metal-organic compounds
μ2-triethylenetetraminehexaacetato)dizinc tetrahydrate
of diaqua(aInstitute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
*Correspondence e-mail: luliping@sxu.edu.cn
The reaction of ZnO and triethylenetetraminehexaacetic acid (H6TTHA) in aqueous solution after refluxing yields the binuclear title compound, [Zn2(C18H26N4O12)(H2O)2]·4H2O. There is a centre of symmetry in the [Zn2(H2TTHA)(H2O)2] molecule in the crystalline state. Both ZnII ions are octahedrally surrounded and bound by an N2O3 donor set from the H2TTHA4− anion and a water molecule; the N atoms are cis and the water molecule is trans to an N atom. The Zn⋯Zn separation is 7.562 (1) Å. An intramolecular C—H⋯O interaction is observed and both carboxylate H atoms are disordered over two adjacent sites. In the crystal, the components are linked by O—H⋯O and C—H⋯O hydrogen bonds generating a three-dimensonal network.
Keywords: Crystal structure; binuclear ZnII complex; triethylenetetraminehexaacetic acid; crystal structure.
CCDC reference: 1046672
1. Related literature
For general background to the complexes of triethylenetetraminehexaacetic acid, see: Long et al. (2003); Lu & Zhu (2014); Mondry & Starynowicz (1998); Ouyang et al. (2007); Sethi et al. (2012); Shi et al. (2006); Song et al. (2003); Thompson et al. (1998); Wang et al. (2003); Wullens et al. (1996). For related structures, see: Carlson et al. (2010); Qian et al. (2013).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC.
Supporting information
CCDC reference: 1046672
10.1107/S2056989015002108/hb7351sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015002108/hb7351Isup2.hkl
Triethylenetetraminehexaacetic acid(H6TTHA), a multidentate ligand having ten potential coordinating sites (six oxygen atoms and four nitrogen atoms), can play an important role in the self-assembly of chelating metals. It can be employed as a structure-directing agent to form main group metal complexes(Wullens et al., 1996, Thompson et al., 1998), transition-metal complexes(Song et al., 2003, Long et al., 2003, Qian et al., 2013, Carlson et al., 2010, Sethi et al., 2012), lanthanide complexes(Wang et al., 2003, Mondry & Starynowicz, 1998) and 3d–4f coordination polymers(Ouyang et al., 2007, Shi et al., 2006). To our knowledge, Zn(II) ions strongly inhibits many protein tyrosine phosphatases(Lu & Zhu, 2014). As part of the ongoing study of metal complexes inhibiting protein tyrosine phosphatases, the aim of us is to synthesize new zinc complexes employing polyamino polycarboxylic acids to form stable and soluble complexes. In this contribution,
of a binuclear zinc(II) complex of H2TTHA is reported.All chemicals were of reagent grade, commercially available and used without further purification. A mixture of H6TTHA (0.050 g, 0.10 mmol) and ZnO (0.016 g, 0.20 mmol) in 50 mL of deionized water in a flask was refluxed for 6 h. The clear solution was cooled to room temperature and filtered. The colorless filtrate was set aside at room temperature for three weeks. The title complex crystal was obtained as colourless blocks with yield 45%. Elemental Analysis(%): Cald. C 29.73, H 4.99, N 7.70; found C 29.52, H 5.05, N 7.57. Selected IR(KBr, cm-1): ν(O—H) 3445s, ν(C=O) 1732s, δ(O—H) 897m.
Crystal data, data collection and structure
details are summarized in Table 2. H atoms attached to C of the title complex were placed in geometrically idealized positions with Csp3—H = 0.97Å and with Uiso(H) = 1.2Ueq(C). The carboxyl H4 and H6 atoms are each located close to a crystallographic inversion centre between pairs of symmetry equivalent atoms of O4 and O6. Both H atoms were thus refined as 50% occupied. The O—H distances were constrained to be 0.82 Å and Uiso= 1.5Ueq(O). H atoms attached to O(water) atoms were located from difference Fourier maps; their bond lengths were idealized to 0.82 Å and they were refined using a riding model, with Uiso(H) = 1.5Ueq(O).The molecular structure and the crystal packing are depicted in Figures 1 and 2, respectively. Selected bond lengths and bond angles are listed in Table 1. The Zn(II) ion has a six-coordinate pseudo-octahedral environment with two N and three O atoms from ligand H2TTHA anion as well as one water molecule. The complete binuclear molecule exists a centre of symmetry locating on the midpoint of bond C9—C9i (Symmetry code i -x, 2-y, 2-z). The distance of both Zn(II) ions in the complex is 7.562 (1) Å. The distance of Zn—O(water) is 2.003 (2) Å, which is the shortest in all coordinate bonds of the title complex, while Zn—O bond lengths are in the range of 2.063 (2) to 2.130 (2) Å, and the Zn—N bond lengths are 2.150 (3) and 2.243 (2) Å, respectively. All the geometrical features compare very well with those in some similar structures, such as [Zn(H2O)6][Zn2(H2O)2(TTHA)].4H2O(Carlson et al., 2010), [Co2(H2TTHA)(H2O)2].4H2O(Qian et al., 2013).
In the structure of the title complex, numerous intermolecular hydrogen bonds (O—H···O; Table 3) play an important role in stabilizing the structure and linking ions and solvent water molecules. Additional nonclassical C—H···O hydrogen bonds (Table 3) occur in the structure, with C—H···O angles in the range 125–168° and C···O distances between 3.198 (4) and 3.476 (4) Å.
Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).Fig. 1. A view of the structure of the title complex with displacement ellipsoids drawn at the 50% probability level. Dash open line indicates hydrogen bonding interaction. | |
Fig. 2. The packing diagram of the title compound, Zn dark green C gray, N blue,H light green, O red. |
[Zn2(C18H26N4O12)(H2O)2]·4H2O | Z = 1 |
Mr = 729.26 | F(000) = 378 |
Triclinic, P1 | Dx = 1.765 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.1330 (14) Å | Cell parameters from 2008 reflections |
b = 8.7013 (16) Å | θ = 2.6–26.9° |
c = 11.979 (2) Å | µ = 1.84 mm−1 |
α = 103.969 (2)° | T = 298 K |
β = 101.052 (2)° | Block, colorless |
γ = 100.882 (3)° | 0.28 × 0.22 × 0.20 mm |
V = 686.2 (2) Å3 |
Bruker SMART APEX CCD diffractometer | 2384 independent reflections |
Radiation source: fine-focus sealed tube | 2080 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.057 |
ω scans | θmax = 25.0°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −7→8 |
Tmin = 0.627, Tmax = 0.710 | k = −10→10 |
3582 measured reflections | l = −14→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.089 | H-atom parameters constrained |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0505P)2] where P = (Fo2 + 2Fc2)/3 |
2384 reflections | (Δ/σ)max < 0.001 |
190 parameters | Δρmax = 0.49 e Å−3 |
0 restraints | Δρmin = −0.76 e Å−3 |
[Zn2(C18H26N4O12)(H2O)2]·4H2O | γ = 100.882 (3)° |
Mr = 729.26 | V = 686.2 (2) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.1330 (14) Å | Mo Kα radiation |
b = 8.7013 (16) Å | µ = 1.84 mm−1 |
c = 11.979 (2) Å | T = 298 K |
α = 103.969 (2)° | 0.28 × 0.22 × 0.20 mm |
β = 101.052 (2)° |
Bruker SMART APEX CCD diffractometer | 2384 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 2080 reflections with I > 2σ(I) |
Tmin = 0.627, Tmax = 0.710 | Rint = 0.057 |
3582 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.089 | H-atom parameters constrained |
S = 0.99 | Δρmax = 0.49 e Å−3 |
2384 reflections | Δρmin = −0.76 e Å−3 |
190 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Zn1 | 0.27323 (5) | 0.29051 (4) | 0.29273 (3) | 0.02494 (14) | |
N1 | 0.0979 (4) | 0.0459 (3) | 0.2561 (2) | 0.0249 (5) | |
N2 | 0.0131 (4) | 0.3615 (3) | 0.3509 (2) | 0.0257 (5) | |
O1 | 0.3853 (3) | 0.2527 (2) | 0.45320 (18) | 0.0296 (5) | |
O2 | 0.3234 (4) | 0.0827 (3) | 0.5614 (2) | 0.0516 (7) | |
O3 | 0.4168 (3) | 0.1580 (3) | 0.17890 (19) | 0.0331 (5) | |
O4 | 0.3493 (3) | −0.0649 (3) | 0.0251 (2) | 0.0390 (6) | |
H4 | 0.4574 | −0.0369 | 0.0120 | 0.058* | 0.50 |
O5 | 0.1248 (3) | 0.3442 (3) | 0.14014 (18) | 0.0312 (5) | |
O6 | −0.0748 (4) | 0.4953 (3) | 0.0850 (2) | 0.0437 (6) | |
H6 | −0.0393 | 0.4897 | 0.0232 | 0.065* | 0.50 |
O7 | 0.4665 (3) | 0.5080 (2) | 0.3369 (2) | 0.0377 (5) | |
H71 | 0.5033 | 0.5712 | 0.4042 | 0.057* | |
H72 | 0.4553 | 0.5622 | 0.2898 | 0.057* | |
C1 | 0.3041 (5) | 0.1170 (4) | 0.4670 (3) | 0.0315 (7) | |
C2 | 0.1742 (5) | −0.0156 (4) | 0.3559 (3) | 0.0332 (7) | |
H2A | 0.2499 | −0.0926 | 0.3294 | 0.040* | |
H2B | 0.0634 | −0.0747 | 0.3772 | 0.040* | |
C3 | 0.3124 (4) | 0.0213 (4) | 0.1162 (3) | 0.0293 (7) | |
C4 | 0.1217 (5) | −0.0520 (4) | 0.1428 (3) | 0.0300 (7) | |
H4A | 0.0114 | −0.0583 | 0.0789 | 0.036* | |
H4B | 0.1204 | −0.1623 | 0.1467 | 0.036* | |
C5 | −0.1051 (4) | 0.0634 (4) | 0.2504 (3) | 0.0341 (7) | |
H5A | −0.1871 | −0.0370 | 0.2539 | 0.041* | |
H5B | −0.1585 | 0.0825 | 0.1756 | 0.041* | |
C6 | −0.1089 (4) | 0.2049 (4) | 0.3529 (3) | 0.0308 (7) | |
H6A | −0.2438 | 0.2133 | 0.3478 | 0.037* | |
H6B | −0.0602 | 0.1835 | 0.4275 | 0.037* | |
C7 | −0.0878 (5) | 0.4310 (4) | 0.2619 (3) | 0.0383 (8) | |
H7A | −0.0791 | 0.5449 | 0.2996 | 0.046* | |
H7B | −0.2262 | 0.3740 | 0.2356 | 0.046* | |
C8 | −0.0028 (5) | 0.4194 (4) | 0.1545 (3) | 0.0303 (7) | |
C9 | 0.0821 (4) | 0.4801 (4) | 0.4711 (3) | 0.0293 (7) | |
H9A | 0.1606 | 0.5808 | 0.4657 | 0.035* | |
H9B | 0.1671 | 0.4367 | 0.5221 | 0.035* | |
O8 | 0.4369 (4) | 0.7275 (3) | 0.2220 (2) | 0.0575 (7) | |
H81 | 0.5196 | 0.7918 | 0.2798 | 0.086* | |
H82 | 0.4963 | 0.6924 | 0.1731 | 0.086* | |
O9 | 0.6210 (6) | 0.6889 (4) | 0.0405 (3) | 0.0923 (12) | |
H91 | 0.6512 | 0.6831 | −0.0229 | 0.138* | |
H92 | 0.6638 | 0.6205 | 0.0673 | 0.138* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0260 (2) | 0.0262 (2) | 0.0228 (2) | 0.00595 (14) | 0.00896 (14) | 0.00540 (14) |
N1 | 0.0269 (13) | 0.0268 (12) | 0.0197 (13) | 0.0050 (10) | 0.0083 (10) | 0.0037 (10) |
N2 | 0.0287 (14) | 0.0320 (13) | 0.0212 (13) | 0.0122 (11) | 0.0122 (11) | 0.0081 (11) |
O1 | 0.0362 (12) | 0.0283 (11) | 0.0223 (11) | 0.0051 (9) | 0.0041 (9) | 0.0079 (9) |
O2 | 0.0700 (18) | 0.0531 (15) | 0.0268 (13) | 0.0008 (13) | 0.0058 (12) | 0.0186 (12) |
O3 | 0.0289 (12) | 0.0353 (12) | 0.0319 (13) | 0.0060 (10) | 0.0140 (10) | 0.0003 (10) |
O4 | 0.0419 (14) | 0.0420 (13) | 0.0306 (13) | 0.0098 (11) | 0.0181 (10) | −0.0007 (11) |
O5 | 0.0339 (12) | 0.0416 (12) | 0.0242 (11) | 0.0155 (10) | 0.0122 (9) | 0.0121 (10) |
O6 | 0.0534 (16) | 0.0635 (16) | 0.0340 (13) | 0.0340 (13) | 0.0195 (12) | 0.0288 (12) |
O7 | 0.0442 (14) | 0.0321 (12) | 0.0300 (13) | −0.0023 (10) | 0.0068 (10) | 0.0075 (10) |
C1 | 0.0356 (18) | 0.0370 (17) | 0.0258 (17) | 0.0140 (15) | 0.0111 (14) | 0.0097 (14) |
C2 | 0.0449 (19) | 0.0280 (16) | 0.0296 (18) | 0.0088 (14) | 0.0127 (15) | 0.0111 (14) |
C3 | 0.0320 (17) | 0.0348 (17) | 0.0245 (17) | 0.0140 (14) | 0.0092 (14) | 0.0086 (14) |
C4 | 0.0348 (18) | 0.0285 (15) | 0.0231 (16) | 0.0047 (13) | 0.0093 (13) | 0.0017 (13) |
C5 | 0.0263 (17) | 0.0383 (18) | 0.0325 (18) | 0.0018 (14) | 0.0097 (14) | 0.0038 (15) |
C6 | 0.0256 (16) | 0.0378 (17) | 0.0302 (18) | 0.0066 (14) | 0.0136 (13) | 0.0074 (14) |
C7 | 0.043 (2) | 0.055 (2) | 0.0338 (19) | 0.0285 (17) | 0.0212 (16) | 0.0214 (17) |
C8 | 0.0318 (17) | 0.0341 (17) | 0.0258 (17) | 0.0094 (14) | 0.0080 (13) | 0.0088 (14) |
C9 | 0.0277 (16) | 0.0328 (16) | 0.0285 (17) | 0.0088 (14) | 0.0136 (13) | 0.0048 (13) |
O8 | 0.0607 (18) | 0.0574 (17) | 0.0524 (17) | 0.0100 (14) | 0.0120 (14) | 0.0173 (14) |
O9 | 0.115 (3) | 0.089 (2) | 0.108 (3) | 0.047 (2) | 0.076 (3) | 0.036 (2) |
Zn1—O7 | 2.003 (2) | C1—C2 | 1.530 (4) |
Zn1—O1 | 2.063 (2) | C2—H2A | 0.9700 |
Zn1—O3 | 2.112 (2) | C2—H2B | 0.9700 |
Zn1—O5 | 2.130 (2) | C3—C4 | 1.516 (4) |
Zn1—N1 | 2.150 (2) | C4—H4A | 0.9700 |
Zn1—N2 | 2.243 (2) | C4—H4B | 0.9700 |
N1—C5 | 1.474 (4) | C5—C6 | 1.523 (4) |
N1—C4 | 1.477 (4) | C5—H5A | 0.9700 |
N1—C2 | 1.477 (4) | C5—H5B | 0.9700 |
N2—C6 | 1.480 (4) | C6—H6A | 0.9700 |
N2—C7 | 1.483 (4) | C6—H6B | 0.9700 |
N2—C9 | 1.483 (4) | C7—C8 | 1.514 (4) |
O1—C1 | 1.277 (4) | C7—H7A | 0.9700 |
O2—C1 | 1.227 (4) | C7—H7B | 0.9700 |
O3—C3 | 1.246 (4) | C9—C9i | 1.523 (5) |
O4—C3 | 1.270 (4) | C9—H9A | 0.9700 |
O4—H4 | 0.8200 | C9—H9B | 0.9700 |
O5—C8 | 1.232 (4) | O8—H81 | 0.8203 |
O6—C8 | 1.274 (4) | O8—H82 | 0.8203 |
O6—H6 | 0.8199 | O9—H91 | 0.8207 |
O7—H71 | 0.8199 | O9—H92 | 0.8211 |
O7—H72 | 0.8200 | ||
O7—Zn1—O1 | 91.79 (8) | N1—C2—H2B | 108.6 |
O7—Zn1—O3 | 97.19 (9) | C1—C2—H2B | 108.6 |
O1—Zn1—O3 | 102.29 (8) | H2A—C2—H2B | 107.6 |
O7—Zn1—O5 | 88.93 (9) | O3—C3—O4 | 124.8 (3) |
O1—Zn1—O5 | 171.03 (8) | O3—C3—C4 | 120.6 (3) |
O3—Zn1—O5 | 86.48 (8) | O4—C3—C4 | 114.6 (3) |
O7—Zn1—N1 | 172.37 (9) | N1—C4—C3 | 111.7 (2) |
O1—Zn1—N1 | 82.46 (8) | N1—C4—H4A | 109.3 |
O3—Zn1—N1 | 79.26 (9) | C3—C4—H4A | 109.3 |
O5—Zn1—N1 | 97.53 (9) | N1—C4—H4B | 109.3 |
O7—Zn1—N2 | 101.71 (9) | C3—C4—H4B | 109.3 |
O1—Zn1—N2 | 92.61 (9) | H4A—C4—H4B | 107.9 |
O3—Zn1—N2 | 155.51 (9) | N1—C5—C6 | 110.8 (2) |
O5—Zn1—N2 | 78.50 (8) | N1—C5—H5A | 109.5 |
N1—Zn1—N2 | 83.63 (9) | C6—C5—H5A | 109.5 |
C5—N1—C4 | 113.2 (2) | N1—C5—H5B | 109.5 |
C5—N1—C2 | 112.3 (2) | C6—C5—H5B | 109.5 |
C4—N1—C2 | 111.4 (2) | H5A—C5—H5B | 108.1 |
C5—N1—Zn1 | 104.87 (18) | N2—C6—C5 | 111.6 (2) |
C4—N1—Zn1 | 107.68 (17) | N2—C6—H6A | 109.3 |
C2—N1—Zn1 | 106.79 (18) | C5—C6—H6A | 109.3 |
C6—N2—C7 | 112.4 (3) | N2—C6—H6B | 109.3 |
C6—N2—C9 | 111.3 (2) | C5—C6—H6B | 109.3 |
C7—N2—C9 | 112.1 (2) | H6A—C6—H6B | 108.0 |
C6—N2—Zn1 | 103.30 (16) | N2—C7—C8 | 113.6 (2) |
C7—N2—Zn1 | 108.16 (17) | N2—C7—H7A | 108.8 |
C9—N2—Zn1 | 109.12 (17) | C8—C7—H7A | 108.8 |
C1—O1—Zn1 | 115.50 (19) | N2—C7—H7B | 108.8 |
C3—O3—Zn1 | 113.58 (19) | C8—C7—H7B | 108.8 |
C3—O4—H4 | 118.3 | H7A—C7—H7B | 107.7 |
C8—O5—Zn1 | 116.02 (19) | O5—C8—O6 | 125.4 (3) |
C8—O6—H6 | 118.2 | O5—C8—C7 | 121.3 (3) |
Zn1—O7—H71 | 123.8 | O6—C8—C7 | 113.3 (3) |
Zn1—O7—H72 | 117.0 | N2—C9—C9i | 114.6 (3) |
H71—O7—H72 | 108.0 | N2—C9—H9A | 108.6 |
O2—C1—O1 | 125.6 (3) | C9i—C9—H9A | 108.6 |
O2—C1—C2 | 117.1 (3) | N2—C9—H9B | 108.6 |
O1—C1—C2 | 117.3 (3) | C9i—C9—H9B | 108.6 |
N1—C2—C1 | 114.6 (2) | H9A—C9—H9B | 107.6 |
N1—C2—H2A | 108.6 | H81—O8—H82 | 107.0 |
C1—C2—H2A | 108.6 | H91—O9—H92 | 106.8 |
O1—Zn1—N1—C5 | 111.87 (18) | O7—Zn1—O5—C8 | −87.6 (2) |
O3—Zn1—N1—C5 | −144.02 (19) | O3—Zn1—O5—C8 | 175.2 (2) |
O5—Zn1—N1—C5 | −59.08 (19) | N1—Zn1—O5—C8 | 96.5 (2) |
N2—Zn1—N1—C5 | 18.38 (18) | N2—Zn1—O5—C8 | 14.6 (2) |
O1—Zn1—N1—C4 | −127.26 (19) | Zn1—O1—C1—O2 | −166.3 (3) |
O3—Zn1—N1—C4 | −23.16 (18) | Zn1—O1—C1—C2 | 14.7 (3) |
O5—Zn1—N1—C4 | 61.78 (19) | C5—N1—C2—C1 | −97.9 (3) |
N2—Zn1—N1—C4 | 139.24 (19) | C4—N1—C2—C1 | 133.9 (3) |
O1—Zn1—N1—C2 | −7.52 (18) | Zn1—N1—C2—C1 | 16.6 (3) |
O3—Zn1—N1—C2 | 96.59 (19) | O2—C1—C2—N1 | 159.0 (3) |
O5—Zn1—N1—C2 | −178.48 (18) | O1—C1—C2—N1 | −21.9 (4) |
N2—Zn1—N1—C2 | −101.02 (19) | Zn1—O3—C3—O4 | 164.5 (2) |
O7—Zn1—N2—C6 | −164.05 (17) | Zn1—O3—C3—C4 | −13.1 (4) |
O1—Zn1—N2—C6 | −71.68 (18) | C5—N1—C4—C3 | 138.9 (3) |
O3—Zn1—N2—C6 | 56.2 (3) | C2—N1—C4—C3 | −93.3 (3) |
O5—Zn1—N2—C6 | 109.49 (18) | Zn1—N1—C4—C3 | 23.4 (3) |
N1—Zn1—N2—C6 | 10.43 (18) | O3—C3—C4—N1 | −7.9 (4) |
O7—Zn1—N2—C7 | 76.6 (2) | O4—C3—C4—N1 | 174.3 (2) |
O1—Zn1—N2—C7 | 169.0 (2) | C4—N1—C5—C6 | −162.2 (3) |
O3—Zn1—N2—C7 | −63.1 (3) | C2—N1—C5—C6 | 70.6 (3) |
O5—Zn1—N2—C7 | −9.9 (2) | Zn1—N1—C5—C6 | −45.0 (3) |
N1—Zn1—N2—C7 | −108.9 (2) | C7—N2—C6—C5 | 78.5 (3) |
O7—Zn1—N2—C9 | −45.53 (19) | C9—N2—C6—C5 | −154.9 (3) |
O1—Zn1—N2—C9 | 46.84 (19) | Zn1—N2—C6—C5 | −37.9 (3) |
O3—Zn1—N2—C9 | 174.73 (19) | N1—C5—C6—N2 | 59.6 (3) |
O5—Zn1—N2—C9 | −131.99 (19) | C6—N2—C7—C8 | −107.8 (3) |
N1—Zn1—N2—C9 | 128.95 (19) | C9—N2—C7—C8 | 126.0 (3) |
O7—Zn1—O1—C1 | −178.9 (2) | Zn1—N2—C7—C8 | 5.6 (3) |
O3—Zn1—O1—C1 | −81.1 (2) | Zn1—O5—C8—O6 | 162.7 (3) |
N1—Zn1—O1—C1 | −3.9 (2) | Zn1—O5—C8—C7 | −16.4 (4) |
N2—Zn1—O1—C1 | 79.3 (2) | N2—C7—C8—O5 | 6.7 (5) |
O7—Zn1—O3—C3 | −166.2 (2) | N2—C7—C8—O6 | −172.5 (3) |
O1—Zn1—O3—C3 | 100.4 (2) | C6—N2—C9—C9i | −58.1 (4) |
O5—Zn1—O3—C3 | −77.7 (2) | C7—N2—C9—C9i | 68.7 (4) |
N1—Zn1—O3—C3 | 20.6 (2) | Zn1—N2—C9—C9i | −171.5 (3) |
N2—Zn1—O3—C3 | −25.8 (3) |
Symmetry code: (i) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9B···O1 | 0.97 | 2.54 | 3.198 (4) | 125 |
C2—H2A···O8ii | 0.97 | 2.52 | 3.476 (4) | 168 |
C5—H5B···O4iii | 0.97 | 2.48 | 3.428 (4) | 166 |
O7—H71···O1iv | 0.82 | 1.91 | 2.720 (3) | 169 |
O7—H72···O8 | 0.82 | 1.83 | 2.627 (3) | 164 |
O8—H81···O2iv | 0.82 | 1.94 | 2.747 (4) | 166 |
O8—H82···O9 | 0.82 | 1.96 | 2.734 (4) | 157 |
O9—H91···O5v | 0.82 | 2.33 | 3.074 (4) | 151 |
O9—H92···O6vi | 0.82 | 2.33 | 3.033 (4) | 144 |
Symmetry codes: (ii) x, y−1, z; (iii) −x, −y, −z; (iv) −x+1, −y+1, −z+1; (v) −x+1, −y+1, −z; (vi) x+1, y, z. |
Zn1—O7 | 2.003 (2) | Zn1—O5 | 2.130 (2) |
Zn1—O1 | 2.063 (2) | Zn1—N1 | 2.150 (2) |
Zn1—O3 | 2.112 (2) | Zn1—N2 | 2.243 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9B···O1 | 0.97 | 2.54 | 3.198 (4) | 125 |
C2—H2A···O8i | 0.97 | 2.52 | 3.476 (4) | 168 |
C5—H5B···O4ii | 0.97 | 2.48 | 3.428 (4) | 166 |
O7—H71···O1iii | 0.82 | 1.91 | 2.720 (3) | 169 |
O7—H72···O8 | 0.82 | 1.83 | 2.627 (3) | 164 |
O8—H81···O2iii | 0.82 | 1.94 | 2.747 (4) | 166 |
O8—H82···O9 | 0.82 | 1.96 | 2.734 (4) | 157 |
O9—H91···O5iv | 0.82 | 2.33 | 3.074 (4) | 151 |
O9—H92···O6v | 0.82 | 2.33 | 3.033 (4) | 144 |
Symmetry codes: (i) x, y−1, z; (ii) −x, −y, −z; (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y+1, −z; (v) x+1, y, z. |
Acknowledgements
This work was supported financially by the National Natural Science Foundation of China (grant No. 21171109), SRFDP (grant No. 20121401110005), the Natural Science Foundation of Shanxi Province of China (grant No. 2011011009–1) and the Research Project supported by Shanxi Scholarship Council of China (grant No. 2013–026).
References
Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Carlson, Z. A., Harrod, B., Widener, D., Howard, W. & Pang, K. (2010). J. Chem. Crystallogr. 40, 863–866. Web of Science CSD CrossRef CAS Google Scholar
Long, L.-S., Ren, Y.-P., Huang, R.-B., Zheng, L.-S. & Ng, S. W. (2003). Acta Cryst. E59, m456–m458. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lu, L.-P. & Zhu, M.-L. (2014). Antioxid. Redox Sign. 20, 2210–2224. Web of Science CrossRef CAS Google Scholar
Mondry, A. & Starynowicz, P. (1998). J. Chem. Soc. Dalton Trans. pp. 859–864. Web of Science CSD CrossRef Google Scholar
Ouyang, Y., Zhang, W., Xu, N., Xu, G.-F., Liao, D.-Z., Yoshimura, K., Yan, S.-P. & Cheng, P. (2007). Inorg. Chem. 46, 8454–8456. Web of Science CSD CrossRef PubMed CAS Google Scholar
Qian, Q., Wu, J. & Qian, J. (2013). Acta Cryst. E69, m97. CSD CrossRef IUCr Journals Google Scholar
Sethi, N. K., Whitwood, A. C. & Bruce, D. W. (2012). Polyhedron, 33, 378–387. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shi, W., Chen, X.-Y., Zhao, B., Yu, A., Song, H.-B., Cheng, P., Wang, H.-G., Liao, D.-Z. & Yan, S.-P. (2006). Inorg. Chem. 45, 3949–3957. Web of Science CSD CrossRef PubMed CAS Google Scholar
Song, L.-J., Zhang, J., Tang, Z.-R., Wang, W.-G. & Ju, Z.-F. (2003). Acta Cryst. E59, m867–m869. Web of Science CSD CrossRef IUCr Journals Google Scholar
Thompson, J. A., Scott, B. L. & Sauer, N. N. (1998). Acta Cryst. C54, 734–736. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Wang, J., Liu, Z.-R., Zhang, X.-D., Jia, W.-G. & Li, H.-F. (2003). J. Mol. Struct. 644, 29–36. Web of Science CSD CrossRef CAS Google Scholar
Wullens, H., Devillers, M., Tinant, B. & Declercq, J.-P. (1996). J. Chem. Soc. Dalton Trans. pp. 2023–2029. CSD CrossRef Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.