organic compounds
N-(2-hydroxyethyl)-N-{2-hydroxy-3-[(E)-N-hydroxyethanimidoyl]-5-methylbenzyl}ethanaminium acetate monohydrate
of 2-hydroxy-aSchool of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, Scotland
*Correspondence e-mail: g.s.nichol@ed.ac.uk
The structure of the title hydrated molecular salt, C14H23N2O4+·C2H3O2−·H2O, was determined as part of a wider study on the use of the molecule as a polydentate ligand in the synthesis of MnIII clusters with magnetic properties. The cation features intramolecular O—H⋯N and N—H⋯O hydrogen-bond interactions. The features a range of intermolecular hydrogen-bonding interactions, principally O—H⋯O interactions between all three species in the An R24(8) graph-set hydrogen-bonding motif between the anion and water molecules serves as a unit which links to the cation via the diethanolamine group. Each O atom of the acetate anion accepts two hydrogen bonds.
Keywords: crystal structure; hydrogen bonding; hydrate; organic salt; magnetism.
CCDC reference: 1047385
1. Related literature
For background literature on Mn-containing single molecule magnets, see: Inglis et al. (2012); Milios et al. (2007); Tasiopoulos & Perlepes (2008). For examples of the use of 3-{[bis(2-hydroxyethyl)amino]methyl}-2-hydroxy-5-methylbenzaldehyde in the synthesis of magnetic Mn cluster compounds, see: Sanz et al. (2014a,b) – molecular wheels; Frost et al. (2014) – tetrahedron cage. For examples of other magnentic oxime-containing clusters, see: Vlahopoulou et al. (2009); Stamatatos et al. (2007). For a review of pyridyl–oxime coordination chemistry, see: Milios et al. (2006). For the synthesis of 3-{[bis(2-hydroxyethyl)amino]methyl}-2-hydroxy-5-methylbenzaldehyde, see: Wang et al. (2006).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: CrysAlis PRO (Agilent, 2014); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.
Supporting information
CCDC reference: 1047385
10.1107/S2056989015002418/hb7350sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015002418/hb7350Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015002418/hb7350Isup3.cdx
Supporting information file. DOI: 10.1107/S2056989015002418/hb7350Isup4.cml
The structure of the title hydrated salt was determined as part of a wider study on the synthesis of polymetallic compounds with potentially interesting magnetic properties. The phenolic
are a ligand family which have had enormous success in the construction of Mn cluster compounds that behave as single molecule magnets (Milios et al., 2007; Inglis et al., 2012). These ligand types tend to form systems based on the [Mn3O(L)3]+ (L = salicylaldoxime) building block (Vlahopoulou et al., 2009; Stamatatos et al., 2007; Milios et al., 2006). An additional was introduced onto the aromatic framework of the ligand in an attempt to disrupt the formation of clusters based on this motif and to see if higher nuclearity compounds based on phenolic could be isolated. A diethanolamine was the obvious choice given that the this has an excellent track record of making magnetically interesting Mn clusters in its own right (Tasiopoulos & Perlepes, 2008). For examples of the use of the H4L in the synthesis of magnetic materials, see Frost et al. (2014) and Sanz et al. (2014a , 2014b).A check of the molecular geometry with Mogul showed all geometric parameters to be unexceptional. A mean plane fitted through atoms O1, O2, N1 and C1 to C10 (i.e. all ring atoms plus the oxime and hydroxyl groups) has an rms deviation of 0.029 Å.
The
features extensive hydrogen bonding, principally O–H···O interactions involving all species in the Intramolecular interactions within the cation are, perhaps, less important but serve to support the overall structure by locking the cation conformation. The N2–H2A···O1 interaction in particular is probably quite weak. The R24(8) graph set motif between the anion and water molecules serves as an important unit which links to the cation via the hydroxyethane groups to propagate the three-dimensional structure. Hydrogen bonding information is summarised in Table 2.Experimental Procedures
1H and 13CNMR spectra were recorded on a nav 500 MHz spectrometer. 3-((Bis(2-hydroxyethyl)amino)methyl)-2-hydroxy-5-methylbenzaldehyde was prepared according to a published procedure (Wang et al., 2006). Solvents and reagents were used as received from commercial suppliers.
Synthesis of 3-{[Bis(2-hydroxyethyl)amino]methyl}-2-hydroxy-5-methylsalicylaldoxime (H4L)
3-{[Bis(2-hydroxyethyl)amino]methyl}-2-hydroxy-5-methylbenzaldehyde (10.8 g, 40 mmol), hydroxylamine hydrochloride (3.5 g, 50 mmol) and sodium acetate (4.14 g, 50 mmol) were dissolved in 500 mL of ethanol. The mixture was refluxed under N2 for 4 h. A white precipitate was filtered off from the warm ethanol solution. The solvent was evaporated to dryness, a minimum amount of CH2Cl2 added and the sample stored at -10°C for 24 hours. Clear block shaped crystals grew and were collected after filtration (10.16 g, 90%). 1H NMR (500 MHz, DMSO): δ 7.12 (bs, 1H), 7.05 (bs, 1H), 3.60 (s, 2H), 3.54 (t, J=6.2 Hz, 4H), 2.53 (t, J= 6.2 Hz, 4H), 2.23 (s, 3H), 2.22 (s, 3H).13C NMR (500 MHz, DMSO): δ 157.28 (1C, CarOH), 153.86 (1C, CNOH), 131.34 (1C, CH), 127.61 (1C, CH), 126.99 (1C, C), 124.34 (1C, C), 121.01 (1C, C), 59.14 (2C, CH2), 56.51 (2C, CH2), 54.78 (1C, CH2), 21.69 (1C, CH3), 12.73 (1C, CH3).
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).Fig. 1. The asymmetric unit of H4L. Displacement ellipsoids are at the 50% probability level and C-bound H atoms have been omitted. | |
Fig. 2. Hydrogen-bonding interactions, indicated by dashed lines, in the crystal structure of H4L. Symmetry operations for equivalent atoms: $1, 1 - x, -y, 2 - z; $2, x, 1/2 - y, 1/2 + z; $3, 1 - x, -1/2 + y, 3/2 - z. |
C14H23N2O4+·C2H3O2−·H2O | F(000) = 776 |
Mr = 360.40 | Dx = 1.303 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 14.4338 (5) Å | Cell parameters from 10187 reflections |
b = 10.4786 (3) Å | θ = 3.5–30.2° |
c = 12.4045 (4) Å | µ = 0.10 mm−1 |
β = 101.593 (3)° | T = 120 K |
V = 1837.86 (10) Å3 | Block, colourless |
Z = 4 | 0.48 × 0.38 × 0.18 mm |
Agilent SuperNova diffractometer | 5542 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 4362 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.054 |
Detector resolution: 5.1574 pixels mm-1 | θmax = 31.1°, θmin = 3.1° |
ω scans | h = −20→20 |
Absorption correction: gaussian (CrysAlis PRO; Agilent, 2014) | k = −15→13 |
Tmin = 0.942, Tmax = 0.975 | l = −18→17 |
38067 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.054 | All H-atom parameters refined |
wR(F2) = 0.129 | w = 1/[σ2(Fo2) + (0.0431P)2 + 0.9291P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
5542 reflections | Δρmax = 0.33 e Å−3 |
338 parameters | Δρmin = −0.24 e Å−3 |
0 restraints |
C14H23N2O4+·C2H3O2−·H2O | V = 1837.86 (10) Å3 |
Mr = 360.40 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 14.4338 (5) Å | µ = 0.10 mm−1 |
b = 10.4786 (3) Å | T = 120 K |
c = 12.4045 (4) Å | 0.48 × 0.38 × 0.18 mm |
β = 101.593 (3)° |
Agilent SuperNova diffractometer | 5542 independent reflections |
Absorption correction: gaussian (CrysAlis PRO; Agilent, 2014) | 4362 reflections with I > 2σ(I) |
Tmin = 0.942, Tmax = 0.975 | Rint = 0.054 |
38067 measured reflections |
R[F2 > 2σ(F2)] = 0.054 | 0 restraints |
wR(F2) = 0.129 | All H-atom parameters refined |
S = 1.09 | Δρmax = 0.33 e Å−3 |
5542 reflections | Δρmin = −0.24 e Å−3 |
338 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. All H atoms were located in a difference Fourier map and refined freely. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.25286 (7) | −0.10957 (10) | 0.65849 (9) | 0.0229 (2) | |
H1 | 0.2395 (15) | −0.050 (2) | 0.6990 (18) | 0.046 (6)* | |
O2 | 0.14106 (9) | 0.14279 (11) | 0.81376 (9) | 0.0320 (3) | |
H2 | 0.2011 (17) | 0.160 (2) | 0.8484 (19) | 0.054 (7)* | |
O3 | 0.24215 (8) | 0.03539 (12) | 0.40801 (10) | 0.0304 (3) | |
H3 | 0.2659 (18) | 0.107 (3) | 0.418 (2) | 0.060 (7)* | |
O4 | 0.45674 (8) | −0.04092 (11) | 0.61916 (10) | 0.0300 (3) | |
H4 | 0.4552 (16) | −0.026 (2) | 0.686 (2) | 0.055 (7)* | |
N1 | 0.15152 (9) | 0.03976 (12) | 0.74689 (10) | 0.0232 (3) | |
N2 | 0.32127 (9) | −0.19342 (12) | 0.47375 (10) | 0.0220 (3) | |
H2A | 0.3117 (13) | −0.1223 (18) | 0.5112 (15) | 0.028 (5)* | |
C1 | 0.16920 (10) | −0.16143 (13) | 0.60648 (11) | 0.0202 (3) | |
C2 | 0.17518 (10) | −0.26194 (13) | 0.53438 (12) | 0.0223 (3) | |
C3 | 0.09294 (11) | −0.32024 (14) | 0.47871 (12) | 0.0246 (3) | |
H3A | 0.0993 (13) | −0.3890 (18) | 0.4276 (15) | 0.029 (5)* | |
C4 | 0.00394 (11) | −0.27997 (14) | 0.49290 (12) | 0.0243 (3) | |
C5 | −0.00027 (10) | −0.17826 (14) | 0.56389 (11) | 0.0213 (3) | |
H5 | −0.0609 (13) | −0.1492 (17) | 0.5733 (14) | 0.024 (4)* | |
C6 | 0.08079 (10) | −0.11679 (13) | 0.62184 (11) | 0.0192 (3) | |
C7 | 0.07274 (10) | −0.00789 (14) | 0.69504 (11) | 0.0203 (3) | |
C8 | −0.02208 (11) | 0.04239 (17) | 0.70539 (14) | 0.0264 (3) | |
H8A | −0.0567 (16) | 0.073 (2) | 0.638 (2) | 0.053 (6)* | |
H8B | −0.0153 (17) | 0.104 (2) | 0.757 (2) | 0.058 (7)* | |
H8C | −0.0601 (16) | −0.026 (2) | 0.7244 (18) | 0.052 (6)* | |
C9 | −0.08552 (13) | −0.34031 (18) | 0.43012 (14) | 0.0323 (4) | |
H9A | −0.1036 (15) | −0.305 (2) | 0.3569 (18) | 0.042 (6)* | |
H9B | −0.1359 (18) | −0.334 (2) | 0.474 (2) | 0.063 (7)* | |
H9C | −0.0770 (15) | −0.429 (2) | 0.4181 (18) | 0.048 (6)* | |
C10 | 0.27174 (11) | −0.30209 (14) | 0.51927 (14) | 0.0261 (3) | |
H10A | 0.2691 (13) | −0.3701 (19) | 0.4675 (16) | 0.032 (5)* | |
H10B | 0.3144 (13) | −0.3244 (17) | 0.5908 (15) | 0.027 (5)* | |
C11 | 0.27852 (12) | −0.16896 (15) | 0.35473 (12) | 0.0259 (3) | |
H11A | 0.2117 (13) | −0.1940 (17) | 0.3425 (14) | 0.024 (4)* | |
H11B | 0.3108 (13) | −0.2206 (19) | 0.3119 (15) | 0.032 (5)* | |
C12 | 0.28636 (12) | −0.02870 (16) | 0.33149 (13) | 0.0294 (3) | |
H12A | 0.3503 (14) | −0.0019 (18) | 0.3386 (15) | 0.032 (5)* | |
H12B | 0.2514 (13) | −0.0128 (18) | 0.2536 (15) | 0.030 (5)* | |
C13 | 0.42648 (11) | −0.21255 (17) | 0.49313 (14) | 0.0288 (3) | |
H13A | 0.4494 (12) | −0.1530 (17) | 0.4413 (14) | 0.025 (4)* | |
H13B | 0.4385 (12) | −0.3021 (18) | 0.4792 (14) | 0.027 (4)* | |
C14 | 0.47242 (12) | −0.17376 (17) | 0.60884 (14) | 0.0298 (3) | |
H14A | 0.5399 (14) | −0.1927 (18) | 0.6200 (15) | 0.034 (5)* | |
H14B | 0.4445 (13) | −0.2225 (18) | 0.6635 (15) | 0.030 (5)* | |
O5 | 0.30047 (8) | 0.22604 (11) | 0.92796 (9) | 0.0297 (3) | |
O6 | 0.38120 (9) | 0.06607 (11) | 1.01687 (10) | 0.0349 (3) | |
C15 | 0.34399 (10) | 0.17389 (14) | 1.01535 (13) | 0.0242 (3) | |
C16 | 0.35169 (15) | 0.24691 (19) | 1.12192 (15) | 0.0347 (4) | |
H16A | 0.409 (2) | 0.234 (3) | 1.167 (3) | 0.098 (11)* | |
H16B | 0.348 (2) | 0.337 (3) | 1.110 (3) | 0.101 (11)* | |
H16C | 0.307 (2) | 0.221 (3) | 1.162 (3) | 0.108 (12)* | |
O7 | 0.46060 (14) | 0.00383 (17) | 0.83335 (12) | 0.0569 (5) | |
H7A | 0.4274 (18) | 0.028 (3) | 0.873 (2) | 0.059 (8)* | |
H7B | 0.5160 (19) | −0.016 (3) | 0.875 (2) | 0.064 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0198 (5) | 0.0238 (5) | 0.0247 (5) | 0.0018 (4) | 0.0037 (4) | −0.0027 (4) |
O2 | 0.0276 (6) | 0.0354 (6) | 0.0320 (6) | 0.0025 (5) | 0.0035 (5) | −0.0167 (5) |
O3 | 0.0300 (6) | 0.0243 (6) | 0.0361 (6) | −0.0018 (5) | 0.0048 (5) | −0.0022 (5) |
O4 | 0.0306 (6) | 0.0328 (6) | 0.0282 (6) | 0.0025 (5) | 0.0099 (5) | −0.0019 (5) |
N1 | 0.0251 (6) | 0.0229 (6) | 0.0216 (6) | 0.0016 (5) | 0.0051 (5) | −0.0044 (5) |
N2 | 0.0225 (6) | 0.0208 (6) | 0.0233 (6) | 0.0035 (5) | 0.0062 (5) | −0.0030 (5) |
C1 | 0.0223 (7) | 0.0177 (6) | 0.0208 (6) | 0.0002 (5) | 0.0046 (5) | 0.0031 (5) |
C2 | 0.0268 (7) | 0.0167 (6) | 0.0251 (7) | 0.0020 (5) | 0.0096 (6) | 0.0036 (5) |
C3 | 0.0343 (8) | 0.0166 (6) | 0.0247 (7) | −0.0023 (6) | 0.0098 (6) | 0.0001 (5) |
C4 | 0.0291 (8) | 0.0232 (7) | 0.0218 (6) | −0.0063 (6) | 0.0077 (6) | 0.0005 (5) |
C5 | 0.0214 (7) | 0.0226 (7) | 0.0208 (6) | −0.0016 (5) | 0.0070 (5) | 0.0025 (5) |
C6 | 0.0223 (7) | 0.0180 (6) | 0.0178 (6) | −0.0002 (5) | 0.0053 (5) | 0.0029 (5) |
C7 | 0.0223 (7) | 0.0218 (7) | 0.0177 (6) | 0.0008 (5) | 0.0061 (5) | 0.0017 (5) |
C8 | 0.0227 (8) | 0.0304 (8) | 0.0271 (7) | 0.0018 (6) | 0.0075 (6) | −0.0024 (6) |
C9 | 0.0333 (9) | 0.0343 (9) | 0.0303 (8) | −0.0124 (7) | 0.0085 (7) | −0.0093 (7) |
C10 | 0.0301 (8) | 0.0185 (7) | 0.0312 (8) | 0.0048 (6) | 0.0097 (6) | 0.0005 (6) |
C11 | 0.0294 (8) | 0.0282 (8) | 0.0204 (6) | −0.0018 (6) | 0.0057 (6) | −0.0049 (6) |
C12 | 0.0313 (9) | 0.0310 (8) | 0.0251 (7) | −0.0038 (6) | 0.0039 (6) | 0.0016 (6) |
C13 | 0.0217 (8) | 0.0337 (9) | 0.0326 (8) | 0.0081 (6) | 0.0091 (6) | −0.0046 (7) |
C14 | 0.0224 (8) | 0.0337 (9) | 0.0331 (8) | 0.0074 (6) | 0.0050 (6) | −0.0006 (7) |
O5 | 0.0302 (6) | 0.0252 (6) | 0.0310 (6) | −0.0027 (4) | −0.0003 (5) | 0.0003 (4) |
O6 | 0.0394 (7) | 0.0216 (6) | 0.0417 (7) | 0.0006 (5) | 0.0032 (5) | −0.0002 (5) |
C15 | 0.0192 (7) | 0.0219 (7) | 0.0311 (7) | −0.0064 (5) | 0.0043 (6) | −0.0005 (6) |
C16 | 0.0391 (10) | 0.0332 (9) | 0.0309 (8) | −0.0034 (7) | 0.0044 (7) | −0.0042 (7) |
O7 | 0.0679 (11) | 0.0706 (11) | 0.0285 (7) | 0.0369 (9) | 0.0011 (7) | −0.0062 (7) |
O1—H1 | 0.85 (2) | C8—H8B | 0.91 (3) |
O1—C1 | 1.3625 (17) | C8—H8C | 0.96 (2) |
O2—H2 | 0.91 (2) | C9—H9A | 0.97 (2) |
O2—N1 | 1.3880 (16) | C9—H9B | 0.99 (3) |
O3—H3 | 0.82 (3) | C9—H9C | 0.96 (2) |
O3—C12 | 1.415 (2) | C10—H10A | 0.95 (2) |
O4—H4 | 0.85 (2) | C10—H10B | 1.001 (18) |
O4—C14 | 1.420 (2) | C11—H11A | 0.982 (18) |
N1—C7 | 1.2891 (19) | C11—H11B | 0.94 (2) |
N2—H2A | 0.903 (19) | C11—C12 | 1.506 (2) |
N2—C10 | 1.513 (2) | C12—H12A | 0.952 (19) |
N2—C11 | 1.5034 (19) | C12—H12B | 1.009 (18) |
N2—C13 | 1.503 (2) | C13—H13A | 0.999 (18) |
C1—C2 | 1.396 (2) | C13—H13B | 0.976 (19) |
C1—C6 | 1.408 (2) | C13—C14 | 1.511 (2) |
C2—C3 | 1.389 (2) | C14—H14A | 0.98 (2) |
C2—C10 | 1.503 (2) | C14—H14B | 0.996 (19) |
C3—H3A | 0.976 (19) | O5—C15 | 1.2628 (18) |
C3—C4 | 1.396 (2) | O6—C15 | 1.2495 (19) |
C4—C5 | 1.392 (2) | C15—C16 | 1.512 (2) |
C4—C9 | 1.506 (2) | C16—H16A | 0.91 (3) |
C5—H5 | 0.955 (18) | C16—H16B | 0.96 (4) |
C5—C6 | 1.401 (2) | C16—H16C | 0.92 (4) |
C6—C7 | 1.4773 (19) | O7—H7A | 0.79 (3) |
C7—C8 | 1.496 (2) | O7—H7B | 0.89 (3) |
C8—H8A | 0.95 (2) | ||
C1—O1—H1 | 106.8 (15) | H9A—C9—H9C | 104.1 (18) |
N1—O2—H2 | 103.4 (15) | H9B—C9—H9C | 106 (2) |
C12—O3—H3 | 107.3 (18) | N2—C10—H10A | 105.6 (11) |
C14—O4—H4 | 107.4 (17) | N2—C10—H10B | 104.7 (10) |
C7—N1—O2 | 114.11 (12) | C2—C10—N2 | 110.81 (12) |
C10—N2—H2A | 107.2 (12) | C2—C10—H10A | 112.3 (11) |
C11—N2—H2A | 106.8 (11) | C2—C10—H10B | 112.1 (10) |
C11—N2—C10 | 111.31 (12) | H10A—C10—H10B | 110.8 (15) |
C13—N2—H2A | 106.4 (11) | N2—C11—H11A | 107.6 (10) |
C13—N2—C10 | 112.21 (12) | N2—C11—H11B | 107.6 (11) |
C13—N2—C11 | 112.46 (12) | N2—C11—C12 | 108.81 (12) |
O1—C1—C2 | 116.19 (13) | H11A—C11—H11B | 109.9 (15) |
O1—C1—C6 | 123.00 (13) | C12—C11—H11A | 109.9 (10) |
C2—C1—C6 | 120.80 (13) | C12—C11—H11B | 112.7 (12) |
C1—C2—C10 | 118.00 (13) | O3—C12—C11 | 105.86 (13) |
C3—C2—C1 | 119.59 (14) | O3—C12—H12A | 111.0 (11) |
C3—C2—C10 | 122.41 (13) | O3—C12—H12B | 111.0 (10) |
C2—C3—H3A | 117.7 (11) | C11—C12—H12A | 112.2 (12) |
C2—C3—C4 | 121.35 (14) | C11—C12—H12B | 107.6 (11) |
C4—C3—H3A | 120.9 (11) | H12A—C12—H12B | 109.2 (15) |
C3—C4—C9 | 121.51 (14) | N2—C13—H13A | 105.6 (10) |
C5—C4—C3 | 118.00 (14) | N2—C13—H13B | 108.1 (10) |
C5—C4—C9 | 120.44 (15) | N2—C13—C14 | 110.65 (12) |
C4—C5—H5 | 118.6 (11) | H13A—C13—H13B | 113.1 (15) |
C4—C5—C6 | 122.59 (14) | C14—C13—H13A | 107.7 (10) |
C6—C5—H5 | 118.8 (11) | C14—C13—H13B | 111.5 (10) |
C1—C6—C7 | 121.69 (13) | O4—C14—C13 | 107.57 (13) |
C5—C6—C1 | 117.66 (13) | O4—C14—H14A | 111.1 (12) |
C5—C6—C7 | 120.65 (13) | O4—C14—H14B | 110.4 (11) |
N1—C7—C6 | 115.82 (13) | C13—C14—H14A | 108.3 (11) |
N1—C7—C8 | 123.45 (13) | C13—C14—H14B | 110.4 (11) |
C6—C7—C8 | 120.73 (13) | H14A—C14—H14B | 109.1 (15) |
C7—C8—H8A | 112.0 (14) | O5—C15—C16 | 117.90 (14) |
C7—C8—H8B | 110.1 (15) | O6—C15—O5 | 122.85 (15) |
C7—C8—H8C | 109.7 (14) | O6—C15—C16 | 119.25 (15) |
H8A—C8—H8B | 110 (2) | C15—C16—H16A | 111 (2) |
H8A—C8—H8C | 104.4 (19) | C15—C16—H16B | 112 (2) |
H8B—C8—H8C | 110 (2) | C15—C16—H16C | 113 (2) |
C4—C9—H9A | 111.6 (13) | H16A—C16—H16B | 105 (3) |
C4—C9—H9B | 109.7 (14) | H16A—C16—H16C | 106 (3) |
C4—C9—H9C | 111.5 (13) | H16B—C16—H16C | 111 (3) |
H9A—C9—H9B | 113.5 (19) | H7A—O7—H7B | 107 (2) |
O1—C1—C2—C3 | 179.65 (12) | C3—C2—C10—N2 | 118.43 (15) |
O1—C1—C2—C10 | −0.96 (19) | C3—C4—C5—C6 | −0.8 (2) |
O1—C1—C6—C5 | −179.83 (12) | C4—C5—C6—C1 | −0.1 (2) |
O1—C1—C6—C7 | 1.0 (2) | C4—C5—C6—C7 | 179.07 (13) |
O2—N1—C7—C6 | 179.25 (11) | C5—C6—C7—N1 | 178.18 (13) |
O2—N1—C7—C8 | −0.1 (2) | C5—C6—C7—C8 | −2.5 (2) |
N2—C11—C12—O3 | −55.59 (16) | C6—C1—C2—C3 | −1.3 (2) |
N2—C13—C14—O4 | −63.57 (17) | C6—C1—C2—C10 | 178.13 (13) |
C1—C2—C3—C4 | 0.3 (2) | C9—C4—C5—C6 | −178.27 (14) |
C1—C2—C10—N2 | −60.94 (17) | C10—N2—C11—C12 | 148.01 (13) |
C1—C6—C7—N1 | −2.68 (19) | C10—N2—C13—C14 | −81.01 (16) |
C1—C6—C7—C8 | 176.67 (13) | C10—C2—C3—C4 | −179.04 (14) |
C2—C1—C6—C5 | 1.1 (2) | C11—N2—C10—C2 | −72.47 (15) |
C2—C1—C6—C7 | −178.03 (12) | C11—N2—C13—C14 | 152.57 (14) |
C2—C3—C4—C5 | 0.7 (2) | C13—N2—C10—C2 | 160.50 (12) |
C2—C3—C4—C9 | 178.13 (14) | C13—N2—C11—C12 | −85.09 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.85 (2) | 1.78 (2) | 2.5368 (16) | 148 (2) |
O2—H2···O5 | 0.91 (2) | 1.71 (2) | 2.5985 (16) | 165 (2) |
O3—H3···O5i | 0.82 (3) | 1.82 (3) | 2.6335 (17) | 171 (3) |
O4—H4···O7 | 0.85 (2) | 1.84 (2) | 2.6875 (19) | 176 (2) |
N2—H2A···O1 | 0.903 (19) | 2.168 (18) | 2.8121 (16) | 127.6 (15) |
O7—H7A···O6 | 0.79 (3) | 2.07 (3) | 2.823 (2) | 159 (3) |
O7—H7B···O6ii | 0.89 (3) | 1.86 (3) | 2.738 (2) | 169 (2) |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, −y, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.85 (2) | 1.78 (2) | 2.5368 (16) | 148 (2) |
O2—H2···O5 | 0.91 (2) | 1.71 (2) | 2.5985 (16) | 165 (2) |
O3—H3···O5i | 0.82 (3) | 1.82 (3) | 2.6335 (17) | 171 (3) |
O4—H4···O7 | 0.85 (2) | 1.84 (2) | 2.6875 (19) | 176 (2) |
N2—H2A···O1 | 0.903 (19) | 2.168 (18) | 2.8121 (16) | 127.6 (15) |
O7—H7A···O6 | 0.79 (3) | 2.07 (3) | 2.823 (2) | 159 (3) |
O7—H7B···O6ii | 0.89 (3) | 1.86 (3) | 2.738 (2) | 169 (2) |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, −y, −z+2. |
Acknowledgements
We thank The University of Edinburgh for funding the diffractometer purchase.
References
Agilent (2014). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frost, J. M., Sanz, S., Rajeshkumar, T., Pitak, M. B., Coles, S. J., Rajaraman, G., Wernsdorfer, W., Schnack, J., Lusby, P. J. & Brechin, E. K. (2014). Dalton Trans. 43, 10690–10694. CSD CrossRef CAS PubMed Google Scholar
Inglis, R., Milios, C. J., Jones, L. F., Piligkos, S. & Brechin, E. K. (2012). Chem. Commun. 48, 181–190. CrossRef CAS Google Scholar
Milios, C. J., Stamatatos, T. C. & Perlepes, S. P. (2006). Polyhedron, 25, 134–194. Web of Science CrossRef CAS Google Scholar
Milios, C. J., Vinslava, A., Wernsdorfer, W., Moggach, S., Parsons, S., Perlepes, S. P., Christou, G. & Brechin, E. K. (2007). J. Am. Chem. Soc. 129, 2754–2755. CSD CrossRef PubMed CAS Google Scholar
Sanz, S., Frost, J. M., Pitak, M. B., Coles, S. J., Piligkos, S., Lusby, P. J. & Brechin, E. K. (2014b). Chem. Commun. 50, 3310–3314. CSD CrossRef CAS Google Scholar
Sanz, S., Frost, J. M., Rajeshkumar, T., Dalgarno, S. J., Rajaraman, G., Wernsdorfer, W., Schnack, J., Lusby, P. J. & Brechin, E. K. (2014a). Chem. Eur. J. 20, 3010–3013. CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stamatatos, T. C., Abboud, K. A., Perlepes, S. P. & Christou, G. (2007). Dalton Trans. pp. 3861–3863. CSD CrossRef Google Scholar
Tasiopoulos, A. J. & Perlepes, S. P. (2008). Dalton Trans. pp. 5537–5555. CrossRef Google Scholar
Vlahopoulou, G. C., Stamatatos, T. C., Psycharis, C., Perlepes, S. P. & Christou, G. (2009). Dalton Trans. pp. 3646–3649. CSD CrossRef PubMed Google Scholar
Wang, Q., Wilson, C., Blake, A. J., Collinson, S. R., Tasker, P. A. & Schröder, M. (2006). Tetrahedron Lett. 47, 8983–8987. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.