organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o186-o187

Crystal structure of 2-hy­droxy-N-(2-hydroxyethyl)-N-{2-hy­droxy-3-[(E)-N-hydroxyethanimidoyl]-5-methylbenzyl}ethanaminium acetate monohydrate

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, Scotland
*Correspondence e-mail: g.s.nichol@ed.ac.uk

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 8 January 2015; accepted 4 February 2015; online 18 February 2015)

The structure of the title hydrated mol­ecular salt, C14H23N2O4+·C2H3O2·H2O, was determined as part of a wider study on the use of the mol­ecule as a polydentate ligand in the synthesis of MnIII clusters with magnetic properties. The cation features intra­molecular O—H⋯N and N—H⋯O hydrogen-bond inter­actions. The crystal structure features a range of inter­molecular hydrogen-bonding inter­actions, principally O—H⋯O inter­actions between all three species in the asymmetric unit. An R24(8) graph-set hydrogen-bonding motif between the anion and water mol­ecules serves as a unit which links to the cation via the di­ethano­lamine group. Each O atom of the acetate anion accepts two hydrogen bonds.

1. Related literature

For background literature on Mn-containing single mol­ecule magnets, see: Inglis et al. (2012[Inglis, R., Milios, C. J., Jones, L. F., Piligkos, S. & Brechin, E. K. (2012). Chem. Commun. 48, 181-190.]); Milios et al. (2007[Milios, C. J., Vinslava, A., Wernsdorfer, W., Moggach, S., Parsons, S., Perlepes, S. P., Christou, G. & Brechin, E. K. (2007). J. Am. Chem. Soc. 129, 2754-2755.]); Tasiopoulos & Perlepes (2008[Tasiopoulos, A. J. & Perlepes, S. P. (2008). Dalton Trans. pp. 5537-5555.]). For examples of the use of 3-{[bis­(2-hy­droxy­eth­yl)amino]­meth­yl}-2-hy­droxy-5-methyl­benzaldehyde in the synthesis of magnetic Mn cluster compounds, see: Sanz et al. (2014a[Sanz, S., Frost, J. M., Rajeshkumar, T., Dalgarno, S. J., Rajaraman, G., Wernsdorfer, W., Schnack, J., Lusby, P. J. & Brechin, E. K. (2014a). Chem. Eur. J. 20, 3010-3013.],b[Sanz, S., Frost, J. M., Pitak, M. B., Coles, S. J., Piligkos, S., Lusby, P. J. & Brechin, E. K. (2014b). Chem. Commun. 50, 3310-3314.]) – mol­ecular wheels; Frost et al. (2014[Frost, J. M., Sanz, S., Rajeshkumar, T., Pitak, M. B., Coles, S. J., Rajaraman, G., Wernsdorfer, W., Schnack, J., Lusby, P. J. & Brechin, E. K. (2014). Dalton Trans. 43, 10690-10694.]) – tetra­hedron cage. For examples of other magnentic oxime-containing clusters, see: Vlahopoulou et al. (2009[Vlahopoulou, G. C., Stamatatos, T. C., Psycharis, C., Perlepes, S. P. & Christou, G. (2009). Dalton Trans. pp. 3646-3649.]); Stamatatos et al. (2007[Stamatatos, T. C., Abboud, K. A., Perlepes, S. P. & Christou, G. (2007). Dalton Trans. pp. 3861-3863.]). For a review of pyrid­yl–oxime coordination chemistry, see: Milios et al. (2006[Milios, C. J., Stamatatos, T. C. & Perlepes, S. P. (2006). Polyhedron, 25, 134-194.]). For the synthesis of 3-{[bis­(2-hy­droxy­eth­yl)amino]­meth­yl}-2-hy­droxy-5-methylbenzaldehyde, see: Wang et al. (2006[Wang, Q., Wilson, C., Blake, A. J., Collinson, S. R., Tasker, P. A. & Schröder, M. (2006). Tetrahedron Lett. 47, 8983-8987.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H23N2O4+·C2H3O2·H2O

  • Mr = 360.40

  • Monoclinic, P 21 /c

  • a = 14.4338 (5) Å

  • b = 10.4786 (3) Å

  • c = 12.4045 (4) Å

  • β = 101.593 (3)°

  • V = 1837.86 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 120 K

  • 0.48 × 0.38 × 0.18 mm

2.2. Data collection

  • Agilent SuperNova diffractometer

  • Absorption correction: gaussian (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]) Tmin = 0.942, Tmax = 0.975

  • 38067 measured reflections

  • 5542 independent reflections

  • 4362 reflections with I > 2σ(I)

  • Rint = 0.054

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.129

  • S = 1.09

  • 5542 reflections

  • 338 parameters

  • All H-atom parameters refined

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.85 (2) 1.78 (2) 2.5368 (16) 148 (2)
O2—H2⋯O5 0.91 (2) 1.71 (2) 2.5985 (16) 165 (2)
O3—H3⋯O5i 0.82 (3) 1.82 (3) 2.6335 (17) 171 (3)
O4—H4⋯O7 0.85 (2) 1.84 (2) 2.6875 (19) 176 (2)
N2—H2A⋯O1 0.903 (19) 2.168 (18) 2.8121 (16) 127.6 (15)
O7—H7A⋯O6 0.79 (3) 2.07 (3) 2.823 (2) 159 (3)
O7—H7B⋯O6ii 0.89 (3) 1.86 (3) 2.738 (2) 169 (2)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y, -z+2.

Data collection: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Chemical context top

The structure of the title hydrated salt was determined as part of a wider study on the synthesis of polymetallic compounds with potentially inter­esting magnetic properties. The phenolic oximes are a ligand family which have had enormous success in the construction of Mn cluster compounds that behave as single molecule magnets (Milios et al., 2007; Inglis et al., 2012). These ligand types tend to form systems based on the [Mn3O(L)3]+ (L = salicylaldoxime) building block (Vlahopoulou et al., 2009; Stamatatos et al., 2007; Milios et al., 2006). An additional functional group was introduced onto the aromatic framework of the ligand in an attempt to disrupt the formation of clusters based on this motif and to see if higher nuclearity compounds based on phenolic oximes could be isolated. A di­ethano­lamine functional group was the obvious choice given that the this has an excellent track record of making magnetically inter­esting Mn clusters in its own right (Tasiopoulos & Perlepes, 2008). For examples of the use of the H4L in the synthesis of magnetic materials, see Frost et al. (2014) and Sanz et al. (2014a , 2014b).

Structural commentary top

A check of the molecular geometry with Mogul showed all geometric parameters to be unexceptional. A mean plane fitted through atoms O1, O2, N1 and C1 to C10 (i.e. all ring atoms plus the oxime and hydroxyl groups) has an rms deviation of 0.029 Å.

Supra­molecular features top

The crystal structure features extensive hydrogen bonding, principally O–H···O inter­actions involving all species in the asymmetric unit. Intra­molecular inter­actions within the cation are, perhaps, less important but serve to support the overall structure by locking the cation conformation. The N2–H2A···O1 inter­action in particular is probably quite weak. The R24(8) graph set motif between the anion and water molecules serves as an important unit which links to the cation via the hy­droxy­ethane groups to propagate the three-dimensional structure. Hydrogen bonding information is summarised in Table 2.

Synthesis and crystallization top

Experimental Procedures

1H and 13CNMR spectra were recorded on a nav 500 MHz spectrometer. 3-((Bis(2-hy­droxy­ethyl)­amino)­methyl)-2-hy­droxy-5-methyl­benzaldehyde was prepared according to a published procedure (Wang et al., 2006). Solvents and reagents were used as received from commercial suppliers.

Synthesis of 3-{[Bis(2-hy­droxy­ethyl)­amino]­methyl}-2-hy­droxy-5-methyl­salicylaldoxime (H4L)

3-{[Bis(2-hy­droxy­ethyl)­amino]­methyl}-2-hy­droxy-5-methyl­benzaldehyde (10.8 g, 40 mmol), hydroxyl­amine hydro­chloride (3.5 g, 50 mmol) and sodium acetate (4.14 g, 50 mmol) were dissolved in 500 mL of ethanol. The mixture was refluxed under N2 for 4 h. A white precipitate was filtered off from the warm ethanol solution. The solvent was evaporated to dryness, a minimum amount of CH2Cl2 added and the sample stored at -10°C for 24 hours. Clear block shaped crystals grew and were collected after filtration (10.16 g, 90%). 1H NMR (500 MHz, DMSO): δ 7.12 (bs, 1H), 7.05 (bs, 1H), 3.60 (s, 2H), 3.54 (t, J=6.2 Hz, 4H), 2.53 (t, J= 6.2 Hz, 4H), 2.23 (s, 3H), 2.22 (s, 3H).13C NMR (500 MHz, DMSO): δ 157.28 (1C, CarOH), 153.86 (1C, CNOH), 131.34 (1C, CH), 127.61 (1C, CH), 126.99 (1C, C), 124.34 (1C, C), 121.01 (1C, C), 59.14 (2C, CH2), 56.51 (2C, CH2), 54.78 (1C, CH2), 21.69 (1C, CH3), 12.73 (1C, CH3).

Refinement top

Crystal data, data collection and structure refinement details are summarised in Table 1. All H atoms were located in a difference Fourier map and refined freely.

Related literature top

For background literature on Mn-containing single molecule magnets, see: Inglis et al. (2012); Milios et al. (2007); Tasiopoulos & Perlepes (2008). For examples of the use of 3-{[bis(2-hydroxyethyl)amino]methyl}-2-hydroxy-5-methylbenzaldehyde in the synthesis of magnetic Mn cluster compounds, see: Sanz et al. (2014a,b) – molecular wheels; Frost et al. (2014) – tetrahedron cage. For examples of other magnentic oxime-containing clusters, see: Vlahopoulou et al. (2009); Stamatatos et al. (2007). For a review of pyridyl–oxime coordination chemistry, see: Milios et al. (2006). For the synthesis of 3-{[bis(2-hydroxyethyl)amino]methyl}-2-hydroxy-5-methylbenzaldehyde, see: Wang et al. (2006).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of H4L. Displacement ellipsoids are at the 50% probability level and C-bound H atoms have been omitted.
[Figure 2] Fig. 2. Hydrogen-bonding interactions, indicated by dashed lines, in the crystal structure of H4L. Symmetry operations for equivalent atoms: $1, 1 - x, -y, 2 - z; $2, x, 1/2 - y, 1/2 + z; $3, 1 - x, -1/2 + y, 3/2 - z.
2-Hydroxy-N-(2-hydroxyethyl)-N-{2-hydroxy-3-[(E)-N-hydroxyethanimidoyl]-5-methylbenzyl}ethanaminium acetate monohydrate top
Crystal data top
C14H23N2O4+·C2H3O2·H2OF(000) = 776
Mr = 360.40Dx = 1.303 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.4338 (5) ÅCell parameters from 10187 reflections
b = 10.4786 (3) Åθ = 3.5–30.2°
c = 12.4045 (4) ŵ = 0.10 mm1
β = 101.593 (3)°T = 120 K
V = 1837.86 (10) Å3Block, colourless
Z = 40.48 × 0.38 × 0.18 mm
Data collection top
Agilent SuperNova
diffractometer
5542 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4362 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.054
Detector resolution: 5.1574 pixels mm-1θmax = 31.1°, θmin = 3.1°
ω scansh = 2020
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2014)
k = 1513
Tmin = 0.942, Tmax = 0.975l = 1817
38067 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054All H-atom parameters refined
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.9291P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
5542 reflectionsΔρmax = 0.33 e Å3
338 parametersΔρmin = 0.24 e Å3
0 restraints
Crystal data top
C14H23N2O4+·C2H3O2·H2OV = 1837.86 (10) Å3
Mr = 360.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.4338 (5) ŵ = 0.10 mm1
b = 10.4786 (3) ÅT = 120 K
c = 12.4045 (4) Å0.48 × 0.38 × 0.18 mm
β = 101.593 (3)°
Data collection top
Agilent SuperNova
diffractometer
5542 independent reflections
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2014)
4362 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.975Rint = 0.054
38067 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.129All H-atom parameters refined
S = 1.09Δρmax = 0.33 e Å3
5542 reflectionsΔρmin = 0.24 e Å3
338 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. All H atoms were located in a difference Fourier map and refined freely.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.25286 (7)0.10957 (10)0.65849 (9)0.0229 (2)
H10.2395 (15)0.050 (2)0.6990 (18)0.046 (6)*
O20.14106 (9)0.14279 (11)0.81376 (9)0.0320 (3)
H20.2011 (17)0.160 (2)0.8484 (19)0.054 (7)*
O30.24215 (8)0.03539 (12)0.40801 (10)0.0304 (3)
H30.2659 (18)0.107 (3)0.418 (2)0.060 (7)*
O40.45674 (8)0.04092 (11)0.61916 (10)0.0300 (3)
H40.4552 (16)0.026 (2)0.686 (2)0.055 (7)*
N10.15152 (9)0.03976 (12)0.74689 (10)0.0232 (3)
N20.32127 (9)0.19342 (12)0.47375 (10)0.0220 (3)
H2A0.3117 (13)0.1223 (18)0.5112 (15)0.028 (5)*
C10.16920 (10)0.16143 (13)0.60648 (11)0.0202 (3)
C20.17518 (10)0.26194 (13)0.53438 (12)0.0223 (3)
C30.09294 (11)0.32024 (14)0.47871 (12)0.0246 (3)
H3A0.0993 (13)0.3890 (18)0.4276 (15)0.029 (5)*
C40.00394 (11)0.27997 (14)0.49290 (12)0.0243 (3)
C50.00027 (10)0.17826 (14)0.56389 (11)0.0213 (3)
H50.0609 (13)0.1492 (17)0.5733 (14)0.024 (4)*
C60.08079 (10)0.11679 (13)0.62184 (11)0.0192 (3)
C70.07274 (10)0.00789 (14)0.69504 (11)0.0203 (3)
C80.02208 (11)0.04239 (17)0.70539 (14)0.0264 (3)
H8A0.0567 (16)0.073 (2)0.638 (2)0.053 (6)*
H8B0.0153 (17)0.104 (2)0.757 (2)0.058 (7)*
H8C0.0601 (16)0.026 (2)0.7244 (18)0.052 (6)*
C90.08552 (13)0.34031 (18)0.43012 (14)0.0323 (4)
H9A0.1036 (15)0.305 (2)0.3569 (18)0.042 (6)*
H9B0.1359 (18)0.334 (2)0.474 (2)0.063 (7)*
H9C0.0770 (15)0.429 (2)0.4181 (18)0.048 (6)*
C100.27174 (11)0.30209 (14)0.51927 (14)0.0261 (3)
H10A0.2691 (13)0.3701 (19)0.4675 (16)0.032 (5)*
H10B0.3144 (13)0.3244 (17)0.5908 (15)0.027 (5)*
C110.27852 (12)0.16896 (15)0.35473 (12)0.0259 (3)
H11A0.2117 (13)0.1940 (17)0.3425 (14)0.024 (4)*
H11B0.3108 (13)0.2206 (19)0.3119 (15)0.032 (5)*
C120.28636 (12)0.02870 (16)0.33149 (13)0.0294 (3)
H12A0.3503 (14)0.0019 (18)0.3386 (15)0.032 (5)*
H12B0.2514 (13)0.0128 (18)0.2536 (15)0.030 (5)*
C130.42648 (11)0.21255 (17)0.49313 (14)0.0288 (3)
H13A0.4494 (12)0.1530 (17)0.4413 (14)0.025 (4)*
H13B0.4385 (12)0.3021 (18)0.4792 (14)0.027 (4)*
C140.47242 (12)0.17376 (17)0.60884 (14)0.0298 (3)
H14A0.5399 (14)0.1927 (18)0.6200 (15)0.034 (5)*
H14B0.4445 (13)0.2225 (18)0.6635 (15)0.030 (5)*
O50.30047 (8)0.22604 (11)0.92796 (9)0.0297 (3)
O60.38120 (9)0.06607 (11)1.01687 (10)0.0349 (3)
C150.34399 (10)0.17389 (14)1.01535 (13)0.0242 (3)
C160.35169 (15)0.24691 (19)1.12192 (15)0.0347 (4)
H16A0.409 (2)0.234 (3)1.167 (3)0.098 (11)*
H16B0.348 (2)0.337 (3)1.110 (3)0.101 (11)*
H16C0.307 (2)0.221 (3)1.162 (3)0.108 (12)*
O70.46060 (14)0.00383 (17)0.83335 (12)0.0569 (5)
H7A0.4274 (18)0.028 (3)0.873 (2)0.059 (8)*
H7B0.5160 (19)0.016 (3)0.875 (2)0.064 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0198 (5)0.0238 (5)0.0247 (5)0.0018 (4)0.0037 (4)0.0027 (4)
O20.0276 (6)0.0354 (6)0.0320 (6)0.0025 (5)0.0035 (5)0.0167 (5)
O30.0300 (6)0.0243 (6)0.0361 (6)0.0018 (5)0.0048 (5)0.0022 (5)
O40.0306 (6)0.0328 (6)0.0282 (6)0.0025 (5)0.0099 (5)0.0019 (5)
N10.0251 (6)0.0229 (6)0.0216 (6)0.0016 (5)0.0051 (5)0.0044 (5)
N20.0225 (6)0.0208 (6)0.0233 (6)0.0035 (5)0.0062 (5)0.0030 (5)
C10.0223 (7)0.0177 (6)0.0208 (6)0.0002 (5)0.0046 (5)0.0031 (5)
C20.0268 (7)0.0167 (6)0.0251 (7)0.0020 (5)0.0096 (6)0.0036 (5)
C30.0343 (8)0.0166 (6)0.0247 (7)0.0023 (6)0.0098 (6)0.0001 (5)
C40.0291 (8)0.0232 (7)0.0218 (6)0.0063 (6)0.0077 (6)0.0005 (5)
C50.0214 (7)0.0226 (7)0.0208 (6)0.0016 (5)0.0070 (5)0.0025 (5)
C60.0223 (7)0.0180 (6)0.0178 (6)0.0002 (5)0.0053 (5)0.0029 (5)
C70.0223 (7)0.0218 (7)0.0177 (6)0.0008 (5)0.0061 (5)0.0017 (5)
C80.0227 (8)0.0304 (8)0.0271 (7)0.0018 (6)0.0075 (6)0.0024 (6)
C90.0333 (9)0.0343 (9)0.0303 (8)0.0124 (7)0.0085 (7)0.0093 (7)
C100.0301 (8)0.0185 (7)0.0312 (8)0.0048 (6)0.0097 (6)0.0005 (6)
C110.0294 (8)0.0282 (8)0.0204 (6)0.0018 (6)0.0057 (6)0.0049 (6)
C120.0313 (9)0.0310 (8)0.0251 (7)0.0038 (6)0.0039 (6)0.0016 (6)
C130.0217 (8)0.0337 (9)0.0326 (8)0.0081 (6)0.0091 (6)0.0046 (7)
C140.0224 (8)0.0337 (9)0.0331 (8)0.0074 (6)0.0050 (6)0.0006 (7)
O50.0302 (6)0.0252 (6)0.0310 (6)0.0027 (4)0.0003 (5)0.0003 (4)
O60.0394 (7)0.0216 (6)0.0417 (7)0.0006 (5)0.0032 (5)0.0002 (5)
C150.0192 (7)0.0219 (7)0.0311 (7)0.0064 (5)0.0043 (6)0.0005 (6)
C160.0391 (10)0.0332 (9)0.0309 (8)0.0034 (7)0.0044 (7)0.0042 (7)
O70.0679 (11)0.0706 (11)0.0285 (7)0.0369 (9)0.0011 (7)0.0062 (7)
Geometric parameters (Å, º) top
O1—H10.85 (2)C8—H8B0.91 (3)
O1—C11.3625 (17)C8—H8C0.96 (2)
O2—H20.91 (2)C9—H9A0.97 (2)
O2—N11.3880 (16)C9—H9B0.99 (3)
O3—H30.82 (3)C9—H9C0.96 (2)
O3—C121.415 (2)C10—H10A0.95 (2)
O4—H40.85 (2)C10—H10B1.001 (18)
O4—C141.420 (2)C11—H11A0.982 (18)
N1—C71.2891 (19)C11—H11B0.94 (2)
N2—H2A0.903 (19)C11—C121.506 (2)
N2—C101.513 (2)C12—H12A0.952 (19)
N2—C111.5034 (19)C12—H12B1.009 (18)
N2—C131.503 (2)C13—H13A0.999 (18)
C1—C21.396 (2)C13—H13B0.976 (19)
C1—C61.408 (2)C13—C141.511 (2)
C2—C31.389 (2)C14—H14A0.98 (2)
C2—C101.503 (2)C14—H14B0.996 (19)
C3—H3A0.976 (19)O5—C151.2628 (18)
C3—C41.396 (2)O6—C151.2495 (19)
C4—C51.392 (2)C15—C161.512 (2)
C4—C91.506 (2)C16—H16A0.91 (3)
C5—H50.955 (18)C16—H16B0.96 (4)
C5—C61.401 (2)C16—H16C0.92 (4)
C6—C71.4773 (19)O7—H7A0.79 (3)
C7—C81.496 (2)O7—H7B0.89 (3)
C8—H8A0.95 (2)
C1—O1—H1106.8 (15)H9A—C9—H9C104.1 (18)
N1—O2—H2103.4 (15)H9B—C9—H9C106 (2)
C12—O3—H3107.3 (18)N2—C10—H10A105.6 (11)
C14—O4—H4107.4 (17)N2—C10—H10B104.7 (10)
C7—N1—O2114.11 (12)C2—C10—N2110.81 (12)
C10—N2—H2A107.2 (12)C2—C10—H10A112.3 (11)
C11—N2—H2A106.8 (11)C2—C10—H10B112.1 (10)
C11—N2—C10111.31 (12)H10A—C10—H10B110.8 (15)
C13—N2—H2A106.4 (11)N2—C11—H11A107.6 (10)
C13—N2—C10112.21 (12)N2—C11—H11B107.6 (11)
C13—N2—C11112.46 (12)N2—C11—C12108.81 (12)
O1—C1—C2116.19 (13)H11A—C11—H11B109.9 (15)
O1—C1—C6123.00 (13)C12—C11—H11A109.9 (10)
C2—C1—C6120.80 (13)C12—C11—H11B112.7 (12)
C1—C2—C10118.00 (13)O3—C12—C11105.86 (13)
C3—C2—C1119.59 (14)O3—C12—H12A111.0 (11)
C3—C2—C10122.41 (13)O3—C12—H12B111.0 (10)
C2—C3—H3A117.7 (11)C11—C12—H12A112.2 (12)
C2—C3—C4121.35 (14)C11—C12—H12B107.6 (11)
C4—C3—H3A120.9 (11)H12A—C12—H12B109.2 (15)
C3—C4—C9121.51 (14)N2—C13—H13A105.6 (10)
C5—C4—C3118.00 (14)N2—C13—H13B108.1 (10)
C5—C4—C9120.44 (15)N2—C13—C14110.65 (12)
C4—C5—H5118.6 (11)H13A—C13—H13B113.1 (15)
C4—C5—C6122.59 (14)C14—C13—H13A107.7 (10)
C6—C5—H5118.8 (11)C14—C13—H13B111.5 (10)
C1—C6—C7121.69 (13)O4—C14—C13107.57 (13)
C5—C6—C1117.66 (13)O4—C14—H14A111.1 (12)
C5—C6—C7120.65 (13)O4—C14—H14B110.4 (11)
N1—C7—C6115.82 (13)C13—C14—H14A108.3 (11)
N1—C7—C8123.45 (13)C13—C14—H14B110.4 (11)
C6—C7—C8120.73 (13)H14A—C14—H14B109.1 (15)
C7—C8—H8A112.0 (14)O5—C15—C16117.90 (14)
C7—C8—H8B110.1 (15)O6—C15—O5122.85 (15)
C7—C8—H8C109.7 (14)O6—C15—C16119.25 (15)
H8A—C8—H8B110 (2)C15—C16—H16A111 (2)
H8A—C8—H8C104.4 (19)C15—C16—H16B112 (2)
H8B—C8—H8C110 (2)C15—C16—H16C113 (2)
C4—C9—H9A111.6 (13)H16A—C16—H16B105 (3)
C4—C9—H9B109.7 (14)H16A—C16—H16C106 (3)
C4—C9—H9C111.5 (13)H16B—C16—H16C111 (3)
H9A—C9—H9B113.5 (19)H7A—O7—H7B107 (2)
O1—C1—C2—C3179.65 (12)C3—C2—C10—N2118.43 (15)
O1—C1—C2—C100.96 (19)C3—C4—C5—C60.8 (2)
O1—C1—C6—C5179.83 (12)C4—C5—C6—C10.1 (2)
O1—C1—C6—C71.0 (2)C4—C5—C6—C7179.07 (13)
O2—N1—C7—C6179.25 (11)C5—C6—C7—N1178.18 (13)
O2—N1—C7—C80.1 (2)C5—C6—C7—C82.5 (2)
N2—C11—C12—O355.59 (16)C6—C1—C2—C31.3 (2)
N2—C13—C14—O463.57 (17)C6—C1—C2—C10178.13 (13)
C1—C2—C3—C40.3 (2)C9—C4—C5—C6178.27 (14)
C1—C2—C10—N260.94 (17)C10—N2—C11—C12148.01 (13)
C1—C6—C7—N12.68 (19)C10—N2—C13—C1481.01 (16)
C1—C6—C7—C8176.67 (13)C10—C2—C3—C4179.04 (14)
C2—C1—C6—C51.1 (2)C11—N2—C10—C272.47 (15)
C2—C1—C6—C7178.03 (12)C11—N2—C13—C14152.57 (14)
C2—C3—C4—C50.7 (2)C13—N2—C10—C2160.50 (12)
C2—C3—C4—C9178.13 (14)C13—N2—C11—C1285.09 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.85 (2)1.78 (2)2.5368 (16)148 (2)
O2—H2···O50.91 (2)1.71 (2)2.5985 (16)165 (2)
O3—H3···O5i0.82 (3)1.82 (3)2.6335 (17)171 (3)
O4—H4···O70.85 (2)1.84 (2)2.6875 (19)176 (2)
N2—H2A···O10.903 (19)2.168 (18)2.8121 (16)127.6 (15)
O7—H7A···O60.79 (3)2.07 (3)2.823 (2)159 (3)
O7—H7B···O6ii0.89 (3)1.86 (3)2.738 (2)169 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.85 (2)1.78 (2)2.5368 (16)148 (2)
O2—H2···O50.91 (2)1.71 (2)2.5985 (16)165 (2)
O3—H3···O5i0.82 (3)1.82 (3)2.6335 (17)171 (3)
O4—H4···O70.85 (2)1.84 (2)2.6875 (19)176 (2)
N2—H2A···O10.903 (19)2.168 (18)2.8121 (16)127.6 (15)
O7—H7A···O60.79 (3)2.07 (3)2.823 (2)159 (3)
O7—H7B···O6ii0.89 (3)1.86 (3)2.738 (2)169 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+2.
 

Acknowledgements

We thank The University of Edinburgh for funding the diffractometer purchase.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrost, J. M., Sanz, S., Rajeshkumar, T., Pitak, M. B., Coles, S. J., Rajaraman, G., Wernsdorfer, W., Schnack, J., Lusby, P. J. & Brechin, E. K. (2014). Dalton Trans. 43, 10690–10694.  CSD CrossRef CAS PubMed Google Scholar
First citationInglis, R., Milios, C. J., Jones, L. F., Piligkos, S. & Brechin, E. K. (2012). Chem. Commun. 48, 181–190.  CrossRef CAS Google Scholar
First citationMilios, C. J., Stamatatos, T. C. & Perlepes, S. P. (2006). Polyhedron, 25, 134–194.  Web of Science CrossRef CAS Google Scholar
First citationMilios, C. J., Vinslava, A., Wernsdorfer, W., Moggach, S., Parsons, S., Perlepes, S. P., Christou, G. & Brechin, E. K. (2007). J. Am. Chem. Soc. 129, 2754–2755.  CSD CrossRef PubMed CAS Google Scholar
First citationSanz, S., Frost, J. M., Pitak, M. B., Coles, S. J., Piligkos, S., Lusby, P. J. & Brechin, E. K. (2014b). Chem. Commun. 50, 3310–3314.  CSD CrossRef CAS Google Scholar
First citationSanz, S., Frost, J. M., Rajeshkumar, T., Dalgarno, S. J., Rajaraman, G., Wernsdorfer, W., Schnack, J., Lusby, P. J. & Brechin, E. K. (2014a). Chem. Eur. J. 20, 3010–3013.  CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStamatatos, T. C., Abboud, K. A., Perlepes, S. P. & Christou, G. (2007). Dalton Trans. pp. 3861–3863.  CSD CrossRef Google Scholar
First citationTasiopoulos, A. J. & Perlepes, S. P. (2008). Dalton Trans. pp. 5537–5555.  CrossRef Google Scholar
First citationVlahopoulou, G. C., Stamatatos, T. C., Psycharis, C., Perlepes, S. P. & Christou, G. (2009). Dalton Trans. pp. 3646–3649.  CSD CrossRef PubMed Google Scholar
First citationWang, Q., Wilson, C., Blake, A. J., Collinson, S. R., Tasker, P. A. & Schröder, M. (2006). Tetrahedron Lett. 47, 8983–8987.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o186-o187
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds