organic compounds
N-[4-amino-5-cyano-6-(methylsulfanyl)pyridin-2-yl]-2-chloroacetamide
ofaChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Chemistry, The University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com
In the title compound, C9H9ClN4OS, the dihedral angle between the acetamide moiety and the pyridine ring is 4.83 (12)°. The O=C—C—Cl torsion angle is 46.4 (3)° and an intramolecular C—H⋯O interaction generates an S(6) ring. In the crystal, molecules are linked by N—H⋯O, N—H⋯N and C—H⋯N hydrogen bonds, generating sheets lying parallel to (120).
Keywords: crystal structure; N-[4-amino-5-cyano-6-(methylsulfanyl)pyridin-2-yl]-2-chloroacetamide; polyfunctional pyridines; hydrogen bonding.
CCDC reference: 1047552
1. Related literature
For medicinal and industrial applications of pyridine-containing compounds, see: Boger & Nakahara (1991); Zhang et al. (1995); Castedo et al. (1984); Latif et al. (1981), Mamolo et al. (2001); Gachet et al. (1995).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
CCDC reference: 1047552
10.1107/S2056989015002431/hb7362sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015002431/hb7362Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015002431/hb7362Isup3.cml
In an ice bath, to a solution of 4,6-Diamino-3-cyano-2-methylthiopyridine-2(1H)-thione (0.5 g, 2.7 mmol) in 30 ml dioxane, chloroacetyl chloride (0.31 g, 2.7 mmol) was added drop by drop with stirring at 273 K over 30 min. The resulting solid product was filtered off under vacuum, washed with cold ethanol, dried and recrystallized from ethanol to furnish colourless crystals (yield 0.65 g, 91%) Mp. 529 – 531 K.
H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). They were included as riding contributions with isotropic displacement parameters 1.2 or 1.5 times those of the attached atoms. The hydrogen atoms attached to N2 were found from difference Fourier maps and their Uiso were refined riding contributions with isotropic displacement parameters 1.5 times those of the attached atom, with N2—H2A = 0.85 (3) and N2—H2B = 0.856 (11) Å.
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).Fig. 1. Perspective view of the title compound with displacement ellipsoids drawn at the 50% probability level. | |
Fig. 2. View of the hydrogen bonding and packing of the title compound viewed along the a axis. | |
Fig. 3. Packing of the title compound viewed along the b axis. |
C9H9ClN4OS | F(000) = 528 |
Mr = 256.71 | Dx = 1.514 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3684 reflections |
a = 5.1654 (7) Å | θ = 2.8–24.9° |
b = 20.483 (3) Å | µ = 0.51 mm−1 |
c = 10.9489 (14) Å | T = 200 K |
β = 103.562 (5)° | Needle, yellow |
V = 1126.1 (3) Å3 | 0.50 × 0.16 × 0.10 mm |
Z = 4 |
Bruker SMART X2S benchtop diffractometer | 1960 independent reflections |
Radiation source: XOS X-beam microfocus source | 1634 reflections with I > 2σ(I) |
Doubly curved silicon crystal monochromator | Rint = 0.043 |
ω scans | θmax = 25.0°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −6→6 |
Tmin = 0.756, Tmax = 0.951 | k = −24→24 |
11998 measured reflections | l = −12→10 |
Refinement on F2 | 3 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.035 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.096 | w = 1/[σ2(Fo2) + (0.0489P)2 + 0.4578P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
1960 reflections | Δρmax = 0.34 e Å−3 |
152 parameters | Δρmin = −0.41 e Å−3 |
C9H9ClN4OS | V = 1126.1 (3) Å3 |
Mr = 256.71 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 5.1654 (7) Å | µ = 0.51 mm−1 |
b = 20.483 (3) Å | T = 200 K |
c = 10.9489 (14) Å | 0.50 × 0.16 × 0.10 mm |
β = 103.562 (5)° |
Bruker SMART X2S benchtop diffractometer | 1960 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 1634 reflections with I > 2σ(I) |
Tmin = 0.756, Tmax = 0.951 | Rint = 0.043 |
11998 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 3 restraints |
wR(F2) = 0.096 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.34 e Å−3 |
1960 reflections | Δρmin = −0.41 e Å−3 |
152 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.63935 (18) | −0.00064 (3) | 0.86334 (7) | 0.0591 (3) | |
S1 | 0.99138 (10) | 0.34034 (2) | 0.48516 (6) | 0.0319 (2) | |
O1 | 0.7921 (4) | 0.02162 (8) | 0.61866 (18) | 0.0494 (6) | |
N1 | 0.8476 (3) | 0.22309 (8) | 0.55160 (16) | 0.0229 (5) | |
N2 | 1.2836 (4) | 0.11962 (8) | 0.34016 (18) | 0.0302 (6) | |
N3 | 1.4013 (3) | 0.28346 (9) | 0.27223 (18) | 0.0341 (6) | |
N4 | 0.7070 (3) | 0.13030 (8) | 0.62971 (16) | 0.0251 (5) | |
C1 | 0.8574 (4) | 0.15744 (9) | 0.55067 (18) | 0.0220 (6) | |
C2 | 0.9959 (4) | 0.12055 (10) | 0.48191 (18) | 0.0246 (6) | |
C3 | 1.1424 (4) | 0.15360 (9) | 0.40844 (18) | 0.0226 (6) | |
C4 | 1.1368 (4) | 0.22219 (10) | 0.40856 (19) | 0.0228 (6) | |
C5 | 0.9869 (4) | 0.25440 (10) | 0.48268 (19) | 0.0227 (6) | |
C6 | 1.2825 (4) | 0.25766 (9) | 0.3341 (2) | 0.0249 (6) | |
C7 | 0.7603 (4) | 0.35817 (11) | 0.5806 (2) | 0.0355 (7) | |
C8 | 0.6819 (4) | 0.06691 (10) | 0.6581 (2) | 0.0304 (7) | |
C9 | 0.4941 (5) | 0.05515 (11) | 0.7435 (2) | 0.0416 (8) | |
H2 | 0.99210 | 0.07420 | 0.48430 | 0.0300* | |
H2A | 1.358 (6) | 0.1378 (14) | 0.287 (2) | 0.0890* | |
H2B | 1.269 (7) | 0.0780 (5) | 0.339 (3) | 0.0890* | |
H4 | 0.61790 | 0.15830 | 0.66520 | 0.0300* | |
H7A | 0.57850 | 0.34940 | 0.53250 | 0.0530* | |
H7B | 0.77610 | 0.40420 | 0.60550 | 0.0530* | |
H7C | 0.80060 | 0.33060 | 0.65590 | 0.0530* | |
H9A | 0.32330 | 0.03740 | 0.69400 | 0.0500* | |
H9B | 0.45690 | 0.09690 | 0.78160 | 0.0500* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.1097 (6) | 0.0365 (4) | 0.0449 (4) | 0.0030 (3) | 0.0458 (4) | 0.0068 (3) |
S1 | 0.0342 (3) | 0.0178 (3) | 0.0481 (4) | −0.0007 (2) | 0.0187 (3) | 0.0002 (2) |
O1 | 0.0775 (12) | 0.0217 (8) | 0.0684 (13) | 0.0051 (8) | 0.0560 (10) | 0.0063 (8) |
N1 | 0.0238 (8) | 0.0210 (8) | 0.0258 (9) | −0.0004 (6) | 0.0098 (7) | −0.0004 (7) |
N2 | 0.0379 (10) | 0.0258 (9) | 0.0344 (11) | 0.0008 (8) | 0.0236 (8) | −0.0009 (8) |
N3 | 0.0357 (10) | 0.0333 (10) | 0.0374 (11) | −0.0070 (8) | 0.0168 (9) | 0.0024 (9) |
N4 | 0.0313 (9) | 0.0204 (8) | 0.0299 (10) | 0.0014 (7) | 0.0198 (7) | 0.0009 (7) |
C1 | 0.0225 (9) | 0.0230 (10) | 0.0221 (11) | 0.0007 (8) | 0.0086 (8) | 0.0021 (8) |
C2 | 0.0299 (10) | 0.0201 (10) | 0.0274 (11) | −0.0009 (8) | 0.0139 (9) | 0.0005 (8) |
C3 | 0.0221 (9) | 0.0233 (10) | 0.0238 (11) | 0.0013 (8) | 0.0085 (8) | 0.0005 (8) |
C4 | 0.0224 (10) | 0.0226 (10) | 0.0252 (11) | −0.0024 (7) | 0.0095 (8) | 0.0017 (8) |
C5 | 0.0204 (9) | 0.0200 (10) | 0.0280 (11) | −0.0008 (7) | 0.0063 (8) | 0.0004 (8) |
C6 | 0.0263 (10) | 0.0223 (10) | 0.0275 (11) | −0.0013 (8) | 0.0093 (9) | 0.0001 (9) |
C7 | 0.0363 (12) | 0.0281 (12) | 0.0445 (14) | 0.0043 (9) | 0.0141 (10) | −0.0061 (10) |
C8 | 0.0380 (11) | 0.0239 (11) | 0.0354 (13) | 0.0009 (9) | 0.0209 (10) | 0.0022 (9) |
C9 | 0.0536 (14) | 0.0309 (12) | 0.0516 (16) | 0.0008 (11) | 0.0353 (12) | 0.0055 (11) |
Cl1—C9 | 1.769 (2) | N2—H2B | 0.856 (11) |
S1—C5 | 1.761 (2) | C3—C4 | 1.405 (3) |
S1—C7 | 1.799 (2) | N4—H4 | 0.8800 |
O1—C8 | 1.219 (3) | C4—C5 | 1.410 (3) |
N1—C1 | 1.346 (2) | C4—C6 | 1.431 (3) |
N1—C5 | 1.324 (3) | C8—C9 | 1.516 (3) |
N2—C3 | 1.353 (3) | C2—H2 | 0.9500 |
N3—C6 | 1.144 (3) | C7—H7A | 0.9800 |
N4—C1 | 1.406 (3) | C7—H7B | 0.9800 |
N4—C8 | 1.348 (3) | C7—H7C | 0.9800 |
C1—C2 | 1.379 (3) | C9—H9A | 0.9900 |
C2—C3 | 1.401 (3) | C9—H9B | 0.9900 |
N2—H2A | 0.85 (3) | ||
C5—S1—C7 | 101.76 (10) | S1—C5—C4 | 118.02 (16) |
C1—N1—C5 | 116.95 (17) | N3—C6—C4 | 177.0 (2) |
C1—N4—C8 | 128.28 (17) | N4—C8—C9 | 113.90 (18) |
N1—C1—N4 | 111.30 (17) | O1—C8—N4 | 125.0 (2) |
N1—C1—C2 | 125.23 (19) | O1—C8—C9 | 121.1 (2) |
N4—C1—C2 | 123.48 (17) | Cl1—C9—C8 | 109.80 (17) |
C1—C2—C3 | 117.89 (18) | C1—C2—H2 | 121.00 |
C3—N2—H2B | 118 (2) | C3—C2—H2 | 121.00 |
H2A—N2—H2B | 118 (3) | S1—C7—H7A | 109.00 |
C3—N2—H2A | 122.6 (19) | S1—C7—H7B | 110.00 |
C2—C3—C4 | 117.94 (18) | S1—C7—H7C | 109.00 |
N2—C3—C4 | 121.91 (18) | H7A—C7—H7B | 109.00 |
N2—C3—C2 | 120.15 (17) | H7A—C7—H7C | 110.00 |
C3—C4—C5 | 118.85 (19) | H7B—C7—H7C | 109.00 |
C3—C4—C6 | 119.57 (18) | Cl1—C9—H9A | 110.00 |
C5—C4—C6 | 121.58 (18) | Cl1—C9—H9B | 110.00 |
C1—N4—H4 | 116.00 | C8—C9—H9A | 110.00 |
C8—N4—H4 | 116.00 | C8—C9—H9B | 110.00 |
S1—C5—N1 | 118.85 (15) | H9A—C9—H9B | 108.00 |
N1—C5—C4 | 123.13 (19) | ||
C7—S1—C5—N1 | −4.84 (19) | C1—C2—C3—N2 | 179.40 (19) |
C7—S1—C5—C4 | 176.27 (17) | C1—C2—C3—C4 | −0.6 (3) |
C5—N1—C1—N4 | 178.53 (17) | N2—C3—C4—C5 | −179.5 (2) |
C1—N1—C5—S1 | −177.61 (15) | C2—C3—C4—C6 | −179.61 (19) |
C1—N1—C5—C4 | 1.2 (3) | N2—C3—C4—C6 | 0.4 (3) |
C5—N1—C1—C2 | −1.4 (3) | C2—C3—C4—C5 | 0.5 (3) |
C1—N4—C8—O1 | 0.6 (4) | C6—C4—C5—N1 | 179.3 (2) |
C8—N4—C1—N1 | −175.96 (19) | C3—C4—C5—S1 | 178.04 (16) |
C8—N4—C1—C2 | 4.0 (3) | C3—C4—C5—N1 | −0.8 (3) |
C1—N4—C8—C9 | −177.90 (19) | C6—C4—C5—S1 | −1.9 (3) |
N4—C1—C2—C3 | −178.82 (18) | O1—C8—C9—Cl1 | 46.4 (3) |
N1—C1—C2—C3 | 1.1 (3) | N4—C8—C9—Cl1 | −135.06 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O1 | 0.95 | 2.26 | 2.863 (3) | 121 |
N2—H2B···O1i | 0.86 (1) | 2.13 (1) | 2.968 (2) | 165 (3) |
N4—H4···N3ii | 0.88 | 2.16 | 3.034 (2) | 172 |
C9—H9B···N3ii | 0.99 | 2.47 | 3.366 (3) | 151 |
Symmetry codes: (i) −x+2, −y, −z+1; (ii) x−1, −y+1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O1 | 0.95 | 2.26 | 2.863 (3) | 121 |
N2—H2B···O1i | 0.856 (11) | 2.132 (14) | 2.968 (2) | 165 (3) |
N4—H4···N3ii | 0.88 | 2.16 | 3.034 (2) | 172 |
C9—H9B···N3ii | 0.99 | 2.47 | 3.366 (3) | 151 |
Symmetry codes: (i) −x+2, −y, −z+1; (ii) x−1, −y+1/2, z+1/2. |
Acknowledgements
We thank the University of Tennessee for supporting this study.
References
Boger, D. L. & Nakahara, S. (1991). J. Org. Chem. 56, 880–884. CrossRef CAS Web of Science Google Scholar
Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Castedo, L., Quintela, J. M. & Riguers, R. (1984). Eur. J. Med. Chem., 19, 555–557. CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gachet, C., Cattaneo, M., Ohlmann, P., Hechler, B., Lecchi, A., Chevalier, J., Cassel, D., Mannucci, P. M. & Cazenave, J.-P. (1995). Br. J. Haematol. 91, 434–444. CrossRef CAS PubMed Web of Science Google Scholar
Latif, N., Mishrky, N. & Girgis, N. S. (1981). Indian J. Chem. Sect. B, 20, 147–149. Google Scholar
Mamolo, M. G., Zampieri, D., Falagiani, V., Vio, E. & Banfi, E. (2001). II Farmaco, 56, 593–599. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, T. Y., Stout, J. R., Keay, J. G., Scriven, E. F. V., Toomey, J. E. & Goe, G. L. (1995). Tetrahedron, 51, 13177–13184. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyridine compounds have occupied a unique position in medicinal and industrial chemistry. Some polyfuctional pyridines constitute an important class of antitumor compounds (Boger & Nakahara, 1991; Zhang et al., 1995). They also show antibacterial (Castedo et al., 1984), antifungal (Latif et al., 1981), antimyotic (Mamolo et al., 2001) and antidepressant (Gachet et al., 1995) activities. In this respect, and also in continuation of our study on synthesis of different heterocyclic system that containing highly biological activity, we report here the synthesis and crystal structur of the title compound.
In the title compound (Fig. 1), the chloroacetamide moiety has an extended conformation, as indicated by the torsion angles around the C8—N4 [C9—C8—N4—C1 = 177.90 (19)°] and N4—C1 [C8—N4—C1—C2 = 4.0 (3)°] bonds. The sum of the angles around atom N4 (360.28°) suggests sp2-hybridization. The dihedral angle between the pyridine ring (N1/C1–C5) and the chloroacetamide moiety is 22.36 (6)°.
Molecular structure is stabilized by a weak intramolecular C—H···O interaction (Table 1). In the crystal, molecules are linked via intermolecular N—H···O, N—H···N and C—H···N hydrogen bonds (Table 1, Figs. 2 & 3), forming two dimensional networks paralel to the (120) planes.