organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o167-o168

Crystal structure of 5-(1,3-di­thian-2-yl)-2H-1,3-benzodioxole

CROSSMARK_Color_square_no_text.svg

aDepartmento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bDepartmento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, cDepartamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 05508-900 São Paulo-SP, Brazil, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: julio@power.ufscar.br

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 4 February 2015; accepted 5 February 2015; online 13 February 2015)

In the title compound, C11H12O2S2, two independent but virtually superimposable mol­ecules, A and B, comprise the asymmetric unit. In each mol­ecule, the 1,3-di­thiane ring has a chair conformation with the 1,4-disposed C atoms being above and below the plane through the remaining four atoms. The substituted benzene ring occupies an equatorial position in each case and forms dihedral angles of 85.62 (9) (mol­ecule A) and 85.69 (8)° (mol­ecule B) with the least-squares plane through the 1,3-di­thiane ring. The difference between the mol­ecules rests in the conformation of the five-membered 1,3-dioxole ring which is an envelope in mol­ecule A (the methyl­ene C atom is the flap) and almost planar in mol­ecule B (r.m.s. deviation = 0.046 Å). In the crystal, mol­ecules of A self-associate into supra­molecular zigzag chains (generated by glide symmetry along the c axis) via methyl­ene C—H⋯π inter­actions. Mol­ecules of B form similar chains. The chains pack with no specific directional inter­molecular inter­actions between them.

1. Related literature

The title compound has been prepared previously, see: Ballesteros et al. (2005[Ballesteros, L., Noguez, O., Arroyo, G., Velasco, B., Delgado, F. & Miranda, R. (2005). J. Mex. Chem. Soc. 49, 302-306.]). For the structure of a related compound containing the same mol­ecular skeleton as in the title compound, i.e. (19R,21R,25S)-(−)-2-(2-menthyloxy­carb­onyl-3,4-methyl­ene­dioxy­phen­yl)1,3-di­thiane, see: Ratajczak-Sitarz et al. (1996[Ratajczak-Sitarz, M., Naruszewicz, M., Kosturkiewicz, Z., Jozkowiak, J. & Rozwadowska, M. D. (1996). Pol. J. Chem. 70, 310-319.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C11H12O2S2

  • Mr = 240.33

  • Monoclinic, P 21 /c

  • a = 11.4765 (3) Å

  • b = 17.5504 (4) Å

  • c = 11.6397 (2) Å

  • β = 104.275 (1)°

  • V = 2272.05 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 296 K

  • 0.59 × 0.40 × 0.26 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.702, Tmax = 0.745

  • 14839 measured reflections

  • 4164 independent reflections

  • 3759 reflections with I > 2σ(I)

  • Rint = 0.020

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.092

  • S = 1.03

  • 4164 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C5–C11 and C16–C21 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4b⋯Cg1i 0.97 2.77 3.731 (2) 170
C13—H13a⋯Cg2ii 0.97 2.54 3.4841 (19) 165
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2014 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), QMOL (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010[ChemAxon (2010). Marvinsketch. https://www.chemaxon.com.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Related literature top

The title compound has been prepared previously, see: Ballesteros et al. (2005). For the structure of a related compound containing the same molecular skeleton as in the title compound, i.e. (19R,21R,25S)-(–)-2-(2-menthyloxycarbonyl-3,4-methylenedioxyphenyl)1,3-dithiane, see: Ratajczak-Sitarz et al. (1996).

Experimental top

A solution of the corresponding 2H-1,3-benzodioxole-5-carbaldehyde (0.037 mol, 1 equiv.) in chloroform (20 ml) was combined with an equimolar amount of propane-1,3-dithiol (3.7 ml, 0.037 mol) at room temperature. The solution was stirred for 1 h at this temperature, then cooled to -20 °C after which BF3 etherate (0.46 ml, 0.0037 mol, 0.1 equiv.) was added drop-wise. The reaction solution was allowed to warm to room temperature and stirred overnight. After this time, the solution was washed three times each with water, 10% aqueous KOH, then water followed by drying over MgSO4. Evaporation of the solvent furnishes a pure product as colourless crystals in 97% yield. To obtain crystals suitable for X-ray analysis, the product was crystallized from CH3OH. The spectroscopic data matched those reported in the literature (Ballesteros et al., 2005).

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93–0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMOL (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structures of the two independent molecules in title compound showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. Superimposition of the two independent molecules. Molecule A is shown in red and B in blue. The molecules have been superimposed such that the benzene rings are overlapped.
[Figure 3] Fig. 3. A view of the zigzag supramolecular chain comprising molecules of A along the c axis (glide symmetry) mediated by C—H···π interactions are shown as purple dashed lines.
[Figure 4] Fig. 4. A view in projection down the c axis of the unit-cell contents. The C—H···π interactions are shown as purple dashed lines.
5-(1,3-Dithian-2-yl)-2H-1,3-benzodioxole top
Crystal data top
C11H12O2S2F(000) = 1008
Mr = 240.33Dx = 1.405 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.4765 (3) ÅCell parameters from 9068 reflections
b = 17.5504 (4) Åθ = 2.9–25.4°
c = 11.6397 (2) ŵ = 0.45 mm1
β = 104.275 (1)°T = 296 K
V = 2272.05 (9) Å3Prism, colourless
Z = 80.59 × 0.40 × 0.26 mm
Data collection top
Bruker APEXII CCD
diffractometer
3759 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.020
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 25.4°, θmin = 1.8°
Tmin = 0.702, Tmax = 0.745h = 1313
14839 measured reflectionsk = 2119
4164 independent reflectionsl = 148
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0459P)2 + 0.9363P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4164 reflectionsΔρmax = 0.29 e Å3
271 parametersΔρmin = 0.44 e Å3
Crystal data top
C11H12O2S2V = 2272.05 (9) Å3
Mr = 240.33Z = 8
Monoclinic, P21/cMo Kα radiation
a = 11.4765 (3) ŵ = 0.45 mm1
b = 17.5504 (4) ÅT = 296 K
c = 11.6397 (2) Å0.59 × 0.40 × 0.26 mm
β = 104.275 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4164 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3759 reflections with I > 2σ(I)
Tmin = 0.702, Tmax = 0.745Rint = 0.020
14839 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.03Δρmax = 0.29 e Å3
4164 reflectionsΔρmin = 0.44 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.36505 (5)0.56934 (3)0.82081 (4)0.05661 (16)
S20.50542 (5)0.71160 (3)0.79700 (4)0.05188 (15)
O10.23644 (16)0.62085 (13)0.26070 (13)0.0865 (6)
O20.40467 (15)0.55784 (9)0.36797 (12)0.0660 (4)
C10.36233 (15)0.66240 (10)0.75248 (15)0.0432 (4)
H10.30130.69350.77620.052*
C20.4034 (2)0.59674 (13)0.97523 (16)0.0553 (5)
H2A0.34010.62910.98990.066*
H2B0.40660.55131.02340.066*
C30.52212 (18)0.63848 (12)1.01417 (16)0.0524 (5)
H3A0.54080.64551.09940.063*
H3B0.58490.60710.99620.063*
C40.5228 (2)0.71522 (12)0.95595 (17)0.0567 (5)
H4A0.59800.74060.99190.068*
H4B0.45830.74590.97200.068*
C50.32654 (15)0.65344 (11)0.62010 (15)0.0428 (4)
C60.22667 (18)0.69163 (15)0.55466 (19)0.0640 (6)
H60.18350.72300.59370.077*
C70.1889 (2)0.68440 (18)0.4319 (2)0.0779 (7)
H70.12150.71000.38820.094*
C80.25501 (19)0.63842 (14)0.37937 (16)0.0602 (6)
C90.35527 (17)0.60054 (11)0.44322 (15)0.0464 (4)
C100.39414 (16)0.60659 (10)0.56338 (15)0.0426 (4)
H100.46210.58090.60560.051*
C110.3389 (3)0.57881 (16)0.25229 (18)0.0757 (7)
H11A0.38910.60940.21430.091*
H11B0.31450.53350.20470.091*
S30.09983 (5)0.28175 (2)0.03890 (4)0.04927 (14)
S40.16401 (4)0.44631 (2)0.00810 (4)0.04651 (14)
O30.33099 (13)0.39219 (10)0.48171 (12)0.0623 (4)
O40.17354 (14)0.42693 (9)0.56131 (12)0.0626 (4)
C120.07298 (15)0.38075 (9)0.06991 (15)0.0393 (4)
H120.01180.39220.03420.047*
C130.05738 (19)0.28499 (10)0.12132 (16)0.0496 (4)
H13A0.06280.23400.15170.060*
H13B0.02580.30110.14700.060*
C140.13363 (18)0.33772 (11)0.17442 (16)0.0484 (4)
H14A0.11380.33060.25970.058*
H14B0.21760.32450.14380.058*
C150.11586 (19)0.42070 (10)0.14730 (16)0.0504 (5)
H15A0.03120.43300.17560.060*
H15B0.15960.45180.19140.060*
C160.09597 (16)0.39253 (9)0.20158 (15)0.0401 (4)
C170.00141 (17)0.41118 (10)0.25062 (18)0.0460 (4)
H170.07570.41490.20140.055*
C180.01841 (18)0.42465 (11)0.37213 (18)0.0521 (5)
H180.04520.43810.40440.063*
C190.13232 (18)0.41716 (10)0.44076 (16)0.0451 (4)
C200.22716 (16)0.39691 (10)0.39325 (16)0.0435 (4)
C210.21260 (16)0.38462 (11)0.27471 (15)0.0441 (4)
H210.27720.37160.24370.053*
C220.2965 (2)0.40546 (14)0.58912 (18)0.0616 (5)
H22A0.30830.35960.63710.074*
H22B0.34550.44570.63380.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0779 (4)0.0577 (3)0.0369 (3)0.0258 (3)0.0194 (2)0.0058 (2)
S20.0583 (3)0.0509 (3)0.0473 (3)0.0141 (2)0.0146 (2)0.0003 (2)
O10.0774 (11)0.1433 (18)0.0318 (7)0.0069 (11)0.0003 (7)0.0008 (9)
O20.0837 (11)0.0812 (11)0.0364 (7)0.0008 (8)0.0209 (7)0.0108 (7)
C10.0412 (9)0.0521 (10)0.0391 (9)0.0008 (8)0.0155 (7)0.0036 (8)
C20.0696 (13)0.0651 (13)0.0352 (9)0.0103 (10)0.0208 (9)0.0019 (9)
C30.0580 (12)0.0621 (12)0.0359 (9)0.0002 (9)0.0092 (8)0.0045 (8)
C40.0662 (13)0.0545 (12)0.0459 (11)0.0100 (10)0.0068 (9)0.0122 (9)
C50.0380 (9)0.0554 (11)0.0370 (9)0.0024 (8)0.0130 (7)0.0002 (8)
C60.0459 (11)0.0932 (17)0.0539 (12)0.0180 (11)0.0142 (9)0.0020 (11)
C70.0512 (12)0.124 (2)0.0516 (12)0.0217 (14)0.0001 (10)0.0118 (13)
C80.0507 (11)0.0919 (16)0.0343 (10)0.0106 (11)0.0032 (8)0.0042 (10)
C90.0516 (10)0.0543 (11)0.0358 (9)0.0091 (8)0.0155 (8)0.0023 (8)
C100.0439 (9)0.0509 (10)0.0335 (8)0.0003 (8)0.0104 (7)0.0015 (7)
C110.0981 (19)0.0934 (18)0.0356 (11)0.0223 (15)0.0166 (11)0.0127 (11)
S30.0712 (3)0.0321 (2)0.0429 (3)0.0009 (2)0.0108 (2)0.00570 (17)
S40.0588 (3)0.0368 (2)0.0442 (3)0.01144 (19)0.0132 (2)0.00229 (18)
O30.0544 (8)0.0930 (11)0.0390 (7)0.0080 (7)0.0104 (6)0.0048 (7)
O40.0798 (10)0.0687 (9)0.0452 (8)0.0103 (8)0.0265 (7)0.0080 (7)
C120.0401 (9)0.0347 (8)0.0426 (9)0.0011 (7)0.0091 (7)0.0036 (7)
C130.0643 (12)0.0356 (9)0.0443 (10)0.0069 (8)0.0046 (9)0.0028 (7)
C140.0598 (11)0.0477 (10)0.0362 (9)0.0050 (8)0.0092 (8)0.0039 (8)
C150.0677 (12)0.0404 (10)0.0420 (10)0.0090 (9)0.0111 (9)0.0061 (8)
C160.0447 (9)0.0330 (8)0.0448 (9)0.0036 (7)0.0155 (8)0.0024 (7)
C170.0434 (9)0.0388 (9)0.0578 (11)0.0092 (7)0.0161 (8)0.0032 (8)
C180.0550 (11)0.0453 (10)0.0654 (13)0.0117 (8)0.0325 (10)0.0021 (9)
C190.0623 (12)0.0348 (9)0.0440 (10)0.0037 (8)0.0240 (9)0.0034 (7)
C200.0460 (10)0.0436 (10)0.0424 (9)0.0032 (8)0.0136 (8)0.0000 (7)
C210.0411 (9)0.0535 (11)0.0412 (9)0.0062 (8)0.0169 (8)0.0004 (8)
C220.0757 (15)0.0689 (14)0.0411 (10)0.0015 (11)0.0162 (10)0.0090 (10)
Geometric parameters (Å, º) top
S1—C21.8071 (18)S3—C131.8084 (18)
S1—C11.8136 (19)S3—C121.8163 (17)
S2—C41.812 (2)S4—C151.8128 (19)
S2—C11.8142 (18)S4—C121.8176 (17)
O1—C81.380 (2)O3—C201.372 (2)
O1—C111.412 (3)O3—C221.420 (2)
O2—C91.377 (2)O4—C191.377 (2)
O2—C111.420 (3)O4—C221.419 (3)
C1—C51.502 (2)C12—C161.504 (2)
C1—H10.9800C12—H120.9800
C2—C31.515 (3)C13—C141.507 (3)
C2—H2A0.9700C13—H13A0.9700
C2—H2B0.9700C13—H13B0.9700
C3—C41.509 (3)C14—C151.515 (3)
C3—H3A0.9700C14—H14A0.9700
C3—H3B0.9700C14—H14B0.9700
C4—H4A0.9700C15—H15A0.9700
C4—H4B0.9700C15—H15B0.9700
C5—C61.383 (3)C16—C171.384 (2)
C5—C101.402 (2)C16—C211.405 (2)
C6—C71.393 (3)C17—C181.399 (3)
C6—H60.9300C17—H170.9300
C7—C81.353 (3)C18—C191.360 (3)
C7—H70.9300C18—H180.9300
C8—C91.377 (3)C19—C201.383 (2)
C9—C101.363 (2)C20—C211.365 (2)
C10—H100.9300C21—H210.9300
C11—H11A0.9700C22—H22A0.9700
C11—H11B0.9700C22—H22B0.9700
C2—S1—C199.80 (9)C13—S3—C1299.16 (8)
C4—S2—C199.93 (9)C15—S4—C12100.05 (8)
C8—O1—C11105.10 (17)C20—O3—C22105.77 (15)
C9—O2—C11104.86 (18)C19—O4—C22105.78 (14)
C5—C1—S1109.05 (13)C16—C12—S3109.78 (11)
C5—C1—S2110.02 (12)C16—C12—S4110.05 (12)
S1—C1—S2112.76 (10)S3—C12—S4112.62 (9)
C5—C1—H1108.3C16—C12—H12108.1
S1—C1—H1108.3S3—C12—H12108.1
S2—C1—H1108.3S4—C12—H12108.1
C3—C2—S1114.00 (13)C14—C13—S3113.97 (13)
C3—C2—H2A108.8C14—C13—H13A108.8
S1—C2—H2A108.8S3—C13—H13A108.8
C3—C2—H2B108.8C14—C13—H13B108.8
S1—C2—H2B108.8S3—C13—H13B108.8
H2A—C2—H2B107.6H13A—C13—H13B107.7
C4—C3—C2113.67 (17)C13—C14—C15112.54 (16)
C4—C3—H3A108.8C13—C14—H14A109.1
C2—C3—H3A108.8C15—C14—H14A109.1
C4—C3—H3B108.8C13—C14—H14B109.1
C2—C3—H3B108.8C15—C14—H14B109.1
H3A—C3—H3B107.7H14A—C14—H14B107.8
C3—C4—S2114.57 (13)C14—C15—S4115.01 (13)
C3—C4—H4A108.6C14—C15—H15A108.5
S2—C4—H4A108.6S4—C15—H15A108.5
C3—C4—H4B108.6C14—C15—H15B108.5
S2—C4—H4B108.6S4—C15—H15B108.5
H4A—C4—H4B107.6H15A—C15—H15B107.5
C6—C5—C10120.29 (17)C17—C16—C21120.01 (16)
C6—C5—C1119.61 (17)C17—C16—C12119.63 (16)
C10—C5—C1120.09 (16)C21—C16—C12120.36 (15)
C5—C6—C7121.8 (2)C16—C17—C18121.92 (18)
C5—C6—H6119.1C16—C17—H17119.0
C7—C6—H6119.1C18—C17—H17119.0
C8—C7—C6116.8 (2)C19—C18—C17116.85 (16)
C8—C7—H7121.6C19—C18—H18121.6
C6—C7—H7121.6C17—C18—H18121.6
C7—C8—C9122.08 (18)C18—C19—O4128.74 (17)
C7—C8—O1128.4 (2)C18—C19—C20121.81 (17)
C9—C8—O1109.6 (2)O4—C19—C20109.45 (17)
C10—C9—O2127.83 (18)C21—C20—O3128.03 (16)
C10—C9—C8122.31 (18)C21—C20—C19122.16 (17)
O2—C9—C8109.86 (16)O3—C20—C19109.81 (16)
C9—C10—C5116.72 (17)C20—C21—C16117.23 (16)
C9—C10—H10121.6C20—C21—H21121.4
C5—C10—H10121.6C16—C21—H21121.4
O1—C11—O2109.06 (18)O4—C22—O3108.66 (16)
O1—C11—H11A109.9O4—C22—H22A110.0
O2—C11—H11A109.9O3—C22—H22A110.0
O1—C11—H11B109.9O4—C22—H22B110.0
O2—C11—H11B109.9O3—C22—H22B110.0
H11A—C11—H11B108.3H22A—C22—H22B108.3
C2—S1—C1—C5177.74 (12)C13—S3—C12—C16176.91 (13)
C2—S1—C1—S259.74 (11)C13—S3—C12—S460.10 (11)
C4—S2—C1—C5179.08 (13)C15—S4—C12—C16178.87 (12)
C4—S2—C1—S158.95 (11)C15—S4—C12—S358.30 (11)
C1—S1—C2—C359.52 (17)C12—S3—C13—C1461.79 (16)
S1—C2—C3—C465.6 (2)S3—C13—C14—C1567.4 (2)
C2—C3—C4—S264.9 (2)C13—C14—C15—S465.0 (2)
C1—S2—C4—C358.13 (18)C12—S4—C15—C1457.47 (16)
S1—C1—C5—C6122.30 (18)S3—C12—C16—C17113.76 (16)
S2—C1—C5—C6113.55 (18)S4—C12—C16—C17121.74 (15)
S1—C1—C5—C1057.71 (19)S3—C12—C16—C2166.16 (19)
S2—C1—C5—C1066.4 (2)S4—C12—C16—C2158.33 (19)
C10—C5—C6—C70.9 (3)C21—C16—C17—C181.7 (3)
C1—C5—C6—C7179.2 (2)C12—C16—C17—C18178.35 (16)
C5—C6—C7—C80.3 (4)C16—C17—C18—C191.2 (3)
C6—C7—C8—C90.3 (4)C17—C18—C19—O4179.94 (18)
C6—C7—C8—O1179.1 (2)C17—C18—C19—C200.2 (3)
C11—O1—C8—C7172.7 (3)C22—O4—C19—C18174.8 (2)
C11—O1—C8—C97.8 (3)C22—O4—C19—C205.0 (2)
C11—O2—C9—C10173.3 (2)C22—O3—C20—C21176.4 (2)
C11—O2—C9—C87.3 (2)C22—O3—C20—C193.8 (2)
C7—C8—C9—C100.3 (3)C18—C19—C20—C211.2 (3)
O1—C8—C9—C10179.17 (18)O4—C19—C20—C21179.04 (17)
C7—C8—C9—O2179.8 (2)C18—C19—C20—O3178.97 (17)
O1—C8—C9—O20.3 (2)O4—C19—C20—O30.8 (2)
O2—C9—C10—C5179.15 (18)O3—C20—C21—C16179.54 (18)
C8—C9—C10—C50.2 (3)C19—C20—C21—C160.7 (3)
C6—C5—C10—C90.8 (3)C17—C16—C21—C200.7 (3)
C1—C5—C10—C9179.21 (16)C12—C16—C21—C20179.33 (16)
C8—O1—C11—O212.4 (3)C19—O4—C22—O37.3 (2)
C9—O2—C11—O112.2 (2)C20—O3—C22—O46.8 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C5–C11 and C16–C21 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4b···Cg1i0.972.773.731 (2)170
C13—H13a···Cg2ii0.972.543.4841 (19)165
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y1/2, z3/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C5–C11 and C16–C21 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4b···Cg1i0.972.773.731 (2)170
C13—H13a···Cg2ii0.972.543.4841 (19)165
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y1/2, z3/2.
 

Acknowledgements

We thank Professor Regina H. A. Santos from IQSC–USP for the X-ray data collection. The Brazilian agencies CNPq (305626/2013-2 to JZS, 306121/2013-2 to IC and 308320/2010-7 to HAS), FAPESP (2012/00424-2 and 2013/21925-2) and CAPES are acknowledged for financial support.

References

First citationBallesteros, L., Noguez, O., Arroyo, G., Velasco, B., Delgado, F. & Miranda, R. (2005). J. Mex. Chem. Soc. 49, 302–306.  CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChemAxon (2010). Marvinsketch. https://www.chemaxon.com.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRatajczak-Sitarz, M., Naruszewicz, M., Kosturkiewicz, Z., Jozkowiak, J. & Rozwadowska, M. D. (1996). Pol. J. Chem. 70, 310–319.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o167-o168
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds