18)0.58497 (16)0.46753 (15)0.0445 (4)
H160.67730.53280.51200.053*
C170.56764 (17)0.67147 (16)0.50698 (14)0.0414 (4)
C180.5931 (2)0.6825 (2)0.62041 (16)0.0597 (6)
H18A0.65150.62360.65540.090*
H18B0.51270.67600.63540.090*
H18C0.63160.75520.64310.090*
C190.48681 (18)0.74572 (16)0.43833 (15)0.0449 (4)
H190.44660.80370.46300.054*
C200.46409 (17)0.73612 (15)0.33388 (14)0.0405 (4)
H200.40870.78720.28940.049*
N10.82208 (16)0.59828 (15)0.12756 (13)0.0480 (4)
H10.84970.66660.12730.058*
N20.66129 (17)0.78014 (13)0.15862 (12)0.0455 (4)
O10.67089 (11)0.47326 (10)0.13148 (10)0.0405 (3)
O20.30759 (12)0.37082 (11)0.12920 (11)0.0469 (3)
O30.25155 (13)0.54490 (13)0.15308 (14)0.0624 (4)
O40.58643 (16)0.85218 (12)0.17480 (12)0.0591 (4)
O50.76697 (15)0.80934 (12)0.14575 (12)0.0598 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0360 (9)0.0392 (9)0.0391 (9)0.0006 (7)0.0063 (7)0.0084 (7)
C20.0418 (10)0.0437 (11)0.0668 (14)0.0075 (8)0.0098 (9)0.0126 (10)
C30.0534 (12)0.0367 (10)0.0722 (15)0.0048 (9)0.0077 (10)0.0144 (10)
C40.0517 (12)0.0410 (11)0.0642 (13)0.0066 (9)0.0117 (10)0.0147 (9)
C50.0421 (10)0.0443 (11)0.0492 (11)0.0049 (8)0.0129 (8)0.0096 (8)
C60.0367 (9)0.0356 (9)0.0325 (9)0.0017 (7)0.0073 (7)0.0051 (7)
C70.0324 (8)0.0367 (9)0.0324 (8)0.0011 (7)0.0089 (7)0.0012 (7)
C80.0418 (9)0.0384 (9)0.0338 (9)0.0000 (7)0.0140 (7)0.0048 (7)
C90.0470 (11)0.0626 (13)0.0669 (14)0.0091 (10)0.0301 (10)0.0089 (11)
C100.0412 (9)0.0320 (8)0.0374 (9)0.0011 (7)0.0139 (7)0.0033 (7)
C110.0342 (8)0.0303 (8)0.0417 (9)0.0059 (7)0.0097 (7)0.0013 (7)
C120.0332 (8)0.0357 (9)0.0342 (9)0.0034 (7)0.0079 (7)0.0016 (7)
C130.0346 (9)0.0415 (10)0.0470 (10)0.0018 (7)0.0081 (8)0.0061 (8)
C140.0298 (8)0.0308 (8)0.0402 (9)0.0002 (6)0.0131 (7)0.0001 (7)
C150.0393 (9)0.0360 (9)0.0457 (10)0.0082 (7)0.0149 (8)0.0012 (7)
C160.0436 (10)0.0439 (10)0.0438 (10)0.0067 (8)0.0107 (8)0.0084 (8)
C170.0385 (9)0.0442 (10)0.0441 (10)0.0077 (8)0.0165 (8)0.0041 (8)
C180.0679 (14)0.0687 (15)0.0450 (12)0.0062 (11)0.0212 (10)0.0041 (10)
C190.0460 (10)0.0415 (10)0.0517 (11)0.0046 (8)0.0220 (9)0.0075 (8)
C200.0385 (9)0.0366 (9)0.0466 (10)0.0071 (7)0.0138 (8)0.0001 (8)
N10.0472 (9)0.0462 (9)0.0595 (10)0.0008 (7)0.0295 (8)0.0051 (8)
N20.0586 (10)0.0366 (8)0.0424 (9)0.0015 (7)0.0176 (8)0.0045 (7)
O10.0364 (6)0.0360 (7)0.0525 (8)0.0021 (5)0.0189 (6)0.0005 (6)
O20.0344 (6)0.0419 (7)0.0626 (9)0.0018 (5)0.0129 (6)0.0120 (6)
O30.0376 (7)0.0541 (9)0.0952 (12)0.0077 (6)0.0204 (8)0.0142 (8)
O40.0780 (10)0.0349 (7)0.0708 (10)0.0064 (7)0.0328 (8)0.0035 (7)
O50.0682 (10)0.0461 (8)0.0738 (11)0.0111 (7)0.0348 (8)0.0063 (7)
Geometric parameters (Å, º) top
C1—O21.376 (2)C11—C121.499 (2)
C1—C21.377 (3)C11—C141.529 (2)
C1—C61.385 (2)C11—H110.9800
C2—C31.374 (3)C12—C131.445 (2)
C2—H20.9300C13—O31.200 (2)
C3—C41.374 (3)C13—O21.371 (2)
C3—H30.9300C14—C201.381 (2)
C4—C51.373 (3)C14—C151.385 (2)
C4—H40.9300C15—C161.382 (3)
C5—C61.396 (2)C15—H150.9300
C5—H50.9300C16—C171.383 (3)
C6—C71.434 (2)C16—H160.9300
C7—C121.341 (2)C17—C191.379 (3)
C7—O11.372 (2)C17—C181.499 (3)
C8—N11.311 (2)C18—H18A0.9600
C8—O11.364 (2)C18—H18B0.9600
C8—C101.382 (2)C18—H18C0.9600
C9—N11.452 (3)C19—C201.381 (3)
C9—H9A0.9600C19—H190.9300
C9—H9B0.9600C20—H200.9300
C9—H9C0.9600N1—H10.8600
C10—N21.385 (2)N2—O41.242 (2)
C10—C111.503 (2)N2—O51.260 (2)
O2—C1—C2116.81 (17)C7—C12—C13119.29 (16)
O2—C1—C6121.38 (16)C7—C12—C11122.74 (15)
C2—C1—C6121.81 (17)C13—C12—C11117.61 (15)
C3—C2—C1118.54 (19)O3—C13—O2117.06 (17)
C3—C2—H2120.7O3—C13—C12125.32 (18)
C1—C2—H2120.7O2—C13—C12117.62 (15)
C2—C3—C4120.87 (19)C20—C14—C15118.29 (16)
C2—C3—H3119.6C20—C14—C11121.95 (15)
C4—C3—H3119.6C15—C14—C11119.76 (15)
C5—C4—C3120.53 (19)C16—C15—C14120.72 (16)
C5—C4—H4119.7C16—C15—H15119.6
C3—C4—H4119.7C14—C15—H15119.6
C4—C5—C6119.76 (19)C15—C16—C17121.18 (17)
C4—C5—H5120.1C15—C16—H16119.4
C6—C5—H5120.1C17—C16—H16119.4
C1—C6—C5118.46 (17)C19—C17—C16117.64 (17)
C1—C6—C7116.14 (15)C19—C17—C18121.61 (18)
C5—C6—C7125.29 (17)C16—C17—C18120.75 (19)
C12—C7—O1122.46 (16)C17—C18—H18A109.5
C12—C7—C6123.04 (16)C17—C18—H18B109.5
O1—C7—C6114.43 (14)H18A—C18—H18B109.5
N1—C8—O1111.93 (16)C17—C18—H18C109.5
N1—C8—C10127.74 (17)H18A—C18—H18C109.5
O1—C8—C10120.33 (15)H18B—C18—H18C109.5
N1—C9—H9A109.5C17—C19—C20121.64 (17)
N1—C9—H9B109.5C17—C19—H19119.2
H9A—C9—H9B109.5C20—C19—H19119.2
N1—C9—H9C109.5C19—C20—C14120.49 (17)
H9A—C9—H9C109.5C19—C20—H20119.8
H9B—C9—H9C109.5C14—C20—H20119.8
C8—C10—N2119.80 (16)C8—N1—C9125.09 (17)
C8—C10—C11122.95 (15)C8—N1—H1117.5
N2—C10—C11117.04 (15)C9—N1—H1117.5
C12—C11—C10108.26 (14)O4—N2—O5120.76 (16)
C12—C11—C14109.33 (14)O4—N2—C10118.21 (16)
C10—C11—C14111.45 (14)O5—N2—C10121.03 (16)
C12—C11—H11109.3C8—O1—C7119.69 (13)
C10—C11—H11109.3C13—O2—C1122.25 (14)
C14—C11—H11109.3
O2—C1—C2—C3179.72 (18)C11—C12—C13—O39.9 (3)
C6—C1—C2—C30.8 (3)C7—C12—C13—O23.3 (3)
C1—C2—C3—C40.6 (3)C11—C12—C13—O2169.93 (15)
C2—C3—C4—C51.1 (3)C12—C11—C14—C20129.00 (17)
C3—C4—C5—C60.2 (3)C10—C11—C14—C20111.35 (18)
O2—C1—C6—C5178.80 (16)C12—C11—C14—C1551.0 (2)
C2—C1—C6—C51.7 (3)C10—C11—C14—C1568.7 (2)
O2—C1—C6—C74.9 (2)C20—C14—C15—C161.6 (3)
C2—C1—C6—C7174.59 (18)C11—C14—C15—C16178.42 (16)
C4—C5—C6—C11.2 (3)C14—C15—C16—C170.0 (3)
C4—C5—C6—C7174.73 (18)C15—C16—C17—C191.4 (3)
C1—C6—C7—C120.5 (3)C15—C16—C17—C18179.30 (18)
C5—C6—C7—C12176.51 (18)C16—C17—C19—C201.2 (3)
C1—C6—C7—O1176.64 (15)C18—C17—C19—C20179.47 (18)
C5—C6—C7—O10.6 (3)C17—C19—C20—C140.4 (3)
N1—C8—C10—N22.4 (3)C15—C14—C20—C191.8 (3)
O1—C8—C10—N2177.36 (15)C11—C14—C20—C19178.26 (16)
N1—C8—C10—C11172.24 (17)O1—C8—N1—C93.8 (3)
O1—C8—C10—C118.0 (3)C10—C8—N1—C9176.42 (19)
C8—C10—C11—C1219.5 (2)C8—C10—N2—O4179.39 (17)
N2—C10—C11—C12165.70 (15)C11—C10—N2—O44.5 (2)
C8—C10—C11—C14100.73 (19)C8—C10—N2—O50.3 (3)
N2—C10—C11—C1474.03 (19)C11—C10—N2—O5175.25 (16)
O1—C7—C12—C13179.56 (15)N1—C8—O1—C7173.09 (15)
C6—C7—C12—C133.6 (3)C10—C8—O1—C76.7 (2)
O1—C7—C12—C117.6 (3)C12—C7—O1—C87.0 (2)
C6—C7—C12—C11169.29 (16)C6—C7—O1—C8175.86 (15)
C10—C11—C12—C719.3 (2)O3—C13—O2—C1178.85 (17)
C14—C11—C12—C7102.29 (19)C12—C13—O2—C11.0 (3)
C10—C11—C12—C13167.72 (15)C2—C1—O2—C13174.23 (17)
C14—C11—C12—C1370.70 (19)C6—C1—O2—C135.2 (3)
C7—C12—C13—O3176.84 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O50.861.962.590 (2)129
C9—H9C···O4i0.962.463.389 (3)163
Symmetry code: (i) x+3/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O50.861.962.590 (2)129
C9—H9C···O4i0.962.463.389 (3)163
Symmetry code: (i) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationBorges, F., Roleira, F., Milhazes, N., Santana, L. & Uriarte, E. (2005). Curr. Med. Chem. 12, 887–916.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBorges, F., Roleira, F., Milhazes, N., Uriarte, E. & Santana, L. (2009). Front. Med. Chem. 4, 23–85.  Google Scholar
First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGibbs, J. B. (2000). Science, 287, 1969–1973.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNarayanan, P., Kamalraja, J., Perumal, P. T. & Sethusankar, K. (2013). Acta Cryst. E69, o931–o932.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVarmus, H. (2006). Science, 312, 1162–1165.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o158-o159
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds